УДК 669.1
Сысоев А.М., Бахметьев В.В., Колокольцев В.М.
РАФИНИРОВАНИЕ И МОДИФИЦИРОВАНИЕ СТАЛИ 110Г13Л КОМПЛЕКСОМ ТИТАН-БОР-КАЛЬЦИЙ
Высокомарганцевая сталь 110Г13Л играет важную роль как своеобразный конструкционный материал, применяемый в машиностроении и других отраслях промышленности. Эта сталь способна к самоупрочнению при контактном нагружении, связанном с комбинацией воздействий ударных, абразивных и ударно-абразивных нагрузок или высоких удельных статических давлений. При этом изделия из такой стали в уело -виях эксплуатации, не теряя упруговязкостных свойств в основной своей массе, приобретают высокие прочность, твердость и износостойкость поверхностных слоев, подвергаемых внешнему воздействию [1].
В настоящее время и обозримом будущем главным критерием оценки качества металла будет его работоспособность во всё усложняющихся условиях эксплуатации. Следовательно, важнейшими в комплексе свойств металла являются прочность материала (способность сопротивляться деформации при приложенных нагрузках), надёжность (способность материала работать, как правило, кратковременно, вне расчётной ситуации), долговечность - выносливость (время, при котором материал способен эксплуа-тироваться - сопротивляться усталости, ползучести, коррозии, износу (А.П. Гуляев). Глубокое раскисление, рафинирование расплавов от вредных примесей, модифицирование и сейчас явля-ются перспективными методами улучшения ка -чества отливок. Для решения этой задачи целесообразно иметь составы раскисляюще-рафини-рующе-модифицирующих комплексов, способных одновременно очищать расплав от вредных примесей и воздействовать на свойства стали через изменение размеров и форм структурных составляющих.
При создании подобного комплекса необходимо, чтобы элементы, входящие в его состав, соответствовали следующим критериям:
• ставдартное изменение энтальпии образования продуктов раскисления у элемен-та-раскислителя должно быть больше, чем у основы сплава, т. е. железа, в 2 и более раз;
• элеменг-раскислигель не должен быть вредной примесью, т. е. он должен обладать хорошими критериями растворимо-
сти (р0.ре > 1%) и распределения (ю > 0,05) в жидком железе;
• продукты раскисления должны иметь плотность меньшую, чем расплав, чтобы легко удаляться из него;
• продукты раскисления не должны обладать высокой твердостью, чтобы не создавать вокруг себя очагов напряженного состояния;
• элементы раскислители и модификаторы должны иметь приемлемые техникоэкономические характеристики;
• элементы модификаторы должны образо-вывать тугоплавкие соединения с элементами и примесями стали, которые отвечали бы принципу структурного соответствия, либо повышать поверхностную энергию жвдкой фазы и снижать ее на границе твердой и жидкой фаз;
• модификаторы должны хорошо смачиваться расплавом и иметь плотность близкую к плотности расплава, чтобы не всплывать.
Одной из возможных комбинаций химических элементов, удовлетворяющих вышеперечисленным критериям, является комплекс Т + В + Са [2]. Оптимизированный состав комплекса был использован при выплавки стали 110Г13Л в сталелитейном отделении фасонно-литейного цеха ЗАО «МРК» ОАО ММК на дуговой печи емкостью 5 т.
Химический состав промышленных плавок представлен в табл. 1. Модифицирование проводили комплексом в составе: силикокальций 1 кг/т, ферротиган 7 кг/т, ферробор 0,7 кг/т.
Микроструктура стали 110Г13Л этих плавок представлена на рисунке, количественный анализ структурных составляющих - в табл. 2-4. Металлографические исследования микроструктуры стали, проводили на оптическом микроскопе
Таблица 1
Химический состав опытных плавок
Номер Химический состав, %
плавки C Si Mn S P B Са
30558 1,21 0,83 12,4 0,001 0,044 0,06 0,006 0,008
30588-1 1,26 0,73 12,8 0,004 0,046 0,06 0,004 0,009
30618 1,17 0,71 11,23 0,006 0,062 0,11 0,005 0,008
Таблица 2
Количественный анализ зерен аустенита
Номер плавки Общее количество измеренных зерен п Количест -во зерен на 1 мм2 т Средняя площадь зерна а, мм2 Стандарт -ное отклонение Б 95% доверительный интервал, 95%С1 Балл зерна С
Без добавок 10 445 0,00224 2442 1747 5,79
30558 152 1912 0,000523 1169 190 7,9
30588-1 172 1735 0,000576 1645 251 7,76
30618 14 587 0,001704 1558 900 6,19
Таблица 3
Количественный анализ карбидной составляющей стали
Номер плавки Объёмная доля карбидов переменного состава (Ре,Мп)зО, % Число карби- дов, 1/мм2 Длина карбидов, мкм Площадь карбидов, мкм2 Расстояние между карбидами, мкм
Без добавок 1,1 1041 4,0 11 237
30558 0,55 388 4,2 14 533
30588-1 0,53 1195 2,5 4,4 312
30618 0,93 9752 1,1 0,96 101
«МЕТАМ-ЛВ31» при увеличении от 100 до 1000 крат. Количественный металлографический анализ проводили на промышленной системе обра-ботки и анализа изображений Т1хоше1 Б1аМа11. Измерение осуществляли в режиме визуального слежения на поперечных и продольных шлифах до и после травления, в литом состоянии и после термической обработки по специально разработанной методике.
Отливки из высокомарганцевой стали, модифицированной кальцием, титаном и бором, име-ют в 1,2 раза большую износостойкость по сравнению со сталью, не модифицированной (коэффициент относительной износостойкости немо-дифицированной стали составляет 1,13 ед., а модифицированной - 1,34 ед.). Повышение износостойкости стали происходит вследствие измель-
чения зерен аустениг, твердорастворного и зернограничного упрочнения . Добавки титана снижают долю карбвдов марганца в структуре, особенно по границам зерен. Повышение содержания титана в стали 110Г13Л от 0,06 до 0,11% приводит к увеличению объемной доли карбвдов с 0,67 до
0,93%, граница зерен очищается от карбвдов марганца, в зернах аустенита появляются мелкие карбвды титана, имеющие высокую микротвердость.
Титан, кальций и бор дополнительно раскисляют металл и повышают растворимость водорода в стали, предотвращая образование ситовидной пористости в высокомарганцевых отливках.
При модифицировании высокомарганцевой стали 0,06% И размер зерен уменьшился в среднем на 2 балла, механические свойства заметно улучшились.
Бор увеличивает плотность литой стали 110Г13Л, приближая ее к плотности кованой, и повышает ее чистоту по неметаллическим включениям (при его оптимальном содержании в металле 0,004-0,005%). Малые добавки (до 0,006%) в сталь бора заметно уменьшают величину зерна стали как в литом состоянии, так и после закалки, а также стабилизируют аустениг. С увеличением содержания бора сверх оптимального количество неметаллических включений в стали возрастает. Это, по-ввдимому, объясняется тем, что бор способствует выделению весьма мелких включений, не участвующих в процессах превращения, которые не успевают всплыть из металла в шлак и ухудшают тем самым эксплуатационные и другие свойства отливок из высокомарганцевой стали.
Г, .. , „г . ' .'ч, . 'Ш
I V..." , ' 1 “
Микроструктура стали 110Г13Л: а - плавка №30558; б - плавка №30588-1; в - плавка №30618
Таблица 4
Количественный анализ неметаллических включений
Номер плавки Объёмная доля НВ Vv, % Число НВ Na, 1/мм2 Длина включений L, мкм Площадь включений А, мкм2 Расстояние меж- дунв, мкм Средний диаметр по Фере-ту, мкм Макс. диаметр по Фере-ту, мкм
Без добавок Q,96 2216 3,5 4,3 12Q 3,4 4,4
3Q558 Q,8 3941 1,27 2,2 393 1,35 1,58
3Q588-1 l СО Q 4569 1,15 2,Q 2Q4 1,26 1,47
3Q618 1,1 5536 1,52 4,2 149 1,62 1,9
Кальций способствует торможению роста кристаллов из-за адсорбции на их поверхности, при этом он измельчает и првда-ет глобулярную форму неметаллическим включениям. В результате загрязненность и размер зерна уменьшаются по сравнению с не модифицированной сталью.
Применение раскисляюще-рафинирующе-модифици-рующего комплекса на основе Т + В + Са позволило увеличить износостойкость стали 110Г13Л на 20%, снизить количество
неметаллических включений и уменьшить раз -мер карбидов.
Библиографический список
1. Давыдов Н.Г., Житнов С.В., Братчиков С.Г. Высокомарганцеваясталь. ММеталлургия, 1995. 302 с.
2. Колокольцев В.М., Сысоев А.М. Влияние химического составанасвойствастали 110Г13Л // Молодежь. Наука. Будущее: Сб. науч. тр. студентов. Вып. 6 / Под ред. Л.В. Радионовой. Магнитогорск: ГОУ ВПО «МГТУ», 2006. С. 39.
УДК 621.73
Авдреев В.В., Гун Г.С., Рубин Г.Ш., У льянов А.Г.
ИССЛЕДОВАНИЕ ПРОЦЕССА ВЫСАДКИ ДВУХФЛАНЦЕВЫХ ШИПОВ ПРОТИВОСКОЛЬЖЕНИЯ С ИСПОЛЬЗОВАНИЕМ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ
В настоящее время в условиях жесткой рыночной конкуренции между производителями различной продукции серьёзно стоит вопрос о соотношении цены и качества изготовляемого продукта. Большое влияние на это соотношение оказывает выбор технологической схемы производства продукта. Разработка технологии произ-водства какого-либо нового изделия методом холодной объёмной штамповки (ХОШ) до последнего времени всегда было связано с большими материальными и временными затратами, которые включали в себя проектирование технологического процесса на основе справочной литературы и опыта предприятия, изготовление опытной инструментальной оснастки и промышленной апробации разработанной технологии [1]. При этом часто возникали проблемы с опре-делением напряженно-деформированного состояния, характера течения, распределения нагрузок на инструмент, а также вероятностью появления различных дефектов.
В решении таких задач зачастую помогают современные пакеты программ, моделирующие процесс деформации, основанные на примене-
нии метода конечных элементов (МКЭ). В настоящее время при расчете процессов штамповки используется ряд иностранных и отечественных пакетов программ, основанных на конечноэлементарном моделировании, таких как ANSYS LS-DYNA, DEFORM, Super Form, QForm и т.д.
В данной работе использовался программный комплекс QForm, который предназначен для анализа поведения металла при различных процессах обработки металлов давлением и позволяет полу-
Рис. 1. Конструкция двухфланцевого шипа противоскольжения