Научная статья на тему 'Quantum-chemical substantiation of corrosion inhibition of steel with some amino acids'

Quantum-chemical substantiation of corrosion inhibition of steel with some amino acids Текст научной статьи по специальности «Химические науки»

CC BY
109
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
АМИНОКИСЛОТЫ / AMINO ACIDS / ЗАЩИТНЫЙ АНТИКОРРОЗИОННЫЙ ЭФФЕКТ / PROTECTIVE ANTICORROSIVE EFFECT / ИНГИБИТОР КОРРОЗИИ / CORROSION INHIBITOR / ХИМИЧЕСКАЯ АДСОРБЦИЯ / CHEMICAL ADSORPTION / МЯГКАЯ СТАЛЬ / MILD STEEL / ПЛОТНОСТЬ ЗАРЯДА НА АТОМЕ ЖЕЛЕЗА / THE CHARGE DENSITY PER IRON ATOM / ПАРЦИАЛЬНЫЕ ЭФФЕКТИВНЫЕ ЗАРЯДЫ / PARTIAL EFFECTIVE CHARGES / КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ / COMPLEX COMPOUNDS / DONOR AND ACCEPTOR BONDS / ДОНОРНО-АКЦЕПТОРНЫЕ СВЯЗИ

Аннотация научной статьи по химическим наукам, автор научной работы — Sikachina Andrei, Beloglazov Sergei

The article describes the process of α-amino acid adsorption on iron of mild steel immersed in 0.01 M H2SO4, this process was modeled using HyperChem 8.0.8 and ZINDO/1. This method reflects the protection against corrosion by chemisorption of α-amino acid on the surface of metal to form a complex adduct, reliably. The compositions of obtained complexes, the energy of boundary orbitals, a graph depicting the dependence of the charge density on the iron atom and the energy of higher occupied molecular orbitals on the anticorrosive protective effect were obtained and analyzed. On the graphs one can see the equations of lines.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

КВАНТОВО-ХИМИЧЕСКОЕ ОБОСНОВАНИЕ ИНГИБИРОВАНИЯ КОРРОЗИИ СТАЛИ НЕКОТОРЫМИ АМИНОКИСЛОТАМИ

В статье описан процесс адсорбции органических соединений класса α-аминокислот на железе мягкой стали, погруженной в 0,01 M H2SO4, Данный процесс был смоделирован используя HyperChem 8.0.8 и ZINDO/1. Такой метод отражает защиту от коррозии путем хемосорбции органического соединения на поверхности металла с образованием комплексного аддукта достоверно. В рамках исследования были получены и проанализированы: составы полученных комплексов, энергии граничных орбиталей, график, отображающий зависимость плотности заряда, приходящегося на атом железа, и энергии высшей занятой молекулярной орбитали от антикоррозионного защитного эффекта. На графиках можно видеть уравнения прямых.

Текст научной работы на тему «Quantum-chemical substantiation of corrosion inhibition of steel with some amino acids»

ХИМИЧЕСКИЕ НА УКИ / CHEMICAL SCIENCES

УДК 627.257:621.3.035.221.727:621.315.617.1

QUANTUM-CHEMICAL SUBSTANTIATION OF CORROSION INHIBITION OF STEEL WITH SOME AMINO ACIDS

КВАНТОВО-ХИМИЧЕСКОЕ ОБОСНОВАНИЕ ИНГИБИРОВАНИЯ КОРРОЗИИ СТАЛИ НЕКОТОРЫМИ АМИНОКИСЛОТАМИ

©Sikachina A.,

SPIN-code: 8133-3363, ORCID: 0000-0002-0695-1750, Immanuel Kant Baltic Federal University, Kaliningrad, Russia, [email protected] ©Сикачина А. А., SPIN-код: 8133-3363, ORCID: 0000-0002-0695-1750, Балтийский федеральный университет им. И. Канта, г. Калининград, Россия; [email protected]

©Beloglazov S., Dr. habil.

ORCID: 0000-0003-0293-1370, Immanuel Kant Baltic Federal University, Kaliningrad, Russia, [email protected]

©Белоглазов С. М., д-р хим. наук ORCID: 0000-0003-0293-1370, Балтийский федеральный университет им. И. Канта, г. Калининград, Россия; [email protected]

Abstract. The article describes the process of a-amino acid adsorption on iron of mild steel immersed in 0.01 M H2SO4, this process was modeled using HyperChem 8.0.8 and ZINDO/1. This method reflects the protection against corrosion by chemisorption of a-amino acid on the surface of metal to form a complex adduct, reliably. The compositions of obtained complexes, the energy of boundary orbitals, a graph depicting the dependence of the charge density on the iron atom and the energy of higher occupied molecular orbitals on the anticorrosive protective effect were obtained and analyzed. On the graphs one can see the equations of lines.

Аннотация. В статье описан процесс адсорбции органических соединений класса a-аминокислот на железе мягкой стали, погруженной в 0,01 M H2SO4, Данный процесс был смоделирован используя HyperChem 8.0.8 и ZINDO/1. Такой метод отражает защиту от коррозии путем хемосорбции органического соединения на поверхности металла с образованием комплексного аддукта достоверно. В рамках исследования были получены и проанализированы: составы полученных комплексов, энергии граничных орбиталей, график, отображающий зависимость плотности заряда, приходящегося на атом железа, и энергии высшей занятой молекулярной орбитали от антикоррозионного защитного эффекта. На графиках можно видеть уравнения прямых.

Keywords: amino acids, protective anticorrosive effect, corrosion inhibitor, chemical adsorption, mild steel, the charge density per iron atom, partial effective charges, complex compounds, donor and acceptor bonds.

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

Ключевые слова: аминокислоты, защитный антикоррозионный эффект, ингибитор коррозии, химическая адсорбция, мягкая сталь, плотность заряда на атоме железа, парциальные эффективные заряды, комплексные соединения, донорно-акцепторные связи.

In this review, there are articles (Open Access), which feature molecules of amino acids (AA), protecting the steel of different brands from corrosion. Chronology is a middle of the 1990's to the present day. The articles are indexed in Scopus and Mendeley, special attention is paid to articles published by Elsevier.

It can be concluded that there is insufficient research by Russian authors precisely of amino acid molecules as inhibitors of corrosion in various media [1]. In [2] Russian scientists made a suggestion about the negative influence of the anionic center (which really is) on the inhibitory properties of the molecule.

Amino acids and their derivatives as inhibitors of corrosion in various media have been investigated thoroughly by a number of foreign authors whose works have been magnificently described in a remarkable review [3], to which the author of this article cannot add anything. The review concerns articles [5-36]. Studies in this field are still ongoing [4].

Methods

A variety of corrosion system

The corrosion occurred within 0.01 sulfuric acid.

The data (numbering of heteroatoms, the energy of the boundary orbitals of the initial molecules, the inhibition efficiency Z% at a concentration of 0.01 Mol / L, and 0.02 Mol / L) were taken from [5] for 9 a-amino acids (appearing in the scientific paper in the classical form (it is NH2-CHR-COOH). Here is how it is described in [5]: "Skeleton I consisted of cysteine (CYS), serine (SER) and amino butyric acid (ABU). Those in skeleton II included threonine (THR), alanine (ALA) and valine (VAL) while those in skeleton III are aromatic amino acids, which included phenylalanine (PHE), tryptophan (TRP) and tyrosine (TYR)"

The technology of quantum chemical calculations

An improved method of quantum-chemical cluster modeling consisted: setting for program the maximum number of iron atoms (not surface ones, but isolated ones). The limiting number is x of it, when form of given-iron-atoms in the ground state (x + b) the b was carrying zero-charge (the x was charged by the charge E5-).

Then it was postulated that AA's donor capabilities were exhausted.

The parallel plane of neutral iron-atoms specified by the HyperChem-user was 1.2 angstroms (A) away from the plane of AA so that the program produced fewer iterations and did not hang, which provides the necessary accuracy. The scaling of the calculations of the molecules studied in the program window (the Zoom-button) was 0.72.

The electrophilic reaction is xFe0 + AA = Fex I5- ^ AA1. The lengths of "Fe-adsorption center" bonds with a maximum 2.5 A length will be considered in some cases, bonds will be involved up to 2.7 A.

The determination of quantum chemical descriptors was carried out in 2 stages: 1) a) by optimizing the geometry with molecular mechanics method: first MM +, and then OPLS. b) setting the initial charge of AA with MNDO, 2) ZINDO/1. When specifying the original structure, local mesomeric effects inside AA were taken into account in the job-file.

The following descriptors of electronic structure were calculated: charges on heteroatoms of metalloids (by R. Mulliken) and charge density per iron atoms FePq (it is charge that accounts for 1

1 Then the total degree of charge E5- will be ignored, I showed it then to explain what is the charge density per iron atom, i.e. E5- / x

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

iron atom), the energy of boundary orbitals, and also the characteristics of bonds of resulting Fex ^ AA compounds. A set of Skeleton II differs from the others, since there is no significant range of Z%, and all amino acids of Skeleton II will donate identical fractions of electron density on iron atoms, therefore, the characteristics of bonds in chemisorption complexes for it will not be determined.

Results and discussion

The values

Partial effective charges on heteroatoms. The charge density per iron atom

The generated results of the quantum-chemical descriptors of electronic structure are summarized in tables 1-3.

Table 1.

THE VALUES OF THE CALCULATED QUANTUM CHEMICAL DESCRIPTORS OF AMINO

ACIDS OF SKELETON I AND CO] VIPLEX COMPOU NDS BASED ON I T

Codes of corrosion inhibitors CYS SER ABU

Lq -0.882 -1.269 -1.229

Partial effective charges on heteroatoms * sqs = 0.050 5qo= -0.328 7qN= -0.271

7qo= -0.360 7qo= -0.366 5qo= -0.308

6qo = -0.304 6qo= -0.308 6qo= -0.362

2qN= -0.268 2qN= - 0.267 4qN= -0.288

Empirical formulas of Fex^ AA Fe8^ CYS Fee,^ SER Fe9^ ABU

Lq -0.213 -0.477 -0.484

Partial effective charges on heteroatoms 5qs = 0.050 5qo= -0.328 7qN= -0.271

7qo= -0.360 7qo= -0.366 5qo= -0.308

6qo = -0.304 6qo= -0.308 6qo= -0.362

2qN= -0.268 2qN= -0.267 4qN= -0.288

FePq -0.309 -0.254 -0.301

*An ab initio method was used in [5], therefore here and further data are given by me in the interpretation of MNDO and ZINDO / 1

From the heteroatoms of alanine and valine, one can observe, is smallest outflow of charge (during the formation of ironcomplexes), which is explained by the primitivity of variable part of R. The protective effects of corrosion of these amino acids are also close.

The highest charge outflow (during the formation of ironcomplexes) is carried out by tryptophan and phenylalanine (a large variable part of R). The spread of protective effects of corrosion is greater.

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

Table 2.

THE VALUES OF THE CALCULATED QUANTUM CHEMICAL DESCRIPTORS OF AMINO ACIDS OF SKELETON II AND COMPLEX COMPOUNDS BASED ON IT

Codes of corrosion inhibitors THR ALA VAL

Lq -1.244 -0.930 -0.919

Partial effective charges on heteroatoms 6qo = -0.313 2qN= -0.267 2qN= -0.264

7qo= -0.298 5qo= -0.311 6qcH3= -0.018

8qo = -0.368 6qo= -0.352 7qo= -0.313

2qN= -0.265 8qo= -0.342

Empirical formulas of Fex^ AA FewTHR Fe8^ ALA Fen^ VAL

Lq -0.468 -0.354 -0.261

Partial effective charges on heteroatoms 6qo = -0.142 2qN= -0.136 2qN= -0.095

7qo= -0.072 5qo= -0.094 6qcH3= 0.000

8qo = -0.137 6qo= -0.124 7qo= -0.051

2qN= -0.116 8qo= -0.115

FePq -0.307 -0.304 -0.299

Table 3.

THE VALUES OF THE CALCULATED QUANTUM-CHEMICAL DESCRIPTORS OF AMINO ACIDS

OF SKELETON III AN D COMPLEX COMP OUNDS BASED ON [T

Codes of corrosion inhibitors TRP TYR PHE

Lq -1.398 -1.428 -1.281

Partial effective charges on heteroatoms 2qN= -0.269 2qN=-0.266 2qN= -0.267

14qo= -0.289 9qo= -0.245 nqo= -0.311

15qo = -0.375 12qo=-0.284 12qo= -0.349

7qN= -0.236 13qo=-0.374 Benzlq = -0.354

Benzlq = -0.229 Benzlq = -0.259

Empirical formulas of Fex^ AA TRP Fen^ TYR Fe13^ PHE

Lq 0,914 0,803 1,014

Partial effective charges on heteroatoms 2qN= -0.132 2qN= -0.154 2qN= -0.156

14qo= -0.052 9qo= -0.140 nqo= -0.049

15qo = -0.160 12qo= -0.149 12qo= -0.105

7qN= -0.025 13qo= -0.160 Benzlq = 1.324

Benzlq = 1.283 BenzSq = 1.406

FePq -0.415 -0.382 -0.347

In cysteine there are atoms of sulfur and nitrogen, which have strong donor properties (Tables 1-3). In amino acids of Skeleton II, valine contains a strongly-donor nitrogen atom, which makes the greatest contribution to inhibition due to non-polarity R. In the amino acids of Skeleton III, the nitrogen atom is weaker as a donor, only the nitrogen atom is a strong donor in the composition of

— ring, since the electron pair of 7N has a +M-effect to a lesser degree than, for example, in the aniline molecule.

Consequently, the larger and more polar of R radical, the lesser need for donor properties of nitrogen atom of main carbon chain.

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

Oxygen atoms are very strong as donors (of which the oxygen atoms of keto groups are the most potent as donors, as you will see from tables 4-9) in Skeleton I (serine and aminobutanoic acid), in Skeleton II and Skeleton III (tryptophan and phenylalanine).

The highest Z% are achieved due to the presence of benzene (Benz) rings in Skeleton III up to the recharging of benzene rings (charge exchange is smallest in tyrosine apparently due to the additional introduction of an electron pair from the oxygen atom of phenolic hydroxyl).

In the composition of complex compounds, the x is inversely proportional to the inhibition efficiency exhibited by these amino acids.

Values of the energy of boundary orbitals. Energy diagrams.

Values and changes in the energies of boundary orbitals inside AA and inside Fex ^ AA are shown in diagrams 1-3. The magnitudes and signs of values of boundary orbitals are the most common for characterizing donor and acceptor properties of molecules, according to [32-36]:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ъ

M

LUMO of CYS; 0,82 ^ LUMO • of ABU; 1

-LUMO of SER; 1,03

0

LUMO of CYS -1,22

LUMO of ABU;

-1,28

LUMO of SER; -1,32

HOMO of CYS A LUMO of CYS HOMO of SER

HOMO of CYS; HOMO of ABU;-"'

-9,73 1 ...............-9,75.......

HOMO of SER;

-9,76

HOMO of CYS;^ щ HOMO of ABU;

..........v.-758^.......................................-7,93......

HOMO of SER; -8,03

Ж LUMO of SER HOMO of ABU LUMO of ABU

Figure 1. The energies of boundary orbitals inside Fe* ^ AA of Skeleton I (in the right position) and inside

AA of Skeleton I (in the left position)1

^ LUMO of ALA; 1,06

^ LUMO of THR; 1,02 Ж LUMO of VAL; 1 07 «HOM° °f THR

M ' ' LUMO of ALA; -1,06

0 LUMO of THR; -1,02 Ж LUMO of VAL; -1,12 LUMO of THR

HOMO of ALA

Ж LUMO of ALA

HOMO of ALA; -8,74

HOMO of ALA; -9,68 HOMO of THR; • -8,5:1: »HOMO • of •VAL; -8,8 < HOMO of VAL OMO of THR; ^,45 H HOMO of VAE; • -9,72....................

LUMO of VAL

Figure 2. The energies of boundary orbitals inside Fe* ^ AA of Skeleton II (in the right position) and inside

AA of Skeleton I (in the left position)

1 Diagrams 1-3 in the left-hand position show the energies of boundary orbitals of the original molecules from [5] that are in the gas phase

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

ъ

Wt

H

HOMO of TRP

UMO of PHE; 0,33 .......fc0MO-ofTRPr 0,03

0 LUMO of TYR; 0,29 ^^^ — .............LUMOfRP; -1,3 *LUMO of TRP

LUMO of TYR; -1,93 HOMO of TYR

Ж LUMO of TYR

HOMO of TRP; -7,97 HOMO of TRP; -8,3

................................................- HOMO of phe

OMO of PHE; -9,58 ............................................................................................HOMO of TYR; -8,07

HOMO of TYR; -9,25 LUMO of PHE

Figure 3. The energies of boundary orbitals inside Fe* — AA of Skeleton III (in the right position) and

inside AA of Skeleton I (in the left position)

With help of Diagrams 1-3 there is a possibility, in the author's opinion, to evaluate the strengths of Fex — AA adsorption complexes that are capable of degradation in the acid corrosive medium created by 0,01 M H2SO4. The oxidation (it is Fe0 - 2e = Fe2+) can occur [5, 6, 15, 16, 18, 20, 21, 23, 24, 27-32, 35]. The destruction of Fe x —— AA appears because with the formation of Fex — AA the ionization energy I decreases.

In the Fe12 — TRP, on the contrary, there is an increase of I, so this complex will be most stable in an acidic corrosive environment. Also, there are high donor properties of tryptophan. Therefore, there is a high Z%.

Graphical dependencies

Dependence between the charge density per iron atom and the inhibition efficiency for a Skeleton I and III

Dependence between the Z% in 0.01 M and in 0.02 M of inhibitor concentration and the charge density per iron atom is follows (Figure 4), but it is possible to build only for Skeleton I and III (with a measurable angle value):

-0,05

-0,1

-0,15 -0,2 f -0,25 -0,3 -0,35 -0,4 -0,45 -0,5

0

35 40 45 50 55 60 65 70 75 79

Z%

y = -0,0046x -0,1808

0,01М of inhibitor 0,02М of inhibitor

y = -0,0052x -0,1878

Figure 4. Graphical dependence of the type 'VePq — Z%" in selected concentrations

As the concentration of inhibitor increases, the "concentration" of heteroatoms increases in corrosive system, so high Z% is reached at a lower charge density per iron atom. Or, the molecules of the adsorbed corrosive medium are replaced by the inhibitor molecules on the metal "surface" (adsorption of corrosive medium also determines the Z% value).

Dependence between the energy of the higher filled molecular orbital of ironcomplex and the inhibition efficiency for a Skeleton II

For Skeleton II, the most convenient — instead of FePq — is to take the energy of higher occupied molecular orbital of ironcomplexes (since the angle will be larger), this is shown in Figure 5:

Figure 5. Graphical dependence of the type "E (HOMO) of ironcomplexes — Z%"

in the selected concentrations

With increasing concentration, Z% most sharply increases.

The increase in energy of the higher filled molecular orbital gives better inhibitory properties of amino acids at a 0.01 M of inhibitor concentration.

At a 0.02 M of concentration, the graphical dependence shows a smaller angle, which means that the ionization energy plays a lesser role in the inhibition efficiency in this corrosive medium.

The ironcomplexes

Characterization of donor and acceptor bonds

Values of valence listed in Tables 4-9 and it is "joint activity" of heteroatoms radius and the strength of ligands electronic field capable of capturing electron-deficient iron atoms (iron atoms are Lewis acids; amino acids are Lewis bases).

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

Table 4.

THE LENGT [HS OF DONOR AND ACCEPTOR BONDS IN Fe8 ^ CYS

The charge of the iron atom The chemical bond of an iron atom with a specific adsorption center Length of chemical bond, Angstrom

-0.321 Fe—N 2.50

-0.316 Fe—N Fe-6O Fe-yO 2.44 2.38 2.45

-0.493 Fe-6O 2.27

-0.276 Fe-6O 2.26

-0.234 Fe-60 Fe-yO 2.42 2.30

-0.396 Fe-5S 2.65

-0.287 Fe-5S 2.50

-0.146 Fe-5S 2.50

Table 5.

THE LENGTHS OF DONOR AND ACCEPTOR BONDS IN Fe9 ^ SER

The charge of the iron atom The chemical bond of an iron atom with a specific adsorption center Length of chemical bond, Angstrom

-0.296 Fe-2N 2.40

-0.308 Fe-2N Fe-6O 2.47 2.38

-0.301 Fe-6O 2.21

-0.224 Fe-6O 2.24

-0.360 Fe-7O 2.25

-0.317 Fe-5O 2.37

-0.229 Fe-5O 2.30

-0.293 Fe-5O 2.34

-0.175 Fe-5O 2.70

THE L iNGTHS OF DONOR AND ACCEPTOR BONDS Table 6. [N Fe9 ^ ABU

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The charge of the iron atom The chemical bond of an iron atom with a specific adsorption center Length of chemical bond, Angstrom

-0.297 Fe-7N Fe-6O Fe-5O 2.40 2.50 2.42

-0.452 Fe-5O 2.46

-0.428 Fe-5O 2.25

-0.237 Fe-5O Fe-4N 2.16 2.38

-0.317 Fe-6O 2.19

-0.247 Fe-4N 2.70

-0.129 Fe-4N 2.27

-0.283 Fe-4N 2.34

-0.314 Fe-7N 2.35

Analyzing the content of Tables 4-6 and constructing the SER ^ ABU ^ CYS series, one can find the following: 1) the oxygen atoms of the keto groups are most active as electron density donors, since they have a higher dentacy. 2) According to the donor properties of R, the oxygen atom is worst donor, the sulfur atom is the best donor in full accordance with [2]. 3) there is a slight increase in the average valence of iron atoms. 4) the correlation "Z% / bond length Fe-adsorption center" is not revealed.

Table 7.

HE LENGTHS OF DONOR AND ACCEPTOR BONI )S IN Fe12 ^ TRP

The charge of the iron atom The chemical bond of an iron atom with a specific adsorption center Length of chemical bond, Angstrom

-0.296 Fe-2N 2.77

-0.564 Fe-i4O 2.46

-0.592 Fe-i4O Fe-Benz 2.30 1.99

-0.492 Fe-2N 2.23

-0.263 Fe-i40 Fe-isO 2.31 2.35

-0.607 Fe-i4O Fe-isO 2.30 2.38

-0.266 Fe-9C 2.43

-0.315 Fe-7N 2.31

-0.225 Fe-ioC 2.40

-0.446 Fe-i3C Fe-sC Fe-6C 2.44 2.30 2.27

-0.562 Fe-i4O 2.28

-0.395 Fe-2N Fe-isO 2.31 2.20

-0.574 Fe-Benz 1.82

Table 8. THE LENGTHS OF DONOR AND ACCEPTOR BONDS IN Fei2 ^ TYR

The charge of the iron atom The chemical bond of an iron atom with a specific adsorption center Length of chemical bond, Angstrom

-0.246 Fe-2N 2.21

-0.457 Fe-2N Fe-i2O 2.24 2.24

-0.340 Fe-i2O 2.37

-0.205 Fe-i2O 2.21

-0.386 Fe-i3O 2.31

-0.441 Fe-i3O 2.24

-0.588 Fe-i3O Fe-Benz 2.43 1.90

-0.313 Fe-7C 2.39

-0.310 Fe-ioC 2.40

-0.304 Fe-6C 2.37

-0.418 Fe-6C 2.44

-0.395 Fe-2N Fe-isO 2.31 2.20

-0.580 Fe-Benz 1.90

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

Table 9.

THE LENGTHS OF DONOR AND ACCEPTOR BONDS IN Fei3 ^ PHE

The charge of the iron atom The chemical bond of an iron atom with a specific adsorption center Length of chemical bond, Angstrom

-0.336 Fe-2N Fe-i2O 2.24 2.28

-0.267 Fe-iiO 2.50

-0.223 Fe-iiO 2.24

-0.650 Fe-iiO Fe-Benz 2.47 1.89

-0.473 Fe-i2O 2.31

-0.500 Fe-iiO 2.31

-0.200 Fe-9C 2.43

-0.235 Fe-7C 2.39

-0.201 Fe-sC 2.50

-0.188 Fe-9C 2.46

-0.500 Fe-ioC 2.33

-0.318 Fe-6C 2.46

-0.351 Fe-2N 2.40

-0.575 Fe-Benz 1.95

Analyzing the content of Tables 7-9 and building a series of PHE ^ TYR ^ TRP, one can observe the following: 1) a sharp increase in the average valency of iron atoms. 2) an inaccurate increase in the dentacy of nitrogen atom. 3) growth of dentateness of hydroxyl oxygen atom from tyrosine to tryptophan. 4) decrease in the distance from the iron atoms belonging to the benzene ring to the benzene ring. 5) the oxygen atom in the tryptophan radical has no connection with the iron atoms; in the phenylalanine molecule it is absent; in the tryptophan molecule, the 7N atom exhibits a dentacy of 1. 6) In benzene rings, phenylalanine and tyrosine molecules attract the most iron atoms. 7) the correlation "Z% / bond length "Fe-adsorption center" is not revealed.

Conclusion

The approximations used in this paper, such as the absence of hydration of the molecule, the neglect of the inevitable adsorption of molecules of the corrosive medium on the metal, semiempirical methods of modeling and calculation obviously allow one to obtain the predictive power of the improved theory of cluster modeling. This improvement provides more information about the protection of metal inhibitors than traditional and conventional theory. An improved method of quantum-chemical modeling provides a much more complete set of data that can serve as an effective predictive tool than traditional and conventional theory, much less the "structure-property" correlation method [31-36] due to the abandonment of the preliminary surface problem metal. Since iron complexes are not considered as surface compounds but are considered as independent chemical compounds (or rather an adduct) with a clearly defined chemical composition, analogous to well-known n-complexes, it is possible to trace the initial and final state of the ligand molecule, the adsorbed organic compound. This is fraught with great promise, because at present, the selection of inhibitors corrosion is increasingly carried out with quantum-chemical prediction methods [32-36] rather than by the method of the past years and decades (the screening).

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

There is no doubt that the development of new quantum-chemical programs versions, basic sets, and the development of visualization software play a significant role in shaping the improvements in quantum-chemical modeling. Increasingly productive computers often become an indispensable attribute of any area of the economy and the national economy, traditional approaches to the problem of inhibiting corrosion will be less necessary, along with an increase in the level of quantum-chemical theory.

Competing interests The authors declare that they have no competing interests.

References:

1. Makarenko, N.V., Kharchenko, U.V. & Zemnukhova, L.A. Russ J Appl Chem (2011) 84: 1362. https://doi.org/l0.1134/S1070427211080118

2. Teryusheva S.A, Beloglazov G.S., Beloglazov S.M. Derivatives of 1,4-hydroquinone in the role of inhibitors of corrosion and hydrogenation of steel in the presence of SRB // Bulletin of the Samara State University: a natural science series, 2011

3. B. El Ibrahimi, A. Jmiai, L. Bazzi, S. El Issami, Amino acids and their derivatives as corrosion inhibitors for metals and alloys, In Arabian Journal of Chemistry, 2017, ISSN 1878-5352, https://doi.org/10.1016/j.arabjc.2017.07.013.

4. Ru Jia, Jie Long Tan, Peng Jin, Daniel John Blackwood, Dake Xu, Tingyue Gu, Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm, In Corrosion Science, Volume 130, 2018, Pages 1-11, ISSN 0010-938X, https://doi.org/10.1016Zj.corsci.2017.10.023.

s. Nnabuk O. Eddy, Experimental and theoretical studies on some amino acids and their potential activity as inhibitors for the corrosion of mild steel, part 2, In Journal of Advanced Research, Volume 2, Issue 1, 2011, Pages 35-47, ISSN 2090-1232, https://doi.org/10.1016/jjare.2010.08.005.

6. Hammouti, A. Aouniti, M. Taleb, M. Brighli, S. Kertit, L-Methionine Methyl Ester Hydrochloride as a Corrosion Inhibitor of Iron in Acid Chloride Solution, CORROSION. 1995;51(6):411-416. https://doi.org/10.5006A.3293606

7. Zhang, DQ., Xie, B., Gao, LX. et al. J Appl Electrochem (2011) 41: 491. https://doi.org/10.1007/s10800-011-0259-2

8. Ozcan, M. J Solid State Electrochem (2008) 12: 1653. https://doi.org/10.1007/s10008-008-0551-1

9. Amin, M.A., Abd El Rehim, S.S., El-Naggar, MM. et al. J Mater Sci (2009) 44: 6258. https://doi.org/10.1007/s10853-009-3856-2

10. Morad, M.S. J Appl Electrochem (2005) 35: 889. https://doi.org/10.1007/s10800-005-4745-2

11. M. A. Pech-Canul, L. P. Chi-Canul, Investigation of the Inhibitive Effect of N-Phosphono-Methyl-Glycine on the Corrosion of Carbon Steel in Neutral Solutions by Electrochemical Techniques, CORROSION. 1999; 55(10):948-956. https://doi.org/10.5006/L3283931

12. Morad, M.S. J Appl Electrochem (2008) 38: 1509. https://doi.org/10.1007/s10800-008-9595-2

13. E. E. Oguzie, Y. Li, F.H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion, In Journal of Colloid and Interface Science, Volume 310, Issue 1, 2007, Pages 90-98, https://doi.org/10.1016/jjcis.2007.01.038.

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

i4. Bei Qian, Jing Wang, Meng Zheng, Baorong Hou, Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4, In Corrosion Science, Volume 75, 2013, Pages 184-192, https://doi.org/10.10167j.corsci.2013.06.001.

is. B.A. Abd-El-Nabey, N. Khalil, A. Mohamed, Inhibition by amino acids of the corrosion of steel in acid, In Surface Technology, Volume 24, Issue 4, 1985, Pages 383-389, https://doi.org/10.1016/0376-4583(85)90056-1.

16. Wen Su, Bing Tang, Fenglian Fu, Shaosong Huang, Shiyuan Zhao, Liying Bin, Jiewei Ding, Cuiqun Chen, A new insight into resource recovery of excess sewage sludge: Feasibility of extracting mixed amino acids as an environment-friendly corrosion inhibitor for industrial pickling, In Journal of Hazardous Materials, Volume 279, 2014, Pages 38-45, https://doi.org/10.1016/jjhazmat.2014.06.053.

17. M. Zerfaoui, H. Oudda, B. Hammouti, S. Kertit, M. Benkaddour, Inhibition of corrosion of iron in citric acid media by aminoacids, In Progress in Organic Coatings, Volume 51, Issue 2, 2004, Pages 134-138, https://doi.org/10.1016/j.porgcoat.2004.05.005.

18. H. Ashassi-Sorkhabi, E. Asghari, Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a "green" inhibitor, In Electrochimica Acta, Volume 54, Issue 2, 2008, Pages 162-167, https://doi.org/10.1016/j.electacta.2008.08.024.

19. Mohammed A. Amin, Sayed S. Abd El Rehim, Hesham T.M. Abdel-Fatah, Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation method, In Corrosion Science, Volume 51, Issue 4, 2009, Pages 882-894, https://doi.org/10.1016/j.corsci.2009.01.006.

20. A.B. Silva, S.M.L. Agostinho, O.E. Barcia, G.G.O. Cordeiro, E. D'Elia, The effect of cysteine on the corrosion of 304L stainless steel in sulphuric acid, In Corrosion Science, Volume 48, Issue 11, 2006, Pages 3668-3674, https://doi.org/10.1016/jxorsci.2006.02.003.

21. Mohamed S. El-Deab, Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study, In Materials Chemistry and Physics, Volume 129, Issues 1-2, 2011, Pages 223-227, https://doi.org/10.1016/j.matchemphys.2011.03.083.

22. Mohammad Mobin, Saman Zehra, Mosarrat Parveen, l-Cysteine as corrosion inhibitor for mild steel in 1M HCl and synergistic effect of anionic, cationic and non-ionic surfactants, In Journal of Molecular Liquids, Volume 216, 2016, Pages 598-607, https://doi.org/10.1016/j.molliq.2016.01.087.

23. M. Mobin, Mosarrat Parveen, M.Z.A. Rafiquee, Synergistic effect of sodium dodecyl sulfate and cetyltrimethyl ammonium bromide on the corrosion inhibition behavior of l-methionine on mild steel in acidic medium, In Arabian Journal of Chemistry, Volume 10, Supplement 1, 2017, Pages S1364-S1372, https://doi.org/10.1016/j.arabjc.2013.04.006.

24. Chen Zhang, Hanbing Duan, Jingmao Zhao, Synergistic inhibition effect of imidazoline derivative and l-cysteine on carbon steel corrosion in a CO2-saturated brine solution, In Corrosion Science, Volume 112, 2016, Pages 160-169, https://doi.org/10.1016/jxorsci.2016.07.018.

23. Mohammed A. Amin, K.F. Khaled, Sahar A. Fadl-Allah, Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions - Experimental and theoretical studies, In Corrosion Science, Volume 52, Issue 1, 2010, Pages 140-151, https://doi.org/10.1016/jxorsci.2009.08.055.

26. Mohammed A. Amin, K.F. Khaled, Q. Mohsen, H.A. Arida, A study of the inhibition of iron corrosion in HCl solutions by some amino acids, In Corrosion Science, Volume 52, Issue 5, 2010, Pages 1684-1695, https://doi.org/10.1016/jxorsci.2010.01.019.

27. Mohammed A. Amin, Gaber A.M. Mersal, Q. Mohsen, Monitoring corrosion and corrosion control of low alloy ASTM A213 grade T22 boiler steel in HCl solutions, In Arabian Journal of Chemistry, Volume 4, Issue 2, 2011, Pages 223-229, https://doi.org/10.1016/j.arabjc.2010.06.040.

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

28. Mohammed A. Amin, Mohamed M. Ibrahim, Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative, In Corrosion Science, Volume 53, Issue 3, 2011, Pages 873-885, https://doi.org/10.1016/j.corsci.2010.10.022.

29. Qiong Deng, Na-Na Ding, Xiao-Li Wei, Liang Cai, Xiao-Peng He, Yi-Tao Long, Guo-Rong Chen, Kaixian Chen, Identification of diverse 1,2,3-triazole-connected benzyl glycoside-serine/threonine conjugates as potent corrosion inhibitors for mild steel in HCl, In Corrosion Science, Volume 64, 2012, Pages 64-73, https://doi.org/10.1016/j.corsci.2012.07.001.

30. Qiong Deng, Hong-Wei Shi, Na-Na Ding, Bao-Qin Chen, Xiao-Peng He, Guixia Liu, Yun Tang, Yi-Tao Long, Guo-Rong Chen, Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl, In Corrosion Science, Volume 57, 2012, Pages 220-227, https://doi.org/10.1016/j.corsci.2011.12.014.

31. Khaled, K.F.J Solid State Electrochem (2009) 13:1743. https://doi.org/10.1007/s10008-009-0845-y

32. Neeraj Kumar Gupta, Chandrabhan Verma, M.A. Quraishi, A.K. Mukherjee, Schiffs bases derived from l-lysine and aromatic aldehydes as green corrosion inhibitors for mild steel: Experimental and theoretical studies, In Journal of Molecular Liquids, Volume 215, 2016, Pages 4757, https://doi.org/10.10167j.molliq.2015.12.027.

33. S. Vikneshvaran, S. Velmathi, Adsorption of L-Tryptophan-derived chiral Schiff bases on stainless steel surface for the prevention of corrosion in acidic environment: Experimental, theoretical and surface studies, In Surfaces and Interfaces, Volume 6, 2017, Pages 134-142, https://doi.org/10.1016/j.surfin.2017.01.001.

34. Brahim El Ibrahimi, Aziza Soumoue, Aziz Jmiai, Hassan Bourzi, Rachid Oukhrib, Khadija El Mouaden, Souad El Issami, Lahcen Bazzi, Computational study of some triazole derivatives (un- and protonated forms) and their copper complexes in corrosion inhibition process, In Journal of Molecular Structure, Volume 1125, 2016, Pages 93-102, https://doi.org/10.1016/j.molstruc.2016.06.057.

35. Khaled, K.F., El-Sherik, A.M., 2013. Using molecular dynamics simulations and genetic function approximation to model corrosion inhibition of iron in chloride solutions. Int. J. Electrochem. Sci. 8, 10022-10043.

36. Eddy, NO., Awe, F.E., Gimba, C.E., Ibisi, N.O., Ebenso, E.E., 2011a. QSAR, Experimental and computational chemistry simulation studies on the inhibition potentials of some amino acids for the corrosion of mild steel in 0.1M HCl. Int. J. Electrochem. Sci. 6, 931-957.

Список литературы:

1. Makarenko N. V., Kharchenko U. V., Zemnukhova L. A. Effect of amino acids on corrosion of copper and steel in acid medium // Russian Journal of Applied Chemistry. 2011. V. 84. P. 1362. DOI: 10.1134/S1070427211080118.

2. Терюшева С. А., Белоглазов Г. С., Белоглазов С. М. Производные 1,4-гидрохинона в роли ингибиторов коррозии и наводороживания стали в присутствии СРБ // Вестник Самарского государственного университета: естественнонаучная серия. 2011. №5 (86). С. 136-143.

3. El Ibrahimi B., Jmiai A., Bazzi L., El Issami S. Amino acids and their derivatives as corrosion inhibitors for metals and alloys // Arabian Journal of Chemistry. 2017. DOI: 10.1016/j.arabjc.2017.07.013.

4. Jia R., Tan J. L., Jin P., Blackwood D. J., Xu D., Gu T. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm // Corrosion Science. 2018. V. 130. P. 1-11. DOI: 10.1016/j.corsci.2017.10.023.

5. Eddy N. O. Experimental and theoretical studies on some amino acids and their potential activity as inhibitors for the corrosion of mild steel, part 2 // Journal of Advanced Research. 2011. V. 2. №1. P. 35-47. DOI: 10.1016/j.jare.2010.08.005.

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

6. Hammouti B., Aouniti A., Taleb M., Brighli M., Kertit S. L-Methionine Methyl Ester Hydrochloride as a Corrosion Inhibitor of Iron in Acid Chloride Solution // Corrosion. 1995. V. 51. №6. P. 411-416. DOI: 10.5006/1.3293606.

7. Zhang D. Q., Xie B., Gao L. X. Joo H. G., Lee K. Y. Inhibition of copper corrosion in acidic chloride solution by methionine combined with cetrimonium bromide/cetylpyridinium bromide // Journal of Applied Electrochemistry. 2011. V. 41. P. 491-498. DOI: 10.1007/s10800-011-0259-2.

8. Ozcan M. AC impedance measurement of cystine adsorption at mild steel/sulfuric acid interface as corrosion inhibitor // Journal of Solid State Electrochemistry. 2008. V. 12. №12. P. 1653-1661. DOI: 10.1007/s10008-008-0551-1.

9. Amin M. A., Abd El Rehim S. S., El-Naggar M. M., Abdel-Fatah H. T. M. Assessment of EFM as a new nondestructive technique for monitoring the corrosion inhibition of low chromium alloy steel in 0.5 M HCl by tyrosine // Journal of Materials Science. 2009. V. 44. №23. P. 62586272. DOI: 10.1007/s10853-009-3856-2.

10. Morad M. S. Effect of amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solutions containing Cl-, F- and Fe3+ ions: Behavior under polarization conditions // Journal of Applied Electrochemistry. 2005. V. 35. №9. P. 889-895. DOI: 10.1007/s10800-005-4745-2.

11. Pech-Canul M. A., Chi-Canul L. P. Investigation of the Inhibitive Effect of N-Phosphono-Methyl-Glycine on the Corrosion of Carbon Steel in Neutral Solutions by Electrochemical Techniques // Corrosion. 1999. V. 55. №10. 948-956. DOI: 10.5006/1.3283931.

12. Morad M. S. Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids // Journal of Applied Electrochemistry. 2008. V. 38. №11. P. 1509-1518. DOI: 10.1007/s10800-008-9595-2.

13. Oguzie E. E., Li Y., Wang F. H. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion // Journal of Colloid and Interface Science. 2007. V. 310. №1. P. 90-98. DOI: 10.1016/j.jcis.2007.01.038.

14. Qian B., Wang J., Zheng M., Hou B. Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4 // Corrosion Science. 2013. V. 75. P. 184-192. DOI: 10.1016/j.corsci.2013.06.001.

15. Abd-El-Nabey B. A., Khalil N., Mohamed A. Inhibition by amino acids of the corrosion of steel in acid // Surface Technology. 1985. V. 24. №4. P. 383-389. DOI: 10.1016/0376-4583(85)90056-1.

16. Su W., Tang B., Fu F., Huang Sh., Zhao Sh., Bin L., Ding J., Chen C. A new insight into resource recovery of excess sewage sludge: Feasibility of extracting mixed amino acids as an environment-friendly corrosion inhibitor for industrial pickling // Journal of Hazardous Materials. 2014. V. 279. P. 38-45. DOI: 10.1016/j.jhazmat.2014.06.053.

17. Zerfaoui M., Oudda H., Hammouti B., Kertit S., Benkaddour M. Inhibition of corrosion of iron in citric acid media by aminoacids // Progress in Organic Coatings. 2004. V. 51. №2. P. 134138. DOI: 10.1016/j.porgcoat.2004.05.005.

18. Ashassi-Sorkhabi H., Asghari E. Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a "green" inhibitor // Electrochimica Acta. 2008. V. 54. №2. P. 162167. DOI: 10.1016/j.electacta.2008.08.024.

19. Amin M. A., Abd El Rehim S. S., Abdel-Fatah H. T. M. Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation method // Corrosion Science. 2009. V. 51. №4. P. 882-894. DOI: 10.1016/j.corsci.2009.01.006.

20. Silva A. B., Agostinho S. M. L., Barcia O. E., Cordeiro G. G. O., D'Elia E. The effect of cysteine on the corrosion of 304L stainless steel in sulphuric acid // Corrosion Science. 2006. V. 48. №11. P. 3668-3674. DOI: 10.1016/j.corsci.2006.02.003.

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

21. El-Deab M. S. Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study // Materials Chemistry and Physics. 2011. V. 129. №1-2. P. 223-227. DOI: 10.1016/j.matchemphys.2011.03.083.

22. Mobin M., Zehra S., Parveen M. l-Cysteine as corrosion inhibitor for mild steel in 1M HCl and synergistic effect of anionic, cationic and non-ionic surfactants // Journal of Molecular Liquids. 2016. V. 216. P. 598-607. DOI: 10.1016/j.molliq.2016.01.087.

23. Mobin M., Parveen M., Rafiquee M. Z. A. Synergistic effect of sodium dodecyl sulfate and cetyltrimethyl ammonium bromide on the corrosion inhibition behavior of l-methionine on mild steel in acidic medium // Arabian Journal of Chemistry. 2017. V. 10. Supplement 1. P. S1364-S1372. DOI: 10.1016/j.arabjc.2013.04.006.

24. Zhang Ch., Duan H., Zhao J. Synergistic inhibition effect of imidazoline derivative and l-cysteine on carbon steel corrosion in a CO2-saturated brine solution // Corrosion Science. 2016. V. 112. P. 160-169. DOI: 10.1016/j.corsci.2016.07.018.

25. Amin M. A., Khaled K. F., Fadl-Allah S. A. Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions - Experimental and theoretical studies // Corrosion Science. 2010. V. 52. №1. P. 140-151. DOI: 10.1016/j.corsci.2009.08.055.

26. Amin M. A., Khaled K. F., Mohsen Q., Arida H. A. A study of the inhibition of iron corrosion in HCl solutions by some amino acids // Corrosion Science. 2010. V. 52. №5. P. 16841695. DOI: 10.1016/j.corsci.2010.01.019.

27. Amin M. A., Mersal G. A. M., Mohsen Q. Monitoring corrosion and corrosion control of low alloy ASTM A213 grade T22 boiler steel in HCl solutions // Arabian Journal of Chemistry. 2011. V. 4. №2. P. 223-229. DOI: 10.1016/j.arabjc.2010.06.040.

28. Amin M. A., Ibrahim M. M. Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative // Corrosion Science. 2011. V. 53. №3. P. 873-885. DOI: 10.1016/j.corsci.2010.10.022.

29. Deng Q., Ding N.-N., Wei X.-L., Cai L., He X.-P., Long Y.-T., Chen G.-R., Chen K. Identification of diverse 1,2,3-triazole-connected benzyl glycoside-serine/threonine conjugates as potent corrosion inhibitors for mild steel in HCl // Corrosion Science. 2012. V. 64. P. 64-73. DOI: 10.1016/j.corsci.2012.07.001.

30. Deng Q., Shi H.-W., Ding N.-N., Chen B.-Q., He X.-P., Liu G., Tang Y., Long Y.-T., Chen G.-R. Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl // Corrosion Science. 2012. V. 57. P. 220-227. DOI: 10.1016/j.corsci.2011.12.014.

31. Khaled K. F. Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulphuric acid by some green corrosion inhibitors // Journal of Solid State Electrochemistry. 2009. V. 13. №11. P. 1743-1756. DOI: 10.1007/s10008-009-0845-y.

32. Gupta N. K., Verma Ch., Quraishi M. A., Mukherjee A. K. Schiffs bases derived from l-lysine and aromatic aldehydes as green corrosion inhibitors for mild steel: Experimental and theoretical studies // Journal of Molecular Liquids. 2016. V. 215. P. 47-57. DOI: 10.1016/j.molliq.2015.12.027.

33. Vikneshvaran S., Velmathi S. Adsorption of L-Tryptophan-derived chiral Schiff bases on stainless steel surface for the prevention of corrosion in acidic environment: Experimental, theoretical and surface studies // Surfaces and Interfaces. 2017. V. 6. P. 134-142. DOI: 10.1016/j.surfin.2017.01.001.

34. El Ibrahimi B., Soumoue A., Jmiai A., Bourzi H., Oukhrib R., El Mouaden Kh., El Issami S., Bazzi L. Computational study of some triazole derivatives (un- and protonated forms) and their copper complexes in corrosion inhibition process // Journal of Molecular Structure. 2016. V. 1125. P. 93-102. DOI: 10.1016/j.molstruc.2016.06.057.

35. Khaled K. F., El-Sherik A. M. Using molecular dynamics simulations and genetic function approximation to model corrosion inhibition of iron in chloride solutions // Int. J. Electrochem. Sci. 2013. V. 8. P. 10022-10043.

научный журнал (scientific journal) Т. 4. №2. 2018 г.

http://www.bulletennauki. com

36. Eddy N. O., Awe F. E., Gimba C. E., Ibisi N. O., Ebenso E. E. QSAR, Experimental and computational chemistry simulation studies on the inhibition potentials of some amino acids for the corrosion of mild steel in 0.1M HCl // Int. J. Electrochem. Sci. 2011. V. 6. P. 931-957.

Cite as (APA):

Sikachina, A., & Beloglazov, S., (2018). Quantum-chemical substantiation of corrosion inhibition of steel with some amino acids. Bulletin of Science and Practice, 4, (2), 12-27

Ссылка для цитирования:

Sikachina A., Beloglazov S. Quantum-chemical substantiation of corrosion inhibition of steel with some amino acids // Бюллетень науки и практики. 2018. Т. 4. №2. С. 12-27. Режим доступа: http://www.bulletennauki.com/sikachina-beloglazov (дата обращения 15.02.2018).

Работа поступила в редакцию 15.01.2018 г.

Принята к публикации

19.01.2018 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.