ми. Перспективы конструкци гусеничних машин можуть експлуатуватися на ухилах до 27 град. [6]. Колют та гусеничш транспорты засоби постшно вдосконалюються. Покращення загального компонування люово! машини, новi конструктивы матерiали шин та гнучких гусениць дають змогу iстотно пiдвищувати !х прохiднiсть i понизити негативний вплив на опорну повер-хню. Адаптоваш контролювальнi системи лiсових машин зможуть змшювати параметри колiсних та гусеничних рушив залежно вiд грунтових умов, заван-таження та виконувано! роботи. Створення крокувального рушiя зi штучним iнтелектом дасть змогу розширити дiапазон наземно! прсько! лiсозаготiвлi (зокрема, довести верхню межу доланого ухилу до 45 град.).
Лггература
1. Нестор Библюк, Марко Библюк. Еколопчш аспекти прсько! лiсозаготiвлi. - Правд НТШ, том. 2, 1998. - С. 586-600.
2. Нестор Библюк, Михайло Глушко. Люотранспорт у гуцульських Карпатах// 1с-торiя Гуцульщини. - Львiв: Каменяр. - 1999, том 4. - С. 256-299.
3. Нестор Библюк, 1ван Ковальчук, Олег Стирашвський Екологiчнi проблеми Гуцульських Карпат та шляхи 1х виршення// 1стор1я Гуцульщини. - Льв1в: Логос. 2001, том 6. - С. 540-570.
4. Benes K. Zeleznice na Podkarpatske Rusi// Nadatur, Praha - 1995. - 161 p.
5. Wendelin V. Karpatendampf. Schmalspurbahnen in Ostgalizien. Band 1// Verlagshaus AFISHA, Lemberg - 2002 - 236 p.
6. Hainimann H.R. Ground-based Harvesting Technologies for Steep Slopes. International Mountain Logging and 10th Pacific Northwest Skyline Symposium, Corvallis, OR. - 1998.
7. Генс1рук С. А., Фурдичко О.1., Боднар В.С. 1стор1я лювництва в УкраЫ. - Льв1в, 1995. - 422 с.
8. Горшенш М.М., Пешко В.С. Ероз1я прських люових грунпв та боротьба з нею. -Льв1в, 1972. - 148 с.
9. Круцик М.Д., Грицюк Л.В., Грицюк О.Л. та ш. Захист прських автомобшьних дор1г вщ зсув1в. - Коломия: ПП "Галдорпрогрес", 2003. - 425 с.
10. Поляков А.Ф. Влияние главных рубок на почвозащитные свойства буковых лесов. - М.: Лесн. пром-сть, 1965 - 174 с.
Prof. Adolf JANECEK - Czech University of Agriculture in Prague, Czech Republic; Prof. Milan MIKLES - Technical University in Zvolen, Slovakia
RATIONALISATION OF MOBILE TERRAIN SYSTEM FROM POINT OF VIEW OF ECOLOGICAL CLEANLINESS OF WORK
In this paper is evaluated an optimal constructional and operating performance of mobile terrain system, that work in forest ecosystem, from point of view of volume of processed biomass and total amount of logging-transportation erosion. A monitored terrain system, working in forest industry, is considered as manufacturing system, with its material and energetic flow. The determination value, that optimise the manufacturing system, is operating and constructional performance.
In this paper is evaluated the amount of erosion in dependence on volume of cutted mass, by means of mathematics, and from system point of view. The conditions for mobile terrain system work, that ensure optimal, i.e. minimal value of erosion will be determined. The theoretical results are verified. The optimal values of soil erosion are determined by experimental measurements. The principles of paper are based on theses of ecological synthesis that determine coupling between dissipative energy of manufacturing system and its ecological cleanliness of work.
Keywords: mobile terrain system, forest ecosystem, mathematical simulation.
Науковий вкник, 2004, вип. 14.3
Проф. Адольф ЯНЕЧЕК - Чеський ун-т стьського госп-ва в Празi, Чеська Республжа; проф. МЫан М1КЛЕШ - Техшчний ун-т в Зволем, Словаччина
Вдосконалення мобшьно1 люово1 машини з позицп еколопчно1
чистоти 11 роботи
Визначено оптимальш значения конструктивних i робочих napaMeTpiB мобшь-но'1 лГсово! машини з точки зору п максимально! продуктивное^ та еколопчно! сприйнятливостi. Стутнь ерози грунту оцiнювався залежно вщ об'ему заготовлено! деревини за допомогою математичних пiдрахункiв з подальшим порГвнянням Гз результатами експериментiв. У дослщженш обгрунтовано оптимальнГ паказники роботи мобшьно! лГсово! машини за умови нанесення мшГмально'1' шкоди довкшлю. Принципи дано! роботи базуються на теори екологГчного синтезу, який полягае в едностГ затрачено! машиною енергп та еколопчно! чистоти ii роботи.
Ключов1 слова: мобГльна лГсова машина, люова екосистема, математичне мо-делювання
1. Introduction
The logging-transportational and subsequent water erosion cause devastation of forest ecosystems (Sach 1986). It thereby suffer not only productive, but also unproductive forrest functions, including contamination of surface water sources. The devastation of forest soils is a problem mainly in immitted areas, by mortification of forest stands, as well as their subsequent cutting. (Skypala 1987).
The exploitation of transporational technique, technique for mechanical preparation of soil, mainly in upland immitted areas resulted to increased devastation of soil surface of forest ecosystems (Sach 1986). The erosion processes then conduct not only at decreasing of forest soil, and also to it degradation and degradation of water mode of soil (Holy 1988).
The preventive wood-technical measurents, serve us for decreasing of damages caused by erosion (Kubelka 1991). They consist of (Janecek 1992) choice of ecological canny technologies, by using of possibility to employ a suitable technique with rational performance. This paper discuss about possibilities of its determining.
The verification is carried out by experimental monitoring of logging-transporational erosion, caused by skidding units TERRI 20-20 and TERRI 20-40. The task of paper is also to confirm the known theses of ecological synthesis (P. Duvignfaud 1980). The dissipative energy produce by manufacturing system (in our case it is a mobile system working in division of forest industry) is rate of ecological cleanliness of system's work.
2. Specification of factors that affect the logging-transportational erosion
During analyze of logging-transportational technique with various performance we will ascertain, that it is commensurable to amount of damages, caused by logging-transportational erosion.
1. The factors that affect the specific consumption of energy and material:
• increasing of constructional performance do not respond directly to changes of
parts of logging-transportational and afforestation systems, which exercise an
influence on energetic, material and working fastidiousness;
• the change of investment fastidiousness of these systems is not directly commensurable to change of performance;
• the changes of dimensions of material flow as a result of the change of system's performance do not always actuate on change of energetic and material fastidiousness and consequently not even on total amount of damages caused by erosion.
2. The possibilities of increasing of constructional performance of forest systems:
• increasing of interaction space of material flow (choping, cutting area, etc.), increasing of maximal work performance;
• increasing of material cross-section within roads on which a material is transported.
3. Optimal mode of logging-transportational system from point of view of relationship between erosion and unit of performance
During manufacturing process of logging-transportational systems the energy and material is transformed. The transformation of energy and material results to final product - machined wood, see Figure 1.
constructional performance
operational performance
energy
material
logging-man ufacturing transportation;!] system
machined wood
Figure 1. The transformation of energy and material results to final product-machined wood
A regulation of intensity of logging-transportational system work is carry out by regulators, which specified the constructional and operational performance. At the same time, during work of these systems the logging-transportational erosion is rising. It depends on intensity of whole process, and it is result of the loss energies which rise during this process.
For value of logging-transportational erosion, that rised during manufacturing process as a result of energy transformation is valid formula:
MEF = mE QE ч • SE , (1)
Псе(WK,Wp) E V '
where: MEF - amount of logging-transportational erosion rised during work of logging-transportational system as a result of energy transformations (kg); mE - amount of energy source (naphtha, gasoline, etc.) needed for production (kg); Wp -
3 —1
operational performance of system (m •s ); Wk - constructional performance of
3 _i
system (m •s ); SE - specific inherent (supplied) energy that rise as a result of energy transformations during manufacturing process (kJ-kg-1); QE - specific energy of energy source (kJ-kg-1); цсе - efficiency of energy transformations into final product in dependence on constructional and operational performance (-).
For total amount of production manufactured by logging-transportational system with transformation of given amount of energy is valid formula:
wc =--Г (m3), (2)
c qvvce (,wpГ
where: WC _ total amount of production of system, produced as a result of energy transformation (m3); QV _ specific production energy, that is needed to supply to
_3
logging-transportational system per unit of production (J-m ).
HiiyK'QBiiii bïchhk, 2004, BHn. 14.3
If we consider that QE, SE, nE are constants for time we analyze, we can express the time derivations of formula (1) as follow:
= 3t SE , (kg-s-1) (3)
dt ncE (Wk, wp ) E
where: t - time (s); dMEE / dt - amount of logging-transportational erosion per unit of time produced as a result of energy transformation (kg-s-1); dmE / dt - amount of energy source supplied per unit of time (kg-s-1).
For performance of system is valid formula (see formula 2)
Amount of erosion produced by system pre unit of time is gived by formula:
dmE Q S
qe se
dMEEM dt
dt ncE (Wk ,Wp)
where: ^EEM - total erosion produced by system per unit of time, (kg-s ).
dt
(4)
q _dMEEM 1
dt wc (Wk W )
dm
dt
e qe se
rtcE (Wk ,Wp )
1
Wc (Wk ,Wp )
3
where Q - specific erosion reffered to unit of production (kg-m ).
For extreme of the function of specific logging-transportational erosion, referred to unit of volume of machined mass in function of constructional and operational performance are valid conditions needed
(5)
d 2 M EE (Wk ,Wp ) dt.dWr
EEVK^pJ* fU rr.m3
= 0, (kg-m3) (6)
k
_ 0 , (kg-m3) (7)
dt.dWp
When presented acts and adjustments are carried out we obtain the formulas which decide if conditions needed in subsequent form are fulfil:
f (WWk Wp ) fE (Wk ,Wp ) fE dWc ( Wp )
=i,(8)
W nce (wk wp ) dWK wc (( wp ) owk
_i, (kg-m) (9)
f (k wp ) fE dnc (wk wp ) fE dWc (wk wp )_ .. (13
W Vce(Wkwp ) dWP Wc (WKWP) dWK
fE =m - qe - se (wk wp ) ... dt
flow of erosion caused by transformation of energy in manufacturing process
2. EKO.omm npo6.TOMH .icorocnogapctKoï gmmHOcri
197
4. General analysis
By analysis of formulas which are necessary for determining of amount of logging-transportational erosion per unit of production of transportational system was found, that is valid (Janecek 1991):
dnCE (Wp )
— > 0 ~ valid for area of lower values of operational performance Wp, (10)
>
p
dnCE (W )
—dw— < 0 ~ valid for area of higher values of operational performance Wp, (11)
dn (W )
—dW k > 0 ~ valid for area of lower values of constructional performance Wk, (12)
dn (W )
—dW k < 0 - valid for area of higher values of constructional performance Wk, (13)
dWk
Futhermore are valid relations:
fE > 0 - physical technical parameter (kg • s-1), (14)
nCE > 0 - physical technical parameter, (15)
wcw dWp
> 0 - performance of manufacturing system ascend in function of operational
performance Wp, (16)
W
> 0 - performance of manufacturing system ascend in function of constructi-
8Wk
<0 (19)
onal performance Wk, (17)
Concerning the formulas (8), (9) we can write:
/(wk,wP)_ /Е(wK,wp) dfyW,WP)_ fEW,WP) dWc(WK,wp) (18)
W ПСЕ (wK wP ) OwK wC (W) 3wK ' { >
... valid for area of higher values of constructional performance
/(wk,wp) _ /е(wk wp) П(WK ,Wp) _ fE(WK ,Wp) dWc(,Wp)
W ПСЕ( ,wP ) OwK Wc (wK ,Wp) ^
. valid for area of lower values of constructional performance
By similar analyse we can arrive to relation that specify a behaviour of function of specific erosion concerning parameters that specify the operational performance. From formula (18) is clearly that parameters WK, WP, which specify constructional-operational performance of mobile forest system, affect the flow of erosion (logging-transportational erosion) as well as the inherent flow and in manufacturing process futhermore affect efficiently of energy transformation to final product.
These quantitative relations (18) validate a general thesis formulated by P. DUVIGNEAUD 1980. The amount of dissipative energy is rate of ecological cleanliness (logging-transportational erosion) of work of mobile terrain system. This thesis is then validated by above-mentioned analyze of work of mobile terrain system in dependence on its intensity of work.
HiivKOBiiii BÏCHHK, 2004, BHn. 14.3
5. Verification of mathematical model
On basis of theoretical calculus in above-mentioned text was experimentally determined a behaviour of forest manufacturing systems, what allow optimalization of their main constructional and operational parametres from aspect of ecological criterions - see Figure 2,3. Physical models were observed for systems - working machine in logging, afforestration and transportational activities in division of forest industry. There were found, that at optimal computed performance, at which listed systems worked, the logging-transportational erosion was decreased by 5-15 %.
In locality of North Czech was experimentally verified characteristics of work of skidding units:
TERRI 20-20:
engine power dimensions weight
- Kubota, type DH 850-B, 4-takt, diesel,
- 17 kW at 3600 rpms,
- length 6500 mm, wibth 1460 mm, height 2350 mm,
- 3390 kg,
transport weight - 1690 kg, scope of hydraulic crane - 4,2 m.
TERRI 20-40:
engine power dimensions weight
- Kubota, type D 1105, 4-takt, diesel,
- 17,6 kW at 3000 rpms,
- length 6500 mm, width 1470 mm, height 2250 mm,
- 4950 kg,
transport weight - 2960 kg, scope of hydraulic crane - 7 m.
Breach of soil surface of stand TERRI 20-40
4 3 2 _ 1 a o
-1-*-1-
500
Wopt.
1000
1500
W [m3.month.~1]
Figure 3. Depence between specific amount of damages and operational performance
Figure 2. Depence between specific amount of damages and operational performance
Skidding unit TERRI 20-20 is designed for total month capacity cca 200400 m3. In conditions at which the measurements was carried out the optimal operational performance (see Figure 2) was at level of cca 400 m .
It is the upper border of operational performance which is refered by manufacturer. Considering the criterion of logging-transportational erosion there is a need to operate TERRI 20-20 unit on this value of optimal performance.
In case of increasing or decreasing of performance by 5-10 %o the specific erosion will increase by 30-40 %. The similar results we obtained in case of experimental measurements with TERRI 20-40 unit.
0
2. EKO^orÏHHÏ npo6.TOMH .icorocnogapctKoï gmmHOcri
199
6. Conclusion
The goal of work, presented in this paper, was deriving the function of measured erosion, that rise during work of logging-transportational system in forest industry.
The function was derived. As resulting from this function, it is result of transformation of energy into final production of manufacturing process. It depends on efficiency of material and energy transformations, that depends on intensity of work. This we can express by constructional and operational performance.
By mathematical analyze was found, that logging-transportational erosion rising during work of system has minimal value in work mode, which is can be characterized by optimal operational and constructional performance.
By verification of theoretical terms, carried out by experimental observation of skidding units TERRI 20-20 and TERRI 20-40 we showed the possibilities of their employment at minimal specific erosion per unit of machined wood. While the optimal values of work of above-mentioned system are changed by 5-10 %, there will occur the growth of erosion by 15-30 %. Because of it there is a need of fairly consideration of the localities of their employment and intensity of work, that are given by their operational performance.
The theoretical analyze followed by realized experiment validate a generally valid thesis:
The amount of dissipative energy rising during manufacturing process of mobile terrain system is a rate of ecological cleanliness (logging-transportational erosion) of work of mobile terrain system. By means of minimalisation of this dis-sipative energy or specific dissipative energy is possible to ensure the optimal mode of work of mobile terrain system from point of view of given criterion - logging-transportational erosion.
References
1. Bellmann, R.E. 1956: On the bong-bong control problem. A nol of Applied XIV. 1956.
2. Holy, M., 1988: Simulacni model povrchoveho odtoku a erozniho procesu. Vodniho hos-podarstvi, 10/1988 A S. 3-4.
3. Janecek, A. a kol., 1991: Uvodni systemova analyza modelovani negativniho pusobeni lesni techniky na ekosystemy. VÜLHM 1991, S. 143.
4. Janecek, A. a kol., 1992: Uvodni systemova analyza modelovani negativniho pusobeni lesni techniky na ekosystemy. VULHM 1992, S. 155.
5. Janecek, A., 2001: Racionalni matematicky model optimalizujici podstatne konstrukcni a provozni parametry vyvazeci soupravy z hlediska kriteria tezebne dopravni eroze. S. 86.
6. Kolmogoroff A.N., 1931: Über die analytischen Metoden in der Wahrscheinlichkeitsrechnung, Math. Ann. 104.
7. Kubelka J. 1991 Üstni sdeleni.
8. Pontrjagin L.S., 1964: Matematicka teorie optimalnich procesu. Praha 1964. S. 354.
9. Skypala, J., 1987: Ocenovani skod zpusobenych civilizacnimi faktory v lesnim hos-podarstvi. VÜLHM, S. 86.
10. Slodicak, M., 1986: Zvysovani odolnosti mladych smrkovych porostu proti skodam snehem. VÜLHM 1986, KDP, S. 96.
v ' '
11. Sach, F., 1986: Vliv obnovnich zpusobu a tezebne dopravnich technologii na erozi pudy. VÜLHM 1986, KDP, S. 106.
12. Wiener, N., 1954: Cybernetiks and Society 2. ed. New York 1954. s 365.
13. Duvigneaud, P., La syntese ecologigue Dion edituers, Paris 1980, 400 s.
14. Corresponding author.
Науковий ¡¡¡сник, 2004, вип. 14.3
15. Prof. Ing. Janecek Adolf, DrSc., Ceská zemedelská univerzita Praha, Kamycka 1176, 165 21 Praha, e-mail: [email protected].
16. Prof. Ing. Mikles Milan, DrSc., Technická univerzita Zvolen, Masarykova 24, 960 53 Zvolen, e-mail: [email protected]._
УДК 630 *31; 658.011.51 Ст. наук. ствроб. В.Л. КОРЖОВ,
канд. техн. наук - УкрНДЫрлк
ОПТИМАЛЬНА ТРАНСПОРТНА МЕРЕЖА У Л1СФОНД1 ЯК ФАКТОР ЕКОЛОГ1ЧНО1 СТАБ1ЛЬНОСТ1 ТА СТАЛОГО ПРИРОДОКОРИСТУВАННЯ
Представлено характеристики транспортно! мережi в люовому фондi Карпатсь-кого регюш. Зроблено аналiз впливу лiсових шляхiв на eKOHOMiKy регiону та навко-лишне середовище.
Ключов1 слова: прсью лiси, транспортна мережа, характеристика, вплив, еко-номiка, довкiлля
Senior researcher V.L. KORZHOV- UkrRIMF
Optimum roads net in the woodland as the factor of ecological stability and
environment nature management
The information about characterizations of the road net in Ukrainian Carpathians forest is given. The influence of forest roads on economy and environment of the region is analyzed.
Keywords: mountain forest, roads net, characterization, influence, economic, environment
Транспорт е основою кожно! Í3 галузей людсько! д1яльност1. Особливо велике значення вш вщграе в люогосподарському виробнищш прських реп-ошв, де л1сов1 плошд розкидаш на значних територ1ях i характеризуются складним рельефом, грунтово-пдролопчними особливостями, низькою кон-центрацiею заготовлювано! деревини з одинищ плошi, одностороннiстю ван-тажопотокiв та iншими чинниками. Лiсовi транспортнi шляхи мають важливе значення не тшьки для технiчного забезпечення процешв лiсокористyвання, вiдновлення i охорони люу, а й для загального розвитку регiонy, покращення умов проживання населення, що особливо важливо в тепершнш час, коли почала дiяти "Рамкова конвенцiя про охорону та сталий розвиток Карпат". Розвиток дорожньо! мережi позитивно впливае на штенсифшащю та розши-рення можливостей багатьох галузей народного господарства, сприяе забез-печенню населення робочими мюцями та зниженню плинностi кадрiв [1]. У розвинутих лiсопромислових кра!нах Свропи витрати на бyдiвництво i утри-мання лiсових автомобiльних дор^ становлять близько третини собiвартостi витрат на заго^влю деревини, що шдкреслюе важливiсть оптимiзацi! дорожньо! мережi в лiсфондi.
Дорожня мережа в люовому фондi Укра!нських Карпат представлена трьома такими видами шляхiв транспорту: автомобшьш дороги загального користування; лiсовi автомобiльнi дороги; вyзькоколiйнi лiсовознi залiзницi. У бiльшостi випадкiв основу транспортно! мережi лiсових пiдприемств ство-рюють автомобiльнi дороги, з яких приблизно п'ята частина - це автодороги