Научная статья на тему 'PROPERTIES OF SOLID SOLUTION (CD0.69ZN0.31)3AS2'

PROPERTIES OF SOLID SOLUTION (CD0.69ZN0.31)3AS2 Текст научной статьи по специальности «Физика»

CC BY
28
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
SINGLE CRYSTALS / SOLID SOLUTION / HOPPING CONDUCTIVITY

Аннотация научной статьи по физике, автор научной работы — Zakhvalinskii V.S., Borisenko A.V., Nikulicheva T.B., Kochura A.V., Htet Aung Zaw

The modified Bridgeman method was used to obtain single crystals of(Cd0.69Zn0.31)3As2. It has been established that the studied sample crystallizes in space group P42/nmc with lattice parameters a = 8.78 Å, b = 12.42 Å. We have investigated the electrical conductivity in the temperature range from 10 to 300 K and in a magnetic field of 1 T, and determined the temperature dependences of the concentration and mobility of charge carriers. We have established that hopping conduction with a variable length of the Mott-type hop takes place in the temperature range from 10 to 33 K, and determined its micro parameters.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Zakhvalinskii V.S., Borisenko A.V., Nikulicheva T.B., Kochura A.V., Htet Aung Zaw

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PROPERTIES OF SOLID SOLUTION (CD0.69ZN0.31)3AS2»

St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.1 Научно-технические ведомости СПбГПУ. Физико-математические науки. 15 (3.1) 2022

Conference materials UDC 538.9

DOI: https://doi.org/10.18721/JPM.153.103

Properties of solid solution (Cd069Zn031)3As2

V. S. Zakhvalinskii 1 H, A. V. Borisenko \ T. B. Nikulicheva \ A. V. Kochura 2,

Aung Zaw Htet 2, E. A. Pilyuk 1

1 Belgorod National Research University, Belgorod, Russia; 2 Southwest State University, Kursk, Russia H v_zaxval@mail.ru

Abstract: The modified Bridgeman method was used to obtain single crystals of (Cd0 69Zn ) As2. It has been established that the studied sample crystallizes in space group P42/nmc with lattice parameters a = 8.78 A, b = 12.42 A. We have investigated the electrical conductivity in the temperature range from 10 to 300 K and in a magnetic field of 1 T, and determined the temperature dependences of the concentration and mobility of charge carriers. We have established that hopping conduction with a variable length of the Mott-type hop takes place in the temperature range from 10 to 33 K, and determined its micro parameters.

Keywords: single crystals, solid solution, hopping conductivity

Citation: Zakhvalinskii V. S., Borisenko A. V., Nikulicheva T. B., Kochura A. V., Htet Aung Zaw, Pilyuk E. A. Properties of solid solution (Cdo 69Zn0 31) As2. St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.1) (2022) 22—26. DOI: https://doi.org/10.18721/JPM. 153.103

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Материалы конференции УДК 538.9

DOI: https://doi.org/10.18721/JPM.153.103

Свойства твердого раствора (Cd069Zn031)3As2

В. С. Захвалинский 1 н, А. В. Борисенко 1, Т. Б. Никуличева 1, А. В. Кочура 2,

А. З. Хтет 2, Е. А. Пилюк 1 1 Белгородский государственный национальный исследовательский университет, г. Белгород, Россия; 2 Юго-Западный государственный университет, г. Курск, Россия н v_zaxval@mail.ru

Аннотация. Модифицированный метод Бриджмена был использован для получения монокристаллов (Cd0 69Zn0 31)3As . Установлено, что исследуемый образец кристаллизуется в пространственной группе P42/nmc с параметрами решетки a = 8,78 A, b = 12,42 A. Была исследована электропроводность в диапазоне температур от 10 до 300 К и в магнитном поле 1 Тл, а также определены температурные зависимости концентрации и подвижности носителей заряда. Установлено, что в диапазоне температур от 10 до 33 К имеет место прыжковая проводимость с переменной длиной прыжка типа Мотта, и определены ее микропараметры.

Ключевые слова: монокристалл, твердый раствор, прыжковая проводимость

Ссылка при цитировании: Захвалинский В. С., Борисенко А. В., Никуличева Т. Б., Кочура А. В., Хтет А. З., Пилюк Е. А., Свойства твердого раствора (Cd0 69Zn )3As2 // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.1. С. 22-26. DOI: https://doi.org/10.18721/ JPM.153.103

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https:// creativecommons.org/licenses/by-nc/4.0/)

© Zakhvalinskii V. S., Borisenko A. V., Nikulicheva T. B., Kochura A. V., Htet Aung Zaw, Pilyuk E. A., 2022. Published by Peter the Great St. Petersburg Polytechnic University.

Introduction

The narrow-gap semiconductor cadmium arsenide (Cd3As2) with an inverted structure of energy bands and the highest carrier mobility among semiconductors and semimetals (largely exceeding 104 cm2/(V-s) at room temperature) is distinguished by its chemical stability, low toxicity, and good manufacturability [1,2]. Cd3As2 is believed to manifest an inverted band structure due to the spin-orbital coupling (SOC) [3]. The 3D Dirac cones of Cd3As2 have been observed in angle-resolved photoemission spectroscopy (ARPES) [2,4,5]. A phase transition from a Dirac semimetal to a semiconductor with an increase in the Zn content was experimentally observed in single crystals of solid solutions (Cd1—.Zn.)3As2 at low temperatures [6]. In this study, we report single crystal (Cd0 69Zn031)3As2 close to the composition of the concentration phase transition.

Materials and Methods

A modified Bridgman method was used to obtain (Cd0 69Zn0 )3As2 single crystals. Stoichiometric amounts of Cd3As2 and Zn3As2 binary compounds were placed in a graphitized and evacuated

quartz ampoule. The CZA melt was slowly cooled from the melting temperature of 838 °C at a rate of 5 °C/h in the furnace temperature gradient.

The composition of the samples and their homogeneity were controlled by powder X-ray diffraction and energy dispersive X-ray spectroscopy (EDX). X-ray phase analysis (XPA) of the sample was performed using a GBC EMMA X-ray diffractometer (Cu Ka radiation, X = 1.5401 A) at room temperature. It has been established that the studied sample crystallizes in space group P42/nmc with lattice parameters a = 8.78 A, b = 12.42 A [7]. To study the composition and distribution of elements on the surface, we used a JSM-6610LV (Jeol) scanning electron microscope (SEM) with an X-MaxN (Oxford Instruments) energy dispersive X-ray spectroscopy (EDX) attachment.

Fig. 1 shows the EDX spectrum from the surface of the sample. Fig. 2

0 69 0 31 3 2

shows the powder diffraction pattern of the

(Cd0.69Zn0.31)3As2 sample.

Samples for the study of electrical conductivity by the six-probe method were parallelepipeds with the dimensions of 1.35*0.67*0.50 mm. The temperature dependence of electrical conductivity was studied in the temperature range from 10 to 300 K, and the Hall effect in a magnetic field of 1 T.

The results of the study of the temperature dependence of the resistivity of a solid solution single crystal (Cii0Z^lA^„ are shown in

0 69 0 31 3 2

Fig. 3. The inset to Fig. 3 highlights the section corresponding to the variable range of the hopping conductivity according to Mott.

Fig. 1. of (Cd

EDX spectrum from the surface 0 69Zn0 31)3As2 corresponding to the composition

Fig. 2.

Powder diffraction pattern

(Cd0. 69Zn0 . 31)3As2 sample

of the

© Захвалинский В. С., Борисенко А. В., Никуличева Т. Б., Кочура А. В., Хтет А. З., Пилюк Е. А., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.1

Results and discussions

As the temperature decreases from 320 K, the resistivity decreases from 2-10-3 Qcm to a minimum of 5-10-4 Qcm at 30 K, and then gradually increases. This behavior is typical of the Anderson transition [8]. The study of the Hall Effect in a magnetic field of 1 T made it possible to calculate the Hall coefficient RH, the concentration and mobility of charge carriers. At a temperature of 10 K, the concentration of charge carriers was equal to 2.81-1017 cm-3, decreasing with increasing temperature to 30 K corresponding to the metal-insulator transition.

Fig. 3. Temperature dependence for resistivity of (Cd0 69Zn0 31)3As2 solid solution single crystal. The temperature range of 10—33 K in the inset to Fig. 3 corresponds to the Mott variable range

hopping conductivity

temperature of 30 K and is 4.51-104 cm2-V"1-s_1

decrease in mobility to 4.16-104 cm2-V"1-s_1

Above 30 K, an activation increase in the concentration of charge carriers was observed, which is typical for impurity semiconductors up to a value of 3.05-1017 cm-3. The mobility of charge carriers p exhibits behavior characteristic of semiconductors, increasing with decreasing temperature. The value of mobility is maximum at the metal-dielectric transition point at a

A further decrease in temperature leads to a at a temperature of 10 K. The mechanisms of charge carrier scattering were evaluated.

At low temperatures, in the temperature range from 10 to 30 K, scattering by ionized impurity atoms and mobility p~T32 prevail. In the temperature range from 30 to 300 K, scattering by thermal vibrations of the crystal lattice, ^-T-32, predominates (Fig. 4).

The inset to Fig. 3 shows a linear section of the temperature dependence of resistivity in the temperature range from 10 to 33 K, corresponding to the mechanism of hopping conduction by the states of the impurity band. Hopping conductivity is described by the universal equation (1) [8-10]:

p(T) = DTm exp (T0/ T)

(1)

where D is a constant coefficient, T0 is the characteristic temperature, and the parameters m and p depend on the mechanism of hopping conduction.

Fig. 4. Temperature dependence of mobility of (Cd0 69Zn0 31)3As2 solid solution single crystal

We have determined the values of the parameters m = 1/4 and p = 1/4, which indicates the predominance of the mechanism of hopping conduction with a variable range hop according to Mott. When calculating the microparameters, the following obtained values of the coefficients were used: the characteristic temperature of the hopping conductivity T0 = 28.60 K; hopping conduction onset temperature TV = 28.44 K; coefficient D = 8.488-10 5 Q-cm-K14 For hopping conduction with a variable hop length, the following values of microparameters were obtained: Coulomb gap width in the density of localized states A = 0.43 meV; acceptor zone width W = 2.45 meV; the value of the density of localized states outside the parabolic gap g = 2.93-1017 cm-3-meV-1; charge carrier localization radius a = 307 A.

Conclusions

Single crystals of (Cd0 69Zn031)3As2 solid solutions were obtained by the modified Bridgman method. Sample composition and element distribution was controlled using JSM -6610LV (Jeol) scanning electron microscope (SEM) with an X-MaxN (Oxford Instruments) energy dispersive X-ray spectroscopy (EDX) attachment.

It has been established that the studied sample crystallizes in space group P42/nmc with lattice parameters a = 8.78 A, b = 12.42 A. We have investigated the electrical conductivity in the temperature range from 10 to 300 K and in a magnetic field of 1 T, and determined the temperature dependences of the concentration and mobility of charge carriers. It has been established that in the temperature range from 10 to 33 K, hopping conduction with a variable range of the Mott-type hop takes place, and its micro parameters have been determined: Coulomb gap width in the density of localized states A = 0.43 meV, acceptor zone width W = 2.45 meV; charge carrier localization radius a = 307 A. The obtained values do not contradict the literature data, which confirms the conclusion about the type of hopping conductivity.

REFERENCES

1. Jeon S., Zhou B. B., Gyenis A., Feldman B. E., Kimchi I., Potter A. C., Gibson Q. D., Cava R. J., Vishwanath A., Yazdani A., Landau Quantization and Quasiparticle Interference in the Three-Dimensional Dirac Semimetal Cd3As2, Nature Materials. 13 (9) (2014) 851-856.

2. Neupane M., Xu S.-Y., Sankar R., Alidoust N., Bian G., Liu C., Belopolski I., Chang T.-R., Jeng H.-T., Lin H., Bansil A., Chou F., Hasan M. Z., Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nature Commun. 5 (2014) 3786.

3. Aubin M. J., Caron L. G. & Jay-Gerin J. P., Band structure of cadmium arsenide at room temperature, Phys. Rev. B. 15 (1977) 3872-3878.

4. Liu Z. K., et al, A stable three-dimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13 (2014) 677-681.

5. Borisenko S., et al, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113 (2014) 027603.

6. Hong Lu, Xiao Zhang, Yi Bian, Shuang Jia, Topological Phase Transition in Single Crystals of (Cd1-xZn )3As2, Scientific Reports. 7 (2017) 3148.

7. Arushanov E.K., Crystal growth and characterization of II3V2 compounds, Prog. Cryst. Growth Charact. 3 (1981) 211-255.

8. Mott N. F., Metal-Insulator Transitions, London: Taylor and Francis, 1990.

9. Mott N.F. and Davies Ye.A., Electron Processes in Non-Crystalline Materials / N.F. Mott. Oxford: Clarendon, 1979.

10. Shklovskii B.I., Efros A.L., Electronic Propertie of Doped Semiconductors / B.I. Shklovskii. Berlin: Springer-Verlag, 1984.

11. Amarnath R., Bhargavi K. S., Kubakaddi S. S., Thermoelectric transport properties in 3D Dirac semimetal Cd3As2. Journal of Physics Condensed Matter, 32 (22) (2020): 22570412.

12. Armitage N.P., Mele E.J., Vishwanath A., Weyl and Dirac Semimetals in Three-Dimensional Solids, Rev. Mod. Phys. 90 (2018): 015001.

13. Chorsi H. T., et al, Widely Tunable Optical and Thermal Properties of Dirac Semimetal Cd3As2, Advanced Optical Materials. 8 (8) (2020) 120302 6.

14. Crassee I., et al, 3D Dirac semimetal Cd3As2: A review of material properties, Physical Review

Materials. 2 (12) (2018) 120302 15.

^St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.1

THE AUTHORS

ZAKHVALINSKII Vasilii S.

v_zaxval@mail.ru

ORCID: 0000-0001-7055-8243

KOCHURA Alexey V.

akochura@mail.ru ORCID: 0000-0002-7941-8404

BORISENKO Alexander V.

borisenko02.94@mail.ru ORCID: 0000-0002-2539-3096

HTET Aung Zaw

zawh0898@gmail.com ORCID: 0000-0003-3771-3082

NIKULICHEVA Tatyana B. nikulicheva@bsu.edu.ru ORCID: 0000-0001-6661-3959

PILYUK Evgeniy A.

pilyuk@yandex.ru

ORCID: 0000-0003-4979-5724

Received 14.05.2022. Approved after reviewing 15.07.2022. Accepted 16.07.2022.

© Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.