Научная статья на тему 'Распределение элементов платиновой группы в автономных анортозитах юго-восточного обрамления Северо-Азиатского кратона'

Распределение элементов платиновой группы в автономных анортозитах юго-восточного обрамления Северо-Азиатского кратона Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
40
51
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АНОРТОЗИТЫ / ЭПГ / СПЕКТРЫ РАСПРЕДЕЛЕНИЯ / МОДЕЛЬ ФОРМИРОВАНИЯ / ОФИОЛИТЫ / ВУЛКАНИЧЕСКИЕ ДУГИ / ANORTHOSITE / PGE / DISTRIBUTION SPECTRA / MODELS OF THE FORMATION / OPHIOLITE / ISLAND ARCS

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Бучко И. В., Сорокин А. А., Палесский В. В., Родионов А. А.

Распределение ЭПГ в анортозитах архейских массивов обусловлено “законами” кристаллизации высокотемпературных mss, которые приводят к концентрации Ni, Fe, S, Ru и Rh в твердой фазе и Cu и Pd в расплавах. Характер распределения спектров ЭПГ в палеопротерозойских анортозитах обусловлен более низкими температурами кристаллизации mss и близок к образованиям офиолитовых комплексов. В то же время, абсолютное содержание PGE типично для базальтов островных дуг.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

DISTRIBUTION OF THE PLATINUM GROUP ELEMENTS IN THE AUTONOMOUS ANORTHOSITES OF THE SOUTH-EASTERN RIM OF THE NORTH-ASIAN CRATON

PGE distribution in anorthosites of the Archean massifs is caused by the “laws” of crystallization of the high temperature mss which lead to the concentration of Ni, Fe, S, Ru and Rh in the solid phase and Cu and Pd concentration in melts. The character of the PGE distribution spectra in the Paleoproterozoic anorthosites is associated with the lower temperatures of mss crystallization and is close to the rocks from the ophiolite complexes. At the same time the absolute PGE contents are typical to those in basalts of island arcs.

Текст научной работы на тему «Распределение элементов платиновой группы в автономных анортозитах юго-восточного обрамления Северо-Азиатского кратона»

13. Бок Р. Методы разложения в аналитической химии. - М.: Химия, 1984. -432 с.

References

1. Trahtenberg I.M., Korshun M.N. Rtut' i ee soedinenija // Vrednye himicheskie veshhestva. Neorganicheskie soedinenija jelementov I-IV grupp. - L.: Himija, 1988. - S. 170-188.

2. Gremjachih V. A. Zakonomernosti nakoplenija rtuti i biologicheskie posledstvija dejstvija ee subletal'nyh doz dlja gidrobiontov: Avtoref. dis. kand. biol. nauk. - Borok, 2007. - 22 s.

3. Laperdina T.G. Opredelenie rtuti v prirodnyh vodah. - Novosibirsk: Nauka, 2000. - 222 s.

4. Bolotova N.L. Izmenenija jekosistem melkovodnyh severnyh ozer v antropogennyh uslovijah (na primere vodoemov Vologodskoj oblasti): Avtoref. dis. dokt. biol. nauk. - SPb, 1999. - 55 s.

5. Borisov M. Ja., Konovalov A. F. Tropin N. Ju. Sovremennoe sostojanie populjacii rechnogo okunja (Perca fluviatilis L.) v uslovijah toksifikacii ozera Vozhe // IX s#ezd Gidrobiologicheskogo obshhestva RAN. Tezisy dokladov. - Tol'jatti: IJeVB RAN, 2006. - S. 53.

6. Borisov M. Ja. Osobennosti funkcionirovanija sistemy «vodosbor-ozero Vozhe» i ee vlijanie na rybnoe naselenie: Avtoref. dis. kand. biol. nauk. - Petrozavodsk, 2006. - 27 s.

7. Tropin N.Ju. Nakoplenie rtuti v myshechnoj tkani okunja Kubenskogo ozera // Molodye issledovateli - regionam: materialy Mezhdunarodnoj nauchnoj konferencii. - Vologda: VoGU, 2014. - T. 2. - S. 112-114.

8. Stepanova I.K., Komov V.T. Nakoplenie rtuti v rybe iz vodoemov Vologodskoj oblasti // Jekologija. - 1997. - № 4. - S. 295-299.

9. Gelashvili D.B., Ohapkin A.G., Doronina A.I., Kolkutin V.I., Ivanov E.F. Jekologicheskoe sostojanie vodnyh ob#ektov Nizhnego Novgoroda. - Nizhnij Novgorod: Izd-vo NNGU, 2005. - 414 s.

10. Pravdin I. F. Rukovodstvo po izucheniju ryb. - M., 1966. - 376 s.

11. Koblickaja A. F. Opredelitel' molodi presnovodnyh ryb. - M.: Legkaja i pishhevaja promyshlennost', 1981. - 202 s.

12. Kuzubova L. I. Otbor i podgotovka prob pri opredelenii rtuti i rjada tjazhelyh metallov v prirodnyh ob#ektah // Povedenie rtuti i drugih tjazhelyh metallov v jekosistemah. Ch. I. - Novosibirsk, 1989. - S. 6-42.

13. Bok R. Metody razlozhenija v analiticheskoj himii. - M.: Himija, 1984. -432 s.

ГЕОЛОГО-МИНЕРАЛОГИЧЕСКИЕ НАУКИ / GEOLOGY AND MINERALOGY

Бучко И.В.1, Сорокин А.А.2, Палесский В.В.3, Родионов А.А.4

'Доктор геолого-минералогических наук, Амурский государственный университет, Институт геологии и природопользования ДВО РАН, 2Доктор геолого-минералогических наук, Институт геологии и природопользования ДВО РАН, 3Кандидат геологоминералогических наук, Институт Г еологии и минералогии СО РАН, 4Аспирант, Институт геологии и природопользования ДВО

РАН

РАСПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ПЛАТИНОВОЙ ГРУППЫ В АВТОНОМНЫХ АНОРТОЗИТАХ ЮГОВОСТОЧНОГО ОБРАМЛЕНИЯ СЕВЕРО-АЗИАТСКОГО КРАТОНА

Аннотация

Распределение ЭПГ в анортозитах архейских массивов обусловлено "законами ” кристаллизации высокотемпературных mss, которые приводят к концентрации Ni, Fe, S, Ru и Rh в твердой фазе и Cu и Pd - в расплавах. Характер распределения спектров ЭПГ в палеопротерозойских анортозитах обусловлен более низкими температурами кристаллизации mss и близок к образованиям офиолитовых комплексов. В то же время, абсолютное содержание PGE типично для базальтов островных дуг.

Ключевые слова: анортозиты, ЭПГ, спектры распределения, модель формирования, офиолиты, вулканические дуги.

Buchko I.V.1, Sorokin A.A.2, Palessky V.V.3, Rodionov A.A.4

'Doctor of geologo-mineralogical Sciences, Amur state University, Institute of Geology and Nature Management FEB RAS,2Doctor of geologo -mineralogical Sciences, Institute of Geology and Nature Management FEB RAS, 3Candidate of geologo-mineralogical Sciences Institute of Geology and Mineralogy SB RAS, 4Aspirant, 1Institute of Geology and Nature DISTRIBUTION OF THE PLATINUM GROUP ELEMENTS IN THE AUTONOMOUS ANORTHOSITES OF THE SOUTHEASTERN RIM OF THE NORTH-ASIAN CRATON

Abstract

PGE distribution in anorthosites of the Archean massifs is caused by the "laws ” of crystallization of the high temperature mss which lead to the concentration of Ni, Fe, S, Ru and Rh in the solid phase and Cu and Pd concentration in melts. The character of the PGE distribution spectra in the Paleoproterozoic anorthosites is associated with the lower temperatures of mss crystallization and is close to the rocks from the ophiolite complexes. At the same time the absolute PGE contents are typical to those in basalts of island arcs.

Keywords: anorthosite, PGE, distribution spectra, models of the formation, ophiolite, island arcs.

Problem Formulation

Within the Dzhugdzhur-Stanovoy and Selenga-Stanovoy superterranes of the south-eastern rim of the North-Asian craton two stages of development of the autonomous anorthosites [1, 2] are established: the Neoarchean (2.63-2.62 Ga) [1, 5, 10] and Paleoproterozoic (1.86-1.74 Ga.) [2, 8]. The Kalar association and the Khorogocha massif belong to the first stage and the typical representatives of the second stage are the Dzhugdzhur and Kengurak associations and the Baladek massif. Recently there appeared a numerous publications interpreting mineralogical, petrologic-geochemical and geochronological features of the above formations [1, 2, 5, 8 etc.]. The results of those publications made it possible to reconstruct the probable geodynamic environments and to establish the models of the formation of intrusions. At the same time the peculiarities of PGE distribution in the sulphide free occurrences of the autonomous anorthosites of the south-eastern rim of the North-Asian craton are not studied.

Peculiarities of PGE distribution in anorthosites

It should be noted that a behaviour of all macro-and microcomponents in melts depends on the environments of the intrusions' formation and models of their crystallization. A crucial role in the formation of the autonomous anorthosite massifs [14-17] is played by the processes of interrelation between the mantle Fe-Ti melts of the tholeite composition generated over the plumes of the first generation [13] and the matter of the lower crust. It should be noted that in the composition of the lower crust no PGE with the exception of Pd were identified [12]. These data allow to consider that the contents and peculiarities of PGE distribution in anorthosites of the autonomous massifs are due to the composition of the initial mantle melts.

According to the presently existing concepts [7] the magmatic melt consists of two immiscible “liquids”-silicate and sulphide and crystallization of each liquid proceeded according to their proper “laws”. The earliest product of the sulphide melt crystallization is the mono-sulphide solid solution [(Fe,Ni)1+xS]mss). Thus, high temperatures at its crystallization promote the concentration of Ni, Fe, S, Ru and Rh in a solid phase and Cu and Pd are driven into a melt [11]. The presence of troilite (mss) in the composition of the ancient mantle is due to the high reducing conditions of its existence corresponding to Fo2 values being close to the equilibrium conditions with a contribution of the metallic Fe-Ni phase [3, 4].

According to experimental data [6] the high temperature series of platinoids are established which are listed in the order of increase of their ability to enter the composition of pyrrhotite (troilite) - Pt-Os-Ru-Pd-Ir-Rh. It should be noted that PGE form a stoichimetric compound

55

with sulphur and, therefore, they easily substitute iron in the composition of troilite and pyrrhotites. With a strengthening of the oxidation environments a potentiality of PGE dispersion in pyrrhotites is reduced and this favoures their separation in the native form [7].

For anorthosites from the autonomous massifs of the south-eastern rim of the North-Asian craton the following PGE seiries were established in the order of a decrease of their normalized concentrations: the Khorogocha -Pt-Os-Pd-Ru-Ir-Rh, the Kalar -Pt-Os-Pd-Rh-Ir-Ru, the Kengurak -Pt-Os-Pd-Ir-Ru (Fig. 1). Listed series of the elements are almost consistent with the experimental data [6] with the exception of Pd which is due to the concentration of the latter in residual melt [11]. It should be noted that the most ancient Archean “coarse-grained anorthosites” are characterized by higher Pt, Os contents and by lesser Rh,Ir contents which is related with their entering in the composition of troilite (pyrrhotite).

In contrast to the Archean anorthosites the spectra of PGE distribution in their Paleoproterozoic “massif type” analogues are different. (Fig.1) First of all it is associated with the abrupt uneven alteration of the composition of the mantle melts and the character of geodynamic prosseses (2.3-2.0 Ga) on the scale of the whole Earth [13] Besides, the formation of the initial melts of this type autonomous anorthosites is related to a considerable contamination of them with the matter of the lower crust and this must result in the decrease of temperatures in the magmatic chamber. It should be noted that in the course of time the mantle became more and more oxidized [3, 4].

The PGE contents in anorthosites of the Kengurak massif are at most close to those in basalts of the island arcs for which the enrichment in Pt, Pd and Re [9] was established. At the same time the character of their distribution spectra mostly corresponds to the ophiolite formations (Fig.l) and this confirms the accepted models of the formation for the “massif type” anorthosites [14-17].

Fig. 1 - Distribution of platinum group elements normalized on chondrite C [18] in the autonomous anorthosites of the south-eastern rim of the North-Asian craton. Conventional signs: 1-2- the rocks of the Khorogocha massif of the “coarse-grained anorthosites”: 1-ultrabasites, 2- anorthosites; 3-4- the rocks of the Kalar massif of the “Archean coarse-grained anorthosites”: 3- ultrabasites, 4- anorthosites; 5-6- the rocks of the Kengurak massif’massif type anorthosites”; 5-gabbroids, 6-anorthosites.

56

Conclusion

Within the Dzhugdzhur-Stanovoy and Selenga-Stanovoy superterranes of the south-eastern rim of the North-Asian craton two stages of development of the autonomous anorthosites are established: the Neoarchean (2.63-2.62 Ga) and Paleoproterozoic (1.86-1.74 Ga.).

The contents and peculiarities of PGE distribution in anorthosites of the autonomous massifs are due to the composition of the initial mantle melts.

For anorthosites from the autonomous massifs of the south-eastern rim of the North-Asian craton the following PGE seines were established in the order of a decrease of their normalized concentrations: the Khorogocha -Pt-Os-Pd-Ru-Ir-Rh, the Kalar -Pt-Os-Pd-Rh-Ir-Ru, the Kengurak -Pt-Os-Pd-Ir-Ru.

PGE distribution in anorthosites of the Archean Khorogocha and Kalar massifs is caused by the “laws” of crystallization of the high temperature mss which lead to the concentration of Ni, Fe,S,Ru and Rh in the solid phase and Cu and Pd concentration in melts. The character of the PGE distribution spectra in the Paleoproterozoic anorthosites of the Kengurak massif is associated with the lower temperatures of mss crystallization and is close to the rocks from the ophiolite complexes.

References

1. Buchko I.V., Sal’nikova E.B., Kotov A.B., Sorokin A.P., Larin A.M. at all, Age and Tectonic Position of the Khorogochi Gabbro-Anorthosite Massif (Dzhugdzhur- Stanovoi Superterrane), DokladyEarth Sciences, Vol. 423, № 8, 2008, pp. 1312- 1315.

2. Buchko I.V., Sal’nikova E.B., Kotov A.B., Larin A.M., Velikoslavinskii S.D., at all, Paleoproterozoic Gabbroanorthosites of the Selenga-Stanovoi Superterrane, Southern Framing of the Siberian Craton, Doklady Earth Sciences, Vol. 407A, № 3, 2006, pp. 372- 375.

3. Kadik A.A Influence of oxidation-reduction state of the planetary matter on the formation of carbon-saturated fluids in the upper mantle of the Earth, Vestnik of OGGGGNRAS, № 4 (10), 1999.

4. Kadik A., Pineau F., Litvin Yu., Jendrzejewski N., Martinez I., Javoy M. Formation of carbon and hydrogen species in magmas at low oxygen fugacity, Goldschmidt 2000, 2000. Journal of Conference Abstracts, UK: Cambridge Publications, V. 5, 2000, pp. 564.

5. Larin A.M., Kotov A.B., Salnikova E.B., Glebovitskii V.A., Sukhanov M.K., at all, The Kalar Compex, Aldan-Stanovoi Shield, an Ancient Anorthosite-Mangerite-Charnockite-Granite Association: Geochronologic, Geochemical,and Isotopic-Geochemical Characteristic, Petrology, V.14, № 1, 2006, pp. 2-20.

6. Malevsky A.Yu., Laputina I.P., Distler V.V., Behaviour of platinum metals at pyrrhotite crystallization from sulphide melt, Geochemistry, №10, 1977, pp.1534-1542.

7. Marakushev A.A., Petrogenesis and ore formation, Nauka publishers, 1979.

8. Neymark L.A., Larin A.M., Ovchinnikova G.V., and Yakovleva S.Z., U-Pb age of the Dzhugdzhur anorthosites, Transactions (Doklady) of the Russian Academy of Sciences, Earth Science Sections, V. 323A, №3, 1992, pp. 57-62.

9. Palessky S.V., Definition of rare and trace elements by a method of mass spectrometry with unductively-bound plasma, Thesis of PHD, Chemistry, Novosibirsk, 2008.

10. Salnikova E.B., Larin A.M., Kotov A.B, Glebovitskii V.A., Sukhanov M.K., at all, The Kalar Anorthosite-Charnokite Copmplex of the Aldan-Stanovoi Shield: Age and Tectonic Implications, Stratigraphy and Geological Correlation, Т. 12, №3, 2004, pp. 221-228.

11. Sinyakova Ye.F., Kosyakov V.I., Kolonin G.R., Study of behaviour of major ore-forming metals and trace Pt, Pd, Rh and Ru at directed crystallization of melts of Fe-Ni-Cu-S system, Actual problems of ore formation and metallogeny, Novosibirsk, 2006, pp.204-205.

12. Taylor S.R., McLennan S.M., Continental crust: its composition and evolution. Consideration of the geochemical chronicle imprinted in sedimentary rocks, Mir publishers, 1988, p.384.

13. Sharkov Ye.V., Bogatikov O.A., Tectono-magmatic evolution of the Earth, General and regional problems of tectonics and geodynamics, Proceedings of XLI tectonic conference, V.2, 2008, pp.449-454.

14. Anderson J.L., Bender E.E., Nature and origin Proterozoic A-type granitic magmatism in the southwestern Unated States Of America, Lihtos, V.23, 1989, pp.19-52.

15. Ashwal L.D., Anorthosites, Springer-Verlag, Berlin, 1993.

16. Emslie R. F., Anorthosite massifs, rapakivi granites, and late Proterozoic rifting of North America, Precambrian Research, №7, 1978, pp. 61-98.

17. Emslie R.F., Hamilton M.A., Theriault R.J., Petrogenesis of mid-Proterozoic Anorthosite-Mangerite-Charnockite-Granite (AMCG) complexes: Isotopic and Chemical evidence from the Nain Plutonic Suite, J. Geology, V. 102, №5, 1994, pp. 539-558.

18. McDonough W., Sun S-s. The composition of the Earth, Chemical Geology, V.120, Is.3-4, 1995, pp.223-253

Иламанов И.А.1, Мавлияров А.А.2 , Голдырев А.В.3, Султангулова З.С.4

1,2,3,4Студент 4 года обучения, Башкирский Государственный Университет,.

ДОБЫЧА УГЛЕВОДОРОДНОГО СЫРЬЯ НА РОССИЙСКОМ И АРКТИЧЕСКОМ КОНТИНЕНТАЛЬНОМ

ШЕЛЬФЕ И СВЯЗАННЫЕ С ЭТИМ РИСКИ

Аннотация

В данной статье рассмотрены основные проблемы добычи углеводородного сырья на российском и арктическом шельфах, а также пути их решения.

Ключевые слова: шельф, ресурсы, риски, арктика, проблемы.

Ilamanov LA. \ Mavliyarov A.A.2, Goldyrev A.V.3, Sultangulova Z.S.4

1,2,3,44st Student, Bashkir State University

EXTRACTION OF HYDROCARBONS IN THE RUSSIAN AND ARCTIC CONTINENTAL SHELF AND RELATED RISKS

Abstract

This article discusses the basic problems of hydrocarbon production in the Russian and arctic shelves, as well as their solutions.

Keywords: shelf, resources, risks, Arctic, problems.

Нефть и газ относятся к невозобновляемым ресурсам, месторождения которых стремительно истощаются, поиск новых альтернативных источников энергии пока не дает существенного результата. Наиболее актуальным с точки зрения промышленного производства заменителем сырой нефти является синтетическая нефть. Синтетические нефтепродукты производятся из природного газа, существуют эффективные технологии производства из угля и отходов.

Несмотря на высокие показатели качества синтетических продуктов, предполагать полную замену сырой нефти невозможно. При этом не следует забывать, что сырьем для синтетических продуктов являются также природные ресурсы — газ и уголь. При современном уровне технологий цивилизация обречена на энергетическую зависимость от природных залежей нефти, газа и другого энергетического сырья. По этим и многим другим причинам перед нами появилась проблема поисков дополнительных источников углеводородного сырья, коим является шельф.

Шельф - область, затопленная морем, находящаяся на периферии континента, т.е. обширная материковая отмель[1].

Освоение шельфа является следующим шагом на пути освоения недр Земли. Первая нефтеплатформа была помещена в прибрежную область штата Луизиана в 1938 г. Она была построена компанией Superior Oil. Первая же морская нефтяная платформа, Нефтяные Камни, была построена на металлических эстакадах в 1949 году в Каспийском море, на расстоянии около 40 км к востоку от Апшеронского полуострова на территории Азербайджана. Конвенция ООН по морскому праву от 1982 года

57

i Надоели баннеры? Вы всегда можете отключить рекламу.