Научная статья на тему 'RATIONAL USE OF HEAT AND THERMAL CONDUCTIVITY OF HEAT-INSULATING COATINGS'

RATIONAL USE OF HEAT AND THERMAL CONDUCTIVITY OF HEAT-INSULATING COATINGS Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
113
30
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
insulation paint / thermal conductivity / thermocouple sensors thermal insulation material / microsphere / thermal energy efficiency / stationary method / non-stationary method.

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Gapparov Kodirjon, Boburjon Tolibjonovich Tojiboyev

Analysis of available methods for determining the thermal conductivity of liquid heat-insulating (insulating) coatings.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «RATIONAL USE OF HEAT AND THERMAL CONDUCTIVITY OF HEAT-INSULATING COATINGS»

RATIONAL USE OF HEAT AND THERMAL CONDUCTIVITY OF HEAT-

INSULATING COATINGS

Gapparov Kodirjon Boburjon Tolibjonovich Tojiboyev

Fergana Polytechnic Institute Fergana Polytechnic Institute

ABSTRACT

Analysis of available methods for determining the thermal conductivity of liquid heat-insulating (insulating) coatings.

Key words and phrases: insulation paint, thermal conductivity, thermocouple sensors thermal insulation material, microsphere, thermal energy efficiency, stationary method, non-stationary method.

By the 21st century, the conservation and rational use of heat in housing and communal services, heat-producing plants and factories remains an important and priority task. With high energy costs and improved market conditions for mechanical insulation products, designers and factory owners are increasingly interested in using them to reduce energy consumption by increasing energy efficiency.

Insulation is a material or set of materials used to resist heat flow.

The coating is a liquid or semi-liquid material that dries or hardens to form a protective coating and is suitable for application to thermal insulation or other surfaces with a thickness of 30 mils (0.76 mm) or less for each layer. .

Combining the two definitions, "thermal insulation" does not include thermal insulation, but it is considered that it can be used as a thermal insulation in itself.

We know that when hot water comes to the population from heat sources, there is heat loss in the pipes. We can see this in picture 1 below

The thermal insulation coating we are researching is characterized by its versatility

and compliance with the requirements for thermal insulation coatings.

Thermal insulation coating is an innovative energy-saving material, a polymer-based composition consisting of hollow ceramic microspheres.

It is advisable to use this coating in the construction industry instead of the usual thermal insulation materials (fiberglass).

Advantages:

Fire resistant

Resistant to acids and alkalis

Easy to apply (can be done by spraying with a brush, roller and compressor);

Forms a very compact layer;

Not harmful to human health;

It does not harm nature;

It does not contain harmful substances;

Areas of application

Allows heat retention by applying to valves and valves (usually no glass is wrapped around valves and valves);

Heat is saved by lubrication in industrial containers;

Protects against noise and corrosion by spraying on car interiors;

Residential and industrial buildings (saves heat, prevents mold and adds splendor to the city by applying to exterior and interior);

It is very easy to rub, sprinkle and cover;

Metal constructions (cool in summer retains heat in winter);

Heating mains, pipes, ventilation ducts;

The scope of application of the heat-retaining coating is truly impressive. Let's take a closer look at examples of material use for different types of surfaces.

Apply exterior cladding:

Widely used as a facade. This material has increased flexibility, so even with sudden changes in temperature, micro cracks do not form on it. Depending on the thickness of the layer, the heat-retaining coating reduces heat loss by up to 30%, which allows to increase the room temperature by 4-6 ° C in the cold season. In summer, on the contrary, the coolness is maintained.

Applying veneer for wooden walls:

Thermal insulation with mineral wool or foam for houses made of wood products can significantly reduce the aesthetic properties of the building, but the application of the coating we offer is one of the best solutions for wooden houses, not only to insulate the house, but also also allows to emphasize the decorative properties of wood. The composition includes antibacterial substances that eliminate the risk of parasites, mold, pathogenic microbes. Due to its excellent fire-retardant properties, the paint protects the material from possible fires.

The coating can be applied to brick, wood, metal, concrete, plastic and many other surfaces. The surface is pre-cleaned, cleaned with special chemicals if necessary, diluted with water of the same composition (not more than 5%) or as a primer can be used as a primer of any acrylic paint, liquid glass mixture.

The coating should not be applied to wet, icy surfaces. The coating is laid in several layers. The number of layers is determined by the tasks, depending on the objectives. The layers can be applied several times with drying intervals. The final thickness of the finished coating is selected depending on the heat carrier temperature and the desired surface temperature.

The coating is easily (laid) on the surface of any geometric shape using a brush, spatula, roller or sprayer. The coating does not emit harmful compounds into the atmosphere. It is recommended to use a normal respirator when working indoors, and no respirator is required when working outdoors or in a ventilated room. Average consumption for obtaining a dry coating layer with a thickness of 1 mm: 750-1000 g / m2.

I have the following features:

- low density. Mass density - 0.35-0.6 g / cm3. Density of material

particle walls - 2.4-2.5 g / cm3. Particle size is 10-500 microns. The thickness of the spherical shell is -10% of the diameter.

- high fluidity. Due to the shape of the particles, the microspheres have increased the fluidity that provides good fluidity as a free-flowing material.

fill out forms.

- low thermal conductivity. Thermal conductivity of microspheres

20 ° C to 0.06-0.08 W / m ° C.

- Power. Microspheres are 3-10 times stronger than most hollow glass spheres. Unlike glass spheres, microspheres have a high compressive strength due to their stronger shell. Compressive strength - 15-30 MPa.

- Inaction. Due to the chemical composition of the microspheres are solvents, organic solutions, water, acids or

alkalis without losing their properties.

- Heat resistance. Microspheres

do not lose their properties at

temperatures above 1000 ° C. Melting

point not lower than 1200 ° C.

In order to stabilize the

performance of the equipment, the

readings of the three thermocouple

sensors were measured at 0.5 h

intervals of 5 min to "heat up" all parts Picture 2. Microsphere

of the equipment and to stabilize the heat flux transfer.

To calculate the individual error of the thermocouple sensors, the temperature of each sensor immersed in a Dewar vessel filled with melted ice was measured before the start of the experiments, and the temperature deviation from 0 ° C was taken into account during the experiments.

Initial tests were performed to determine the reliability of the thermal conductivity measuring equipment.

REFERENCES

1. Qo'chqarov, B. U., Tojiboyev, B. T., & Axtambayev, S. S. (2021). Experimental determination of the gas consumption sent to the device for wet dusting in the humid mode. Экономика и социум, (6-1), 226-229.

2. Маткаримов, Ш. А., Зияев, А. Т., Тожибоев, Б. Т., & Кучкаров, Б. У. (2020). Покрытие задвижек и запорной арматуры тепловых сетей жидким теплоизоляционным покрытием. Universum: технические науки, (12-5 (81)).

3. Boburjon Tolibjonovich Tojiboyev (2021). HEAT RESISTANT FLUID INSULATING COAT. Scientific progress, 2 (7), 524-531.

4. Эргашев Насимбек Ахмаджонович, Маткаримов Шухрат Адхамович, Зияев Абдукарим Ташпулатович, Тожибоев Бобир Толибжонович, & Кучкаров Бобирмирзо Улугбекович (2019). Опытное определение расхода газа, подаваемое на пылеочищающую установку с контактным элементом, работающим в режиме спутникового вихря. Universum: технические науки, (12-1 (69)), 29-31.

5. Халилов, Ш. З., Тожибоев, Б. Т., Умаров, Э. С., & Кучкоров, Б. У. (2019). Прием и хранение зерновой смеси, поступающей после комбайнов. Журнал Технических исследований, (2).

6. Tojiev, R., Ortikaliyev, B., & Tojiboyev, B. (2019). Improving selecting technology of raw materials of fireproof bricks. Тенденции и переспективы развития науки и оброзования в условиях глобализации. Украина, 27(46), 606-609.

7. Tojiboyev, B. T. (2020). Euphemism and Gender: Linguocultural euphemisms among males and females in uzbek and english language. International journal of discourse on innovation, integration and education, 1(5), 8-11.

8. Халилов, Ш. З., Тожибоев, Б. Т., & Кучкаров, Б. У. (2020). Причита скачков при трении. Журнал Технических исследований, 3(1).

9. Tojiboyev, B. T., & Mo, A. A. O. G. L. (2021). Liquid composition heat insulating coats and methods for determination of their heat conductivity. Scientific progress, 2(6), 1628-1634.

10. Tojiboyev, B. T., & Alijon o'g'li, M. B. (2020). Some questions of suffixation, impact and alternation by the background in borrowed words with the value of a face in

russian. International journal of discourse on innovation, integration and education, 1(5), 71-77.

11. Tojiboyev, B. T., & Gapporov, Q. G. ugli Raxmonov, AT (2020). Reception and Storage of Grain Mixture Generated After the Combines. International Journal of Engineering and Information Systems (IJEAIS). www. ijeais. org/ijeais, ISSN, 96-100.

12. Мирзаходжаев, Ш. Ш., Тожибоев, Б. Т., & Ахмедов, Р. Р. (2019). Характеристика опытного образца комбинированного фронтального плуга с активными рабочими органами. In Концепции устойчивого развития науки в современных условиях (pp. 46-48).

13. Toshpo'latovich, Z. A., & Tolibjonovich, T. B. (2021). Calculation of Thermal State of Sleeves and Cylinder Covers. Central asian journal of theoretical & Applied sciences, 2(11), 229-236.

14. Boburjon Tolibjonovich Tojiboyev (2021). Heat resistant fluid insulating coat. Scientific progress, 2 (7), 524-531.

15. Umarov, E. (2020). On the effect of axial displacements on the strength of frames. Technical Sciences, 1, 24-28.

16. Набиев, Т. С. О работе барабанной сушилки хлопка / Т. С. Набиев, Э. С. Умаров // Общество - наука - инновации : сборник статей Международной научно-практической конференции, Ижевск, 12 ноября 2021 года. - Уфа: Общество с ограниченной ответственностью "ОМЕГА САЙНС", 2021. - С. 38-42.

17. Umarov, E.S. (2021). Non-linear bending bar. Scientific progress, 2(7), 578-585.

18. Хамзаев, И. Х., & Умаров, Э. С. (2020). Применение метода конечных разностей к расчету пологих оболочек. Журнал Технических исследований, 3(1).

19. Tojiboyev, Bobur Tolibjonovich , & Yusupova, Nafisaxon Xursanaliyevna (2021). Suyuq kompozitsion issiqlik izolyatsiyalovchi qoplamalari va ularning issiqlik o'tkazuvchanlik koeffisentini aniqlash usullari. Oriental renaissance: Innovative, educational, natural and social sciences, 1 (10), 517-526.

20. Akramova, N. M., & Dekhkonboy, N. O. (2019). Phraseological euphemisms in modern English. Проблемы современной науки и образования, (12-2), 110-112.

21. Akramova, N. M. (2019). Dekhkonboy Nabirasi O. Phraseological euphemisms in modern English. Problemy Nauki, (12-2), 145.

22. Tojiboyev, B. T. (2020). Euphemism And Gender: Linguocultural euphemisms among males and females in uzbek and english language. International journal of discourse on innovation, integration and education, 1(5), 8-11.

23. Dekhqonboy Nabirasi Omongul Makhamadsoli Qizi (2020). Euphemisms dedicated to the theme of animals in the English and Uzbek languages. Вестник науки и образования, (10-3 (88)), 49-51.

24. Kizi, D. N. O. M. (2021). Poetic use of euphemistic meaning and their sociolinguistics analysis. Academicia: An International Multidisciplinary Research Journal, 11(2), 1124-1131.

25. Inomjon, H., Kodirjon, G., Elmurod, U., & Zokirjon, A. (2021). Application of the method of finite differences to the calculation of shallow shells. Universum: технические науки, (3-4 (84)), 71-76.

26. Гаппаров, К. Г., Эркабоев, Х. Ж., Мансуров, Ю. Н., & Аксёнов, А. А. (2021). Структурный анализ вторичных баббитов. Металлург, (5), 60-64.

27. Халилов, Ш. З., Гаппаров, К. Г., & угли Махмудов, И. Р. (2020). Влияние травмирования и способов обмолота семян пшеницы на их биологические и урожайные свойства. Журнал Технических исследований, 3(1).

28. Гаппаров, К. (2021). Промышленное опробование технологии очистки и переплавки вторичных баббитов. Universum: технические науки, (10-1 (91)), 6367.

29. Гуломович, Г. К., Эркабоев, Х. Ж., & Исмоилова, Д. С. (2020). Подшипниклардаги фойдаланилган баббит копламасига таъсир этувчи факторлар. Журнал Технических исследований, 3(2).

30. Гаппаров, К. Г., Тожибоев, Б. Т., & Мансуров, Ю. Н. Учредители: Металлургиздат. Металлург, (11), 101-105.

i Надоели баннеры? Вы всегда можете отключить рекламу.