Проблема определения погрешности визуализации обобщенных
критериев управления
В.П. Шевчук1, Ю.П. Муха2, О.А. Авдеюк2, И.Ю. Королева2
1 ВПИ(филиал) Волгоградского государственного технического университета,
г. Волжский Волгоградской области 2Волгоградский государственный технический университет, Волгоград
Аннотация: В статье рассматривается актуальная задача определения погрешности визуализации обобщенных критериев управления. Указано, что самое распространенное нелинейное взаимодействие параметров в технических системах является мультипликативным взаимодействием измеряемых физических величин. На основании того, что физические элементы процессорного измерительного канала имеют линейные динамические характеристики, сделан вывод о том, что применение нелинейных преобразований для количественных оценок свойств систем мониторинга, требует линеаризации, ошибки которой, безусловно, влияют на точность конечной математической модели и её величина может быть оценена и отнесена к методической погрешности визуализации. Рассмотрен процесс линеаризации на примере мультипликативного взаимодействия Р измеряемых физических величин. В результате анализа свойств многих промышленных объектов управления в условиях установившихся режимов технологических процессов, было выявлено, что они характеризуются небольшими колебаниями относительно математического ожидания (не более 10 %), что позволяет применить полученные математические модели ошибок, возникающих в процессе линеаризации уравнений измерения критериев управления, для проектных и научно-исследовательских работ.
Ключевые слова: объекты управления, измерительная система, программируемые логические контроллеры, ошибка визуализации, математическое ожидание, адаптивное управление, линеаризованное уравнение измерения, погрешность измерения.
Введение. Основным функциональным элементом современных автоматизированных систем управления технологическим производством являются программируемые логические контроллеры (ПЛК), к функциям которых относятся управление, защита, измерение физических сигналов, отображение и регистрация различных процессов. ПЛК в составе адаптивных систем управления, диагностики и мониторинга параметров технологического процесса в реальном масштабе времени вычисляют текущие значения критериев управления, уравнения измерения которых имеют сложные нелинейные выражения вида [1- 3]:
1
К м
t Ъ А П , Хчкт(1 ■ т8)
7 (1 ■ т8) = к =Ь тр -
,Е Л П , Ар■ Т8) / = 1 р = 1
где К - это количество измеряемых текущих значений технологических параметров Хчкт(\Т^) в числителе уравнения измерения, М - это количество мультипликативно связанных текущих значений технологических параметров в к-той составляющей суммы числителя, Ь - это количество измеряемых текущих значений технологических параметров Хз/р(0, в знаменателе уравнения измерения, р - количество мультипликативно связанных технологических параметров в /-той составляющей суммы в знаменателе, Бк, Б/ - настроечные коэффициенты информационно-
измерительной системы.
Постановка задачи. Мультипликативное взаимодействие измеряемых физических величин, пожалуй, самое распространенное нелинейное взаимодействие параметров в технических системах. Особенно широко оно используется в нефтяной, газовой нефтеперерабатывающей промышленностях, где обобщенные критерии управления имеют уравнение измерения в виде суммы произведений информации об информационных потоках:
Ш ■ т8) = / I 5/ ■ П 1 Х/р С ■ т5) / = 1 р = 1 Г ,
где Р - количество мультипликативно взаимодействующих измеряемых физических величин, Ь - количество материальных потоков в уравнении измерения, Х/р(]'Т$) - р-тая измеряемая физическая величина в /-том материальном потоке, Б/ - настроечные коэффициенты измерительной системы /-того измеряемого потока информации. Например, при адаптивном управлении котельными качество системы мониторинга можно оценивать по
уравнению измерения текущих значений количества генерируемого тепла:
7(/ • Т)=5 • Х^ • Т) • Х2(] • Т) • intхъ(]•т),
где: Х1(/Т5)- текущее значение расхода перегретого пара; Х2(/Т5)- текущее значение температуры перегретого пара; ШХ( Т5)- текущее значение энтальпии перегретого пара при текущем значении давления перегретого пара.
При адаптивном управлении тепловыми пунктами, качество системы мониторинга можно оценивать по уравнению измерения текущего значения количества потребленного тепла:
7 (/ • т )=5 • ад • Т ) • х2(] • Т ) - 5 • Хз(/ • Т ) • Х4С/ • Т ),
где: Х1(/'Т5)- текущее значение расхода прямой горячей воды; Х2(/'Т§)- текущее значение температуры прямой воды; Х3(/'Т5)- текущее значение расхода обратной воды; Х4(/'Т$)- текущее значение температуры обратной воды; 51, Б2 -адаптивные настроечные коэффициенты (идентифицируемые значения
Так как все физические элементы процессорного измерительного канала имеют линейные динамические характеристики, то применение нелинейных преобразований для количественных оценок свойств систем мониторинга, требует линеаризации. Ошибки линеаризации, безусловно, влияют на точность конечной математической модели и её величина может быть оценена и отнесена к методической погрешности визуализации.
Определение ошибки визуализации. Рассмотрим процесс линеаризации на примере мультипликативного взаимодействия Р измеряемых физических величин. Текущее значение уравнения измерения, при этом выражается следующим образом:
7(кТи)=Х1(кТи) • Х2 (кТи) • ... Хр(кТи),
где Х1(кТи), Х2(кТИ), ..., ХР(кТи) - оценки математического ожидания измеряемых физических величин на к-том интервале времени
1
идентификации, ТИ=ЫТ$, где N - длина реализации, Т$ - период измерения физической величины, сек.
В работе [4] показано, что числовые последовательности, Хр(/Т$) являются эргодическими. Это позволяет утверждать, что линеаризация обобщенного критерия должна быть проведена путем ее разложения в ряд Тейлора в окрестности рабочей точки М(М1,М2,...,Мм), где М1, М2, ..., МР -это оценки математических ожиданий массивов числовых последовательности Х1(]'Т5), Х2(]'Т5) , ...,ХР(]'Т5) , с сохранением в разложении лишь членов первого порядка:
Т(кТи)* У(МЬ М2, ...,Мр)+ (М!, М 2,..., М р) .[Хр (к • Ти) - Мр ],
р=1
где УХ р (М1, М 2,..., Мр) - значения первых частных производных функции У(Х1,
Х2, ...,ХР) в точке линеаризации У(М1, М2, ...,МР).
Подставляя полученные производные в исходное выражение для У(кТИ), получается линеаризованное уравнение измерения интеллектуальной измерительной системы с мультипликативным взаимодействием измеряемых физических величин:
г (к • Ти) = 1
р=1
П М, • Хр (к • Ти )
I=1
I ф р
- (Р -1) • П М
р=1
р
Мр
Таким образом, мультипликативное взаимодействие измеряемых физических величин представлено как аддитивное взаимодействие, а обобщенная функциональная схема линеаризованной информационно-измерительной системы будет иметь вид, представленный рисунком 1. Из схемы видно, что замена мультипликативного взаимодействия физических величин на аддитивное, в рамках информационно-измерительной системы, сопровождается появлением в структуре каждого измерительного канала
дифференцирующего элемента с математическая моделью: ЛУ (?) = А • Х (/) и
Л
:
ь
весовой функцией в виде прямоугольного импульса: Кр (0 = Пм •*($), где
1=1
¡ф р
)=
при (к -1) • Ти < г < к • Т
-*- тж
, Ти=М Т5 - период идентификации, к -
0, вне интервала
порядковый номер реализации, N - длина реализации (массив), Т5 - период измерения физической величины, М1 - оценка математического ожидания I -той физической величины.
Рис. 1. - Функциональная схема линеаризованной системы мониторинга
ь
Обозначая коэффициенты линеаризации через: А1 = П М1 и
I=1
I ф р
А0 = (Р -1) • ПМР можно показания линеаризованной измерительной системы
р=1
выразить через показания отдельных измерительных каналов ХР(кТи) следующим образом:
г (к • Ти) - £ А1 • Х (к • Ти) - А0, Р = 1
где 2(к • Ти)- оценка математического ожидания обобщенного критерия управления на интервале идентификации, Х р (к • Ти) - оценка
математического ожидания р-того управляющего воздействия на объект управления [5]. При этом, функция ошибок визуализации Е(г), определяется
как разность между значениями обобщенного критерия управления, вычисленными программно-логическим контроллером по линеаризованному уравнению измерения, 2(1) „ и значениями обобщенного критерия управления, вычисленными программно-логическим контроллером по не линеаризованному уравнению измерения, У(1). Так как и входное воздействие на измерительную систему, и ее реакция на это воздействие являются случайными функциями, то очевиден вывод о том, что и функция ошибки Е($ также является случайной функцией. Поэтому, для количественной оценки погрешности визуализации, необходимо и достаточно вычислить характеристики случайной функции Е(0. На основании анализа схемы обработки измерительной информации, моделей типовых элементов процессорного измерительного канала [3] и допущения об эргодичности измеряемых физических величин математическое ожидание функции ошибки визуализации, на интервале идентификации, будет равно:
Ме(к-Ти)-]\м1 -(Р-1)-]]МР -
р=1 1=1 р=1
I ф р
р к Ти
-П \3(к - Т ИVХр (к-Ти)-(у « 0,
р=1 0
где б (к - Ти - у) - к-тая функция окно, Хр (к - Ти ) - оценка математического ожидания р-той измеряемой физической величины на к-том интервале идентификации.
Заключение. Дальнейшие исследования вероятностных свойств показаний линеаризованной и не линеаризованной процессорных измерительных систем позволили сделать следующие выводы:
- показания линеаризованного виртуального прибора являются нестационарным случайным процессом, последовательность показаний линеаризованного виртуального прибора остается стационарной. А,
следовательно, процесс линеаризации критерия управления, методом разложения в ряд Тейлора, незначительно искажает вероятностные свойства измерительной информации. А величина относительной методической динамической составляющей погрешности измерения управляющего воздействия зависит, в основном, от положения рабочей точки в пространстве управляющих координат;
- погрешность линеаризации уменьшается с уменьшением границ изменения аргументов линеаризуемой функции, которые однозначно определяются дисперсией перемножаемых сигналов. Чем меньше среднеквадратичное отклонение управляющего воздействия от его математического ожидания, тем меньше составляющая погрешности линеаризации.
Анализ свойств многих промышленных объектов управления, в условиях установившихся режимов технологических процессов, показал [610], что они характеризуются небольшими колебаниями относительно математического ожидания (не более 10 %), что позволяет применить полученные математические модели ошибок, возникающих в процессе линеаризации уравнений измерения критериев управления, для проектных и научно-исследовательских работ.
Литература
1. Шевчук В.П. Классификация информационно-измерительных систем по типу уравнения измерения для определения критерия управления // Метрология. 2008. №12. С. 3 - 16.
2. Шевчук В.П. Информативность и эффективность интеллектуальной измерительной техники // Метрология. 2012. № 1. С. 12-21.
3. Муха Ю. П., Авдеюк О.А., Королева И.Ю. Алгебраическая теория синтеза сложных систем. Волгоград: ВолгГТУ, 2003. 320с.
4. Шевчук В.П. Моделирование метрологических характеристик интеллектуальных измерительных приборов и систем. Москва: ФИЗМАТЛИТ, 2011. 320 с.
5. Шевчук В.П. Способ автоматического управления эффективностью функционирования процесса ректификации //Патент на изобретение №2558596. Бюллетень изобретений №22 от 10.08.2015.
6. Севастьянов Б.Г., Жолобов И.А., Севастьянов Д.В. Принципы программирования контроллеров на языке FBD // Инженерный вестник Дона, 2014, №2 URL: ivdon.ru/magazine/ archive/ n2y2014/2344.
7. Браганец С.А., Гольцов А.С., Савчиц А.В. Идентификация математической модели главного золотника для системы диагностики и адаптивного управления открытием направляющего аппарата // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/uploads/article/ pdf /IVD_11A_braganets.pdf_1906.pdf.
8. Petruzella F.D. Programmable Logic ControllersюMcGraw-Hill, 2010.
396 p.
9. Astrom K.J. Advanced PID control. -ISA. Triangle Park, 2006. 446 p.
10. Шевчук ВП. Расчет динамических погрешностей интеллектуальных измерительных систем. Москва: ФИЗМАТЛИТ,2008. 288 с.
References
1. Shevchuk V.P. Metrologija. 2008. №12. pp. 3 - 16.
2. Shevchuk V.P. Metrologija. 2012. №1. pp. 12-21.
3. Mu^a Yu. P., Avdeyuk O.A., Koroleva I.YU. Algebraicheskaya teoriya sinteza slozhnyh system [An algebraic theory of synthesis of complex systems]. Volgograd: VolgGTU, 2003. 320 p.
4. Shevchuk V.P. Modelirovanie metrologicheskih harakteristik intellektual'nyh izmeritel'nyh priborov i system [Modeling of metrological
characteristics of intelligent measuring instruments and systems] Moskva: FIZMATLIT, 2011. 320 p.
5. Shevchuk V.P. Sposob avtomaticheskogo upravlenija jeffektivnost'ju funkcionirovanija processa rektifikacii [A method for automatically controlling the efficiency of the rectification process]. Patent na izobretenie №2558596. Bjulleten' izobretenij №22 ot 10.08.2015.
6 .Sevast'janov B.G., Zholobov I.A., Sevast'janov D.V. Inzenernyj vestnik Dona (Rus), 2014, №2 URL: ivdon.ru/magazine/ archive/ n2y2014/2344.
7. Braganec S.A., Gol'cov A.S., Savchic A.V. Inzenernyj vestnik Dona (Rus), 2013, №4 URL: ivdon.ru/uploads/article/ pdf /IVD_11A_braganets.pdf_1906.pdf.
8. Petruzella F.D. Programmable Logic ControllersroMcGraw-Hill, 2010.
396 p.
9. Astrom K.J. Advanced PID control. -ISA. Triangle Park, 2006. 446 p.
10. Shevchuk V.P. Raschet dinamicheskih pogreshnostej intellektual'nyh izmeritel'nyh system [Calculation of dynamic errors in intelligent measuring systems]. Moskva: FIZMATLIT,2008. 288 p.