УДК 621.311 Б01: 10.18503/2311-8318-2016-3(32)-20-26
Черепанов В.В., Калинина Е.А.
ФГБОУ ВО «Вятский государственный университет»
РАСЧЕТ КОЛЕБАНИЙ НАПРЯЖЕНИЯ ЭЛЕКТРИЧЕСКОЙ СЕТИ ПРИ РАБОТЕ АСИНХРОННЫХ ДВИГАТЕЛЕЙ С РЕЗКОПЕРЕМЕННОЙ НАГРУЗКОЙ
Целью исследования является создание методики расчета колебаний напряжения, возникающих при работе асинхронных двигателей с резкопеременной нагрузкой. Результаты расчета колебаний напряжения необходимы для определения дозы фликера, с помощью которого согласно [1] оценивается качество электрической энергии. Для достижения цели, были выполнены экспериментальные исследования на предприятии ООО «Вятский фанерный комбинат» и получены графики изменения электрической нагрузки механизмов, работающих с резкопеременной нагрузкой. Анализ результатов экспериментальных исследований показал, что графики нагрузок для решения данной задачи следует представлять решетчатыми моделями, интерполируемыми сплайн-функциями первой степени. В качестве примера приведены полигоны математического ожидания и среднеквад-ратических отклонений активной и реактивной мощности электродвигателя одного из исследуемых механизмов. Предложены формулы по определению числовых характеристик напряжения в узлах решетчатой модели, которую также предлагается описывать сплайн-функциями. По предлагаемой методике выполнен расчет изменения напряжения сети для одного из обследуемых механизмов. Сравнение результатов расчета дозы фликера, полученных с применением разработанной методики, с экспериментальными показало, что погрешность расчетов составляет 8%. Созданная методика является универсальной и может использоваться при проектировании других объектов, имеющих электроприемники с резкопеременными нагрузками.
Ключевые слова: колебания напряжения, резкопеременные нагрузки, доза фликера, асинхронный двигатель, математическое ожидание, дисперсия, случайный процесс, решетчатая модель, сплайн-функция.
ВВЕДЕНИЕ
Работа электроприводов с резкопеременной нагрузкой вызывает колебания напряжения электрической сети, которые нарушают нормальную работу электрооборудования, уменьшают срок службы электронной аппаратуры и отрицательно сказываются на зрении работников [2, 3].
Колебания напряжения нормируют и оценивают дозой фликера [1].
На стадии эксплуатации электрооборудования дозу фликера можно измерить с помощью специальных приборов, а при их отсутствии можно измерить колебания напряжения сети, а затем рассчитать дозу фликера по методике [4]. На стадии проектирования колебания напряжения и доза фликера должны определяться расчетным путем.
Колебания напряжения возникают при работе различных потребителей, например дуговой сталеплавильной печи (ДСП), сварочной установки, прокатного стана и асинхронного двигателя с резкопеременной нагрузкой. Каждый источник колебаний напряжения имеет свой специфический график изменения электрической нагрузки, тесно связанный с технологией производства. В связи с этим определение дозы фликера, создаваемого различными источниками колебаний напряжения, требует разработки различных подходов к расчету колебаний напряжения, создаваемых этими источниками [5]. В настоящее время разрабатываются новые методы расчета дозы фликера. Например, для ДСП предложена методика, изложенная в [6].
Методика расчета колебаний напряжения,
ВОЗНИКАЮЩИХ ПРИ РАБОТЕ АСИНХРОННОГО ДВИГАТЕЛЯ С РЕЗКОПЕРЕМЕННОЙ НАГРУЗКОЙ
В данной статье описывается предлагаемая методи-
© Черепанов В.В., Калинина Е.А.
ка расчета колебаний напряжения, возникающих при работе асинхронного двигателя с резкопеременной нагрузкой.
Исходными данными для выполнения расчетов колебаний напряжения служат сведения о параметрах электрической сети и графике электрической нагрузки электродвигателя. Поскольку резкопеременная нагрузка электродвигателя меняется, как правило, случайным образом, то для определения параметров графика нагрузки необходимо предварительно выполнить экспериментальные исследования на производствах, аналогичных проектируемому.
Для разработки методики нами исследованы электрические нагрузки электродвигателей механизмов фанерного производства (дробилки карандашей, коро-рубки, спиральной рубильной машины, дробилки шпона, лущильной машины, окорочной машины, пил), [7]. В качестве примера в данной статье приведены результаты исследований и расчетов для одного из перечисленных электроприемников - барабанной рубильной машины «Дробилка шпона». На рис. 1 представлена схема питания данного электроприемника.
Анализ результатов исследований показал, что во всех случаях электрические нагрузки изменяются циклично и случайным образом. Следовательно, активную Р(() и реактивную Q(t) нагрузки электродвигателей следует рассматривать как случайные процессы и характеризовать их функциями математического ожидания М[Р(Щ, M[Q(f)] и дисперсии Б[Р(^] и или среднеквадратического отклонения ст[Р(0] и о^(()].
Случайные функции Р(0 и Q(t) являются исходными данными для расчета размахов колебаний напряжения. Для удобства дальнейших расчетов функции М[Р(0] и Мй(0] предлагается описывать решетчатыми моделями. Решетчатые модели М[Р(0] и представляются в виде полигонов и интерполируются сплайн-функциями первой степени.
В качестве примера на рис. 2 и 3 представлены по-
©ч
16000, кЬЛ Рхх=15,К, кВт Рк1=ча кВч и*=17,5.%
ЛЛЬ 3x95, 300II г<1=0,329, Ом'кн \;|=0 1"1К I, Ом/км
2Т ;
и-г 1,04-0.38-
и
ТМГФ 1600-6/0,4 Г'х.ч=2.0 5, кВт Ре-З=16.5, КВТ ик=6Д %
Рис. 1. Схема питания электроприемника барабанной рубильной машины «Дробилка шпона» фанерного производства
АВВГ 2х(4х1501, И§р0=100н »=0,208, Ом/км хо=0,07!). ОН^КЫ
Эи
..'(ройника и] и и на
Рис. 2. Полигоны математического ожидания и среднеквадратического отклонения активной мощности рабочего цикла нагрузочной диаграммы электроприемника барабанной рубильной машины «Дробилка шпона»
фанерного производства
Рис. 3. Полигоны математического ожидания и среднеквадратического отклонения реактивной мощности рабочего цикла нагрузочной диаграммы электроприемника барабанной рубильной машины «Дробилка шпона» фанерного производства
лигоны математического ожидания и среднеквадрати-ческих отклонений активной и реактивной мощности электродвигателя электроприемника барабанной рубильной машины «Дробилка шпона».
Приведенные на рис. 2 и 3 графики построены в процентах от средней активной мощности за рабочий цикл Рср.
Напряжения сети в какой-либо момент времени определяют по известному выражению
и (г, ) = иб -ди (г..),
где
, ч Р (г ) г + О (г ) х ди(г ) = -=
(') иб = ди р + див = ЬР (г,)+ЬвО (г,).
(1)
(2)
Таким образом, случайные функции Р(0 и Q(t) связаны с потерей напряжения АЩ^) линейными операторами ЬР и LQ, и напряжение Щ(^) также является слу-
чайным процессом, который предлагается описывать решетчатой моделью. Числовые характеристики напряжения в узлах решетчатой модели предлагается определять по формулам:
М[ди(^ )]= ЬрМ [Р(^ )] + ЬдМ[е(^ )], (3)
° [ди к )]=ьрв [Р к)]
+
+Ь2вО [О (г,)] + 2К [Р (г,), О (г,)],
(4)
где где К[Р(^), Q(tI)] - корреляционная функция аргументов Р(^ и Q(t).
Поскольку Р(^ и Q(t) связаны функционально [8],
то
Б [ди (гг )] = ¿р [р (г,)] + [О (г, )]■ +21р1ва [р (г,)] а [О (г,)],
(5)
где ti - моменты времени, соответствующие вершинам сплайна, о[Р(^)], - среднее квадратическое от-
клонение функций Р(0 и Q(t) в узлах сплайна.
По формулам (3) и (5) определяют числовые характеристики потери напряжения АЩ(^) в узлах сплайна. Количество экстремумов в графике напряжения равно количеству экстремумов в графике активной мощности, а продолжительность импульсов напряжения Аt равна продолжительности импульсов активной мощности.
По графику изменения напряжения определяются числовые характеристики размахов напряжения
Ш(? ) = ц - ц, (6)
М[5и(^ )]= М[ли(^ )]-М[ли(^ + л)] , (7)
Б[5ц(?.)] = Б[лц(?, )] + Б[лц(?, + л?)] -2К [ (?), ли )].
активная мощность, кВт Р
Р = £% . Р ; 100 ср
реактивная мощность, квар
0%
100
0 = 77% • Рср •
(10)
(11)
—
(8)
Поскольку случайные величины АЩ^) и АЩ^+А^ являются независимыми, то корреляционная функция К[АЩ^), АЩ^+А^]=0. Окончательно формула (8) примет вид
Б [5ц (?,,)] = Б [лц (?,)] + Б [лц (?,, + л?)], (9)
По методике [4, 9] для каждого размаха Биу,) вычисляют дозу фликера Рм, а затем результирующую дозу фликера Ра на интервале 10 мин.
Пример расчета
В качестве примера выполнен расчет колебания напряжения для одного из исследуемых механизмов -барабанной рубильной машины «Дробилка шпона», схема электроснабжения которой представлена на рис. 1.
Расчеты выполняются в именованных единицах, поэтому значения координат вершин, представленных на графиках рис. 2 и 3 в процентах от средней мощности за рабочий цикл, должны быть приведены к именованным единицам:
где для электропремника «Дробилка шпона» Рср=26,88 кВт.
Так, например, для точки экстремума 2 (см. рис. 2,
3):
активная мощность 216 88
М [Р(79)] =-,--26,88 = 58,29 кВт;
2 100
реактивная мощность
1 85
М [Q(t2)] =1,85 • 26,88 = 0,497 квар.
Подробный расчет приведен для первого импульса с экстремумами в точках 1 -2-3 (см. рис. 2, 3) выполнен в именованных единицах.
Потери напряжения в точке экстремума 2
лц (и ) = — • 0,0067 • 58,29-103 + у2/ 380
+— • 0,00989• 2,88 -103 = 1,103 В. 380
Напряжения сети в точках 2
ц (?2 ) = 380-1,103 = 378,89 В.
Напряжение базисного узла принято Щб=380 В. На рис. 4 в виде полигона математического ожидания приведена огибающая кривой напряжения сети Щ^), при работе электроприемника «Дробилка шпона».
Рис. 4. График математического ожидания огибающей кривой напряжения сети Щф, питающего электродвигатель механизма барабанная рубильная машина «Дробилка шпона»
На рис. 4 /р - период времени работы электродвигателя механизма «Дробилка шпона» за цикл, с.
Расчет числовых характеристик напряжения в точке экстремума 2 решетчатой модели рис. 2, 3:
- математическое ожидание потери напряжения
М [ли (*2)] = Аи (*2) = 1,103 В;
- дисперсия потери напряжения
Б [Аи (¿2 )] = ^ • 0,0067 | 52,09-106 +
0,00989 7,217•Ю3 • 0,71 103 = 0,02В2.
1
+ 1--0,00989 I 0,497-106 + 21
^380 ) I380
1
0,0067 !х
1
380'
Результаты расчета характеристик остальных точек экстремума представлены в табл. 1.
По графику изменения напряжения определяются числовые характеристики размахов колебания напряжения би^):
- математическое ожидание
М[Ьи(^ )] = 379,63 - 378,90 = 0,73 В;
- дисперсия
Б [ Ьи (^ )] = 0,0274 + 0,0212 = 0,0439 В2.
В табл. 2 приведены числовые характеристики для всех размахов колебания напряжения 5и(/г), изображенных на рис. 4.
Таблица1
Результаты расчета характеристик точек экстремума решетчатой модели в именованных единицах
Номер
точки экстре мума 4 с М[Р], кВт О[Р], кВт2 о[Р], кВт МЩ], квар ОЩ], квар2 оЩ], квар М[Ш(Щ В О[Аи(Щ, В2 щит, В
1 0 20,544 66,034 8,126 0,407 0,084 0,289 0,373 0,02274 379,63
2 2,093 58,286 52,089 7,217 2,879 0,497 0,705 1,103 0,02120 378,90
3 4,186 20,544 66,034 8,126 0,407 0,084 0,289 0,373 0,02274 379,63
4 6,279 58,286 52,089 7,217 2,879 0,497 0,705 1,103 0,02120 378,90
5 8,37 20,544 66,034 8,126 0,407 0,084 0,289 0,373 0,02274 379,63
6 10,07 37,614 27,987 5,290 1,204 0,111 0,334 0,695 0,01040 379,31
7 11,78 17,937 36,826 6,068 0,299 0,035 0,187 0,324 0,01251 379,68
8 13,48 37,614 27,987 5,290 1,204 0,111 0,334 0,695 0,01040 379,31
9 15,18 17,937 36,826 6,068 0,299 0,035 0,187 0,324 0,01251 379,68
10 16,88 37,614 27,987 5,290 1,204 0,111 0,334 0,695 0,01040 379,31
11 18,59 17,937 36,826 6,068 0,299 0,035 0,187 0,324 0,01251 379,68
12 20,29 37,614 27,987 5,290 1,204 0,111 0,334 0,695 0,01040 379,31
13 21,99 17,937 36,826 6,068 0,299 0,035 0,187 0,324 0,01251 379,68
14 23,69 37,614 27,987 5,290 1,204 0,111 0,334 0,695 0,01040 379,31
15 25,39 17,937 36,826 6,068 0,299 0,035 0,187 0,324 0,01251 379,68
16 27,27 26,723 5,296 2,301 0,600 0,011 0,103 0,487 0,00187 379,51
17 29,14 17,703 12,916 3,594 0,272 0,012 0,107 0,319 0,00438 379,68
18 31,02 26,723 5,296 2,301 0,600 0,011 0,103 0,487 0,00187 379,51
19 32,89 17,703 12,916 3,594 0,272 0,012 0,107 0,319 0,00438 379,68
20 34,77 26,723 5,296 2,301 0,600 0,011 0,103 0,487 0,00187 379,51
21 36,64 17,703 12,916 3,594 0,272 0,012 0,107 0,319 0,00438 379,68
2
Таблица 2
Числовые характеристики размахов напряжения
Номер точки Номер точки
экстремума М[ои([г)], В Щои(Гг)\, В экстремума ММ[ои(Гг)\, В О[ои(/г)\, В
1 0,73 0,0439 11 0,37 0,0229
2 0,73 0,0439 12 0,37 0,0229
3 0,73 0,0439 13 0,37 0,0229
4 0,73 0,0439 14 0,37 0,0229
5 0,32 0,0331 15 0,16 0,0144
6 0,37 0,0229 16 0,17 0,0062
7 0,37 0,0229 17 0,17 0,0062
8 0,37 0,0229 18 0,17 0,0062
9 0,37 0,0229 19 0,17 0,0062
10 0,37 0,0229 20 0,17 0,0062
Заключение
1. Для расчета дозы фликера, создаваемой работой асинхронных двигателей с резкопеременным режимом работы, целесообразно использовать решетчатые модели графиков электрических нагрузок и напряжения сети, интерполированные сплайн-функциями первой степени.
2. Предложенную методику расчета колебаний напряжения можно использовать для расчета дозы фли-кера, возникающего при работе приемников с резкопе-ременным режимом работы любых производств.
Список литературы
1. ГОСТ 32144-2013. Межгосударственный стандарт. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. Введ. 2013-03-25. М.: Стандартинформ, 2014. 20 с.
2. Влияние силового оборудования на изменение колебаний напряжения в системе электроснабжения / Бессолицын А.В., Бакшаева Н.С., Вотинцев А.В., Калинина Е.А. // Перспективы науки. 2012. №11(38). С. 109-116.
3. John DeDad, Flicker: Causes, Symptoms, and Cures. Electrical Construction and Maintenance. Jan 1, 2007.
4. Жежеленко И.В., Саенко Ю.Л. Показатели качества электроэнергии и их контроль на промышленных предприятиях. 3-е изд., перераб. и доп. М.: Энергоатомиздат, 2000. 252 с.
5. Olczykowski Z. Methods of determination of the voltage
Information in English
fluctuations and light flicker at simultaneous operation of three-phase arc furnaces. Electrical Power Quality and utilisation, vol. IX, № 1, 2003.
6. Новоселов Н.А., Николаев А.А., Корнилов Г.П. Методика расчета кратковременной дозы фликера в сетях с дуговыми сталеплавильными печами // Промышленная энергетика. 2014. №1, С. 27-31.
7. Калинина Е.А. Исследование электрических нагрузок фанерного производства // Фёдоровские чтения - 2015. XLV Международная научно-практическая конференция с элементами научной школы, Москва, 11-13 ноября 2015 г. М., 2015. С. 242-244.
8. Черепанов В.В., Калинина Е.А. Определение реактивных нагрузок асинхронных двигателей, работающих в повторно-кратковременном режиме, на стадии проектирования // Автоматизация в электроэнергетике и электротехнике: материалы международной научно-технической конференции г. Пермь, 24-25 сентября 2015 г. Пермь, 2015. С. 229-231.
9. ГОСТ Р 51317.3.3-2008. Совместимость технических средств электромагнитная. Ограничение изменений напряжения, колебаний напряжения и фликера в низковольтных системах электроснабжения общего назначения. Технические средства с потребляемым током не более 16 А (в одной фазе), подключаемые к электрической сети при несоблюдении определенных условий подключения. Нормы и методы испытаний. Введ. 2008-12-25. М.: Стандартинформ, 2009. 24 с.
10. Вентцель Е.С. Теория вероятностей: учебник для вузов. 4-е изд., стер. М.: Наука, 1969. 576 с
Поступила в редакцию 29 апреля 2016 г.
Calculation of Mains Voltage Fluctuations during Operation of Asynchronous Motors
WITH VARIABLE LOAD
Vyacheslav V. Cherepanov
D.Sc. (Engineering), Professor, Department of Electric Power Supply, Federal State Budget Institution of Higher Education «Vyatka State University», Kirov, Russia. E-mail: stud2398@yandex.ru.
Ekaterina A. Kalinina
Teaching Assistant, Department of Electric Power Supply, Federal State Budget Institution of Higher Education «Vyatka State University», Kirov, Russia. E-mail: kalininakaterina@bk.ru.
The research objective is creation of a method of calculation of voltage fluctuations arising during operation of asynchronous motors with variable loading. Calculation results of voltage variation necessary for determining the flicker by means of which, according to [1], power quality is estimated. To achieve the goal, pilot studies were executed at the enterprise LLC "Vyatka Plywood Factory" and schedules of change of electric load of the mechanisms working with variable load were obtained. Analysis of the results of the experimental studies showed that loadings graphs solving this problem should be represented by lattice models interpolated spline - functions of the first degree. As an example, the polygons of the expectation and standard of active and reactive power variations of one of the study motor mechanisms are given. Formulas for determining the amounts of voltage characteristics in knots of the lattice model, which is also described by the spline - functions, were offered. According to the proposed method, voltage change calculation was made for one of the mechanisms. Comparison of the results of calculation of flicker were obtained using the developed method, the experiments showed that the calculation error is 8%. The technique is versatile and can be used in the design of other facilities with power-consuming equipment with variable loads.
Keywords: Voltage oscillations, abruptly variable load,
flicker dose, asynchronous motor, mathematical expectation,
dispersion, random process, trellised model, spline function.
References
1. State Standard 32144-2013. Interstate standard. Electric Energy. Compatibility of technical equipment. Electric power quality standards in public power-supply systems. Moscow, Standartinform Publ., 2014. 20 p. (In Russian).
2. Bessolitsyn A.V., Bakshayeva N. S., Votintsev A.V., Kalinina E.A. Influence of power equipment on change of voltage fluctuations in system of power supply. Perspektivy nauki [Prospects of science], 2012, no.11(38), pp. 109-116.
3. John DeDad, Flicker: Causes, Symptoms, and Cures. Electrical Construction and Maintenance. Jan 1, 2007.
4. Zhezhelenko I.V., Saenko Yu.L. Pokazateli kachestva elektroenergii i ih control na promyshlennykh predpriyatiyakh [Power Quality Ratings and Their Monitoring in Industrial Enterprises], 3rd ed., rev. and ext. Moscow, Energoatomisdat Publ., 2000. 252 p.
5. Olczykowski Z. Methods of determination of the voltage fluctuations and light flicker at simultaneous operation of
three-phase arc furnaces. Electrical Power Quality and utilisation, vol. IX, no.1, 2003.
6. Novoselov N. A., Nikolaev A.A., Kornilov G. P. Method of Calculation of Short-term Flicker in Networks of Electric Arc Furnaces. Promyshlennaya energetika [Industrial power], 2014, no.1, pp. 27-31. (In Russian).
7. Kalinina E.A. Study of Electrical Loads in Plywood Production. Fedorovskie chteniya - 2015. XLV Mezhdunarodnaya nauchno-prakticheskaya konferentsiya s elementami nauchnoy shkoly [Fyedorovskiye Readings 2015, XLV International scientific-practical conference with elements of scientific school], Moscow, 2015, pp. 242-244. (In Russian).
8. Cherepanov V.V., Kalinina E.A. Determination of Reactive Loads in Asynchronous Motors Working in Recursive Short-time Mode at Design Stage. Avtomatizatsiya v
elektroenergetike i elektrotekhnike: materialy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Automation in power engineering and electrical engineering, materials of the international scientific conference. Conference Proceedings, Perm (2015)],2015, pp. 229-231.
9. State Standard 51317.3.3-2008. Compatibility of technical equipment. Limitation of voltage changes, voltage oscillations and flicker fluctuations in low-voltage general-purpose power supply systems. Technical equipment with input current not exceeding 16A (per phase), connected to the mains of under non-compliance of certain connection conditions. Standards and test methods. Moscow, Standartinform Publ., 2009. 20 p. (In Russian).
10. Wentzel E.S. Teoriya veroyatnosti [Probability Theory]. Moscow, Nauka Publ., 1969. 576 p.
Информация о других журналах издательства
«Автоматизированные технологии и производства» - это рецензируемое научное издание, предназначенное для публикации результатов научно-исследовательских работ, обобщающих исследования в технических отраслях знаний в высших учебных заведениях, научно-исследовательских институтах, крупных промышленных предприятиях, научно-производственных объединениях Российской Федерации, а также зарубежных авторов, и результатов исследований, выполненных по личной инициативе авторов. Журнал публикует научные статьи на русском и английском языках, с результатами научных исследований и практических достижений в области автоматизированных систем по следующим разделам: автоматизированные системы управления технологическими процессами; системы контроля и управления качеством и экологичностью продукции; математическое моделирование и программное обеспечение производственных процессов; технические средства автоматизации технологических процессов и производств; автоматизированные технологии в образовании; информационные системы в автоматизированном производстве.
Научно-технический и производственный журнал «Автоматизированные технологии и производства» включен в российский индекс научного цитирования (РИНЦ) и размещается в научной электронной библиотеке. Электронная версия журнала доступна:
• на информационном портале ФГБОУ ВО «МГТУ» www.magtu.ru (раздел «Автоматизированные технологии и производства»);
• на платформе eLIBRARY.
Журнал «Математическое и программное обеспечение систем в промышленной и социальной сферах» основан в 2011 году на базе сборников, которые издавались в период работы кафедры вычислительной техники и прикладной математики (с 2013 кафедры вычислительной техники и программирования): 2003 и 2004 годах -сборник трудов «Новые программные средства для предприятий Урала», в 2005 и 2007 годах - «Создание и внедрение корпоративных информационных систем (КИС) на промышленных предприятиях Российской Федерации»; в 2006 - «Разработка новых программных средств для предприятий Урала».
Журнал публикует научные работы по следующим рубрикам: технические средства обеспечения инфор-мационных процессов; обыкновенные дифференциальные уравнения и дифференциальные уравнения с частными производными; математические модели естественных и технических наук; уравнения математической физики; теория систем автоматического управления; теория моделирования; теория информации; искусственный интеллект; системный анализ; общие вопросы автоматики и вычислительной техники; теория автоматического управления; теоретические основы программирования; вычислительные сети; программное обеспечение вычислительных машин, комплексов и сетей; системы автоматического управления, регулирования и контроля; автоматизированные системы управления технологическими процессами; автоматизация проектирования; автоматизация научных исследований; педагогика и методика подготовки кадров высшей квалификации в области математики, программирования, разработки автоматизированных систем и информационных технологий. Электронная версия журнала доступна:
• на информационном портале ФГБОУ ВО «МГТУ» www.magtu.ru (раздел «Журнал «Математическое и программное обеспечение систем в промышленной и социальной сферах»);
• на платформе еLIBRARY.