Научная статья на тему 'Проблема обеспечения шероховатости уплотнительных поверхностей затворного узла трубопроводной арматуры'

Проблема обеспечения шероховатости уплотнительных поверхностей затворного узла трубопроводной арматуры Текст научной статьи по специальности «Механика и машиностроение»

CC BY
522
102
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТРУБОПРОВОДНАЯ СИСТЕМА / ЗАТВОРНЫЙ УЗЕЛ / УПЛОТНИТЕЛЬНАЯ ПОВЕРХНОСТЬ / ТЕХНОЛОГИЧЕСКИЙ СПОСОБ / НАПЛАВЛЕННЫЙ СЛОЙ / ШЕРОХОВАТОСТЬ / ОБРАБОТАННАЯ ПОВЕРХНОСТЬ / ГЕРМЕТИЧНОСТЬ СТЫКОВ / НАДЕЖНОСТЬ / ПРОИЗВОДИТЕЛЬНОСТЬ / ИЗНОСОСТОЙКОСТЬ / ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ / ФИНИШНАЯ УЛЬТРАЗВУКОВАЯ ОБРАБОТКА / PIPELINE SYSTEM / CLOSING KNOT / SEALING SURFACE / TECHNOLOGICAL METHOD / WELDING BLANKET / ROUGHNESS / PROCESSED SURFACE / JUNCTIONS LEAKPROOFNESS / RELIABILITY / PRODUCTIVITY / WEAR RESISTANCE / PLASTIC DEFORMATION / FINISHING ULTRASONIC MACHINING

Аннотация научной статьи по механике и машиностроению, автор научной работы — Гусев В.Г., Зуев М.С.

Трубопроводные системы широко используются в мире для транспортирования различных жидкостей и газов и играют определяющую роль в энергетическом обеспечении предприятий, организаций, компаний и гражданского населения. Они функционируют в экстремальных условиях, при которых поток жидкости или газа под большим давлением (до 25 МПа) и при высокой температуре (до 565 °C) движется по трубопроводу с большими относительными скоростями. Тяжелые условия работы выдвигают на первый план жесткие требования к объектам трубопроводной системы по безопасности, надежности, эргономичности, экономичности, производительности, ремонтопригодности и т.д. Серьезные требования предъявляются к распределительным узлам, содержащим подвижные и неподвижные элементы, поскольку через их сопрягаемые поверхности возможны утечки огнеопасных и других жидкостей. Такими узлами являются, например, задвижки, шаровые краны, разного рода клапаны и регуляторы давления. Для устранения утечек эти узлы снабжены уплотнительными поверхностями, которые могут обеспечить герметичность стыков лишь при их высокой плоскостности, износостойкости и низкой шероховатости. Уплотнительные поверхности клина и корпуса затворного узла в процессе эксплуатации изнашиваются, что требует проведения ремонта путем наплавления на изношенные поверхности износои коррозиестойкого материала и последующей механической обработки. Наплавленный поверхностный слой характеризуется высокой твердостью и изменением снимаемого припуска, что вызывает при обработке переменные силы резания и упругие деформации элементов технологической системы, приводящие к геометрическим погрешностям (отклонению от плоскостности) и повышенной шероховатости обработанной поверхности, негативно сказывающихся на герметичности и износе уплотнительных поверхностей. В этой связи для формирования износостойкого рабочего поверхностного слоя сопряженных поверхностей, обеспечивающих герметичность стыков, необходимо обоснование выбора технологического метода механической обработки. В статье проанализированы возможные технологические способы обеспечения шероховатости уплотнительных поверхностей корпуса и клина затворного узла трубопроводной системы, на основании чего предложена эффективная ультразвуковая безабразивная их обработка.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Гусев В.Г., Зуев М.С.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Maintenance problem of the sealing surfaces roughness of the pipeline armature closing knot

Pipeline systems are widely used in world economy for transportation of various liquids and gases and play an exclusive role in the questions decision of power providing of various enterprises, companies and civilians. Pipeline systems function in extreme conditions when the power fluid or gas stream under the big pressure (to 25 МPа) and high temperature (to 565 °C) moves in pipeline with the big relative speeds. Hard working conditions put in the forefront rigid demands to pipeline system objects on safety, reliability, ergonomics, profitability, productivity, maintainability and so on. Serious demands are shown to distributive knots with mobile and motionless details because through their contacted surfaces are possible a leaks of inflammable and other liquids. Such knots are, for example, latches, ball cocks, any valves and pressure regulators. For leaks elimination these knots have the sealing surfaces, which can provide a leakproofness only at their high planeness, wear resistance and a low roughness. A wedge and the case sealing surfaces of the closing knot during the working process wear out that demands a repair by the way overlaying welding on the worn out surfaces of a wear resistance-,anticorrosive material and the subsequent machining. The overlaying welding blanket has a high hardness and a removed allowance variation that call at processing the cutting force changing and elastic deformation of the technological system elements leading to geometrical errors (a deviation from planeness) and a high roughness of the processed surface, negatively affecting on a leakproofness and sealing surfaces wearing. Thereupon for forming of a wear-resistant working surface layer of the interfaced surfaces providing the junctions leakproofness, the choice justification of a technological machining method is necessary. In this article providing technological methods of a sealing surfaces roughness of the case and a chock of pipeline system closing knot are observed, ground that the finishing ultrasonic without abrasive machining is offered.

Текст научной работы на тему «Проблема обеспечения шероховатости уплотнительных поверхностей затворного узла трубопроводной арматуры»

ВЕСТНИК ПНИПУ

2016 Машиностроение, материаловедение Т. 18, № 2

Б01: 10/15593/2224/-9877/2016.2.08 УДК 621.9(075.8)

В.Г. Гусев, М.С. Зуев

Владимирский государственный университет им. А.Г. и Н.Г. Столетовых,

Владимир, Россия

ПРОБЛЕМА ОБЕСПЕЧЕНИЯ ШЕРОХОВАТОСТИ УПЛОТНИТЕЛЬНЫХ ПОВЕРХНОСТЕЙ ЗАТВОРНОГО УЗЛА ТРУБОПРОВОДНОЙ АРМАТУРЫ

Трубопроводные системы широко используются в мире для транспортирования различных жидкостей и газов и играют определяющую роль в энергетическом обеспечении предприятий, организаций, компаний и гражданского населения. Они функционируют в экстремальных условиях, при которых поток жидкости или газа под большим давлением (до 25 МПа) и при высокой температуре (до 565 °С) движется по трубопроводу с большими относительными скоростями.

Тяжелые условия работы выдвигают на первый план жесткие требования к объектам трубопроводной системы по безопасности, надежности, эргономичности, экономичности, производительности, ремонтопригодности и т.д. Серьезные требования предъявляются к распределительным узлам, содержащим подвижные и неподвижные элементы, поскольку через их сопрягаемые поверхности возможны утечки огнеопасных и других жидкостей. Такими узлами являются, например, задвижки, шаровые краны, разного рода клапаны и регуляторы давления.

Для устранения утечек эти узлы снабжены уплотнительными поверхностями, которые могут обеспечить герметичность стыков лишь при их высокой плоскостности, износостойкости и низкой шероховатости.

Уплотнительные поверхности клина и корпуса затворного узла в процессе эксплуатации изнашиваются, что требует проведения ремонта путем наплавления на изношенные поверхности износо- и коррозиестойкого материала и последующей механической обработки.

Наплавленный поверхностный слой характеризуется высокой твердостью и изменением снимаемого припуска, что вызывает при обработке переменные силы резания и упругие деформации элементов технологической системы, приводящие к геометрическим погрешностям (отклонению от плоскостности) и повышенной шероховатости обработанной поверхности, негативно сказывающихся на герметичности и износе уплотнительных поверхностей. В этой связи для формирования износостойкого рабочего поверхностного слоя сопряженных поверхностей, обеспечивающих герметичность стыков, необходимо обоснование выбора технологического метода механической обработки.

В статье проанализированы возможные технологические способы обеспечения шероховатости уплотнительных поверхностей корпуса и клина затворного узла трубопроводной системы, на основании чего предложена эффективная ультразвуковая безабразивная их обработка.

Ключевые слова: трубопроводная система, затворный узел, уплотнительная поверхность, технологический способ, наплавленный слой, шероховатость, обработанная поверхность, герметичность стыков, надежность, производительность, износостойкость, пластическая деформация, финишная ультразвуковая обработка.

V.G. Gusev, M.S. Zuev

Vladimir State University named under A.G. and N.G. Stoletovyh, Vladimir, Russian Federation

MAINTENANCE PROBLEM OF THE SEALING SURFACES ROUGHNESS OF THE PIPELINE ARMATURE CLOSING KNOT

Pipeline systems are widely used in world economy for transportation of various liquids and gases and play an exclusive role in the questions decision of power providing of various enterprises, companies and civilians. Pipeline systems function in extreme conditions when the power fluid or gas stream under the big pressure (to 25 MPa) and high temperature (to 565 °C) moves in pipeline with the big relative speeds.

Hard working conditions put in the forefront rigid demands to pipeline system objects on safety, reliability, ergonomics, profitability, productivity, maintainability and so on. Serious demands are shown to distributive knots with mobile and motionless details because through their contacted surfaces are possible a leaks of inflammable and other liquids. Such knots are, for example, latches, ball cocks, any valves and pressure regulators.

For leaks elimination these knots have the sealing surfaces, which can provide a leakproofness only at their high planeness, wear resistance and a low roughness. A wedge and the case sealing surfaces of the closing knot during the working process wear out that demands a repair by the way overlaying welding on the worn out surfaces of a wear resistance-,anticorrosive material and the subsequent machining.

The overlaying welding blanket has a high hardness and a removed allowance variation that call at processing the cutting force changing and elastic deformation of the technological system elements leading to geometrical errors (a deviation from planeness) and a high roughness of the processed surface, negatively affecting on a leakproofness and sealing surfaces wearing.

Thereupon for forming of a wear-resistant working surface layer of the interfaced surfaces providing the junctions leakproofness, the choice justification of a technological machining method is necessary. In this article providing technological methods of a sealing surfaces roughness of the case and a chock of pipeline system closing knot are observed, ground that the finishing ultrasonic without abrasive machining is offered.

Keywords: pipeline system, closing knot, sealing surface, technological method, welding blanket, roughness, processed surface, junctions leakproofness, reliability, productivity, wear resistance, plastic deformation, finishing ultrasonic machining.

В современном мире большую роль играют углеводороды. Бюджеты многих стран принимаются исходя из цены на нефть и газ, и экономика России в настоящее время не является исключением. Отечественные нефтяная и газовая отрасли являются локомотивом других отраслей народного хозяйства.

В связи с увеличением объемов добычи нефти и газа, а также курсом Правительства на импортозамещение многие отечественные предприятия вовлечены в процесс освоения производства новых видов изделий, ранее закупаемых за рубежом. Одновременно с этим решаются вопросы повышения качества уже освоенной продукции, такой как: задвижки клиновые, шиберные, краны шаровые, устьевая арматура, разного рода клапаны и регуляторы давления.

Важной частью трубопроводной арматуры является затворный узел 1 (рис. 1, а), в котором запирающий или регулирующий элемент перемещается по стрелке К перпендикулярно потоку рабочей среды, т.е. в направлении оси ЕЕ. Важнейшим показателем, характеризующим эксплуатационную надежность трубопроводной арматуры, является герметичность уплотнительных поверхностей 3 и 4.

Рис. 1. Затворный узел и его уплотнительные поверхности: а - продольный разрез узла; б - вид по стрелке К на корпус

Определяющая роль в обеспечении герметичности затворного узла отведена шероховатости уплотнительных поверхностей корпуса и клина. Изношенные уплотнительные поверхности 3 и 4 корпуса и клина наплавляют корозиестойким и износостойким материалом, после чего подвергают механической обработке.

В настоящее время в РФ серьезная модернизация этих узлов не проводится, хотя эта проблема является крайне актуальной, поскольку аварии из-за утечек огнеопасной жидкости на объектах, эксплуатирующих нефтегазовое оборудование, могут привести к глобальным и необратимым последствиям.

Повысить уровень эксплуатационной надежности трубопроводной арматуры можно путем реализации оптимальной технологии обработки уплотнительных поверхностей, обеспечивающей их высокую износостойкость и герметичность. Для обоснованного выбора наиболее эффективного способа достижения требуемой микрогеометрии уп-

лотнительных поверхностей проанализируем возможные финишные технологические способы обработки.

На многих отечественных предприятиях финишной операцией, обеспечивающей требуемую шероховатость поверхности, является притирка, которая характеризуется высокой трудоемкостью и вероятностью попадания в затворный узел инородных частиц, вызывающих задиры на сопрягаемых поверхностях, нарушение герметичности и появление утечек транспортируемой жидкости. Кроме этого уплотни-тельные поверхности затворного узла имеют большую площадь, поэтому притирать их экономически нецелесообразно.

Возможны также другие технологические способы обеспечения требуемой микрогеометрии уплотнительных поверхностей: высокоскоростное точение, точение твердых материалов, обкатка, а также безабразивная ультразвуковая финишная обработка (БУФО) [1-5]. В последнее время проявляется повышенный интерес производственников к высокоскоростному точению труднообрабатываемых материалов. В качестве инструмента используют резцы с механическим креплением режущих пластин из сверхтвердых материалов на основе модификаций нитрида бора и керамики, а также нитрида кремния.

Применяя резцы, оснащенные такими пластинами, можно точить указанные материалы при скоростях 5 м/с и выше, однако в настоящее время традиционные скорости резания твердосплавными пластинами составляют менее 0,3 м/с.

Высокоскоростное точение позволяет сократить время на обработку (повысить производительность) и решить проблему дробления стружки, что особенно важно для автоматизированного производства. Однако высокоскоростное точение не обеспечивает повышения износостойкости обработанных поверхностей, а для реализации процесса требуется дорогостоящие оборудование и режущий инструмент.

Применяется также точение закаленных материалов высокой твердости (НИСэ = 45...65), которое позволяет заменить финишную операцию шлифования. Благодаря обоснованному выбору геометрии, материала лезвийного инструмента и режима резания обрабатываемый материал нагревается практически до состояния расплавления (температура в зоне контакта может достигать 1500 °C). В этих условиях твердость обрабатываемого материала заготовки уменьшается не более чем на три единицы по шкале Роквелла, а твер-

дость стружки - до НИСэ = 40.45, что значительно облегчает снятие припуска.

По сравнению с процессом шлифования точение является более производительным технологическим методом и позволяет снизить затраты на производство деталей. Для получения при точении высокой геометрической точности уплотнительных поверхностей необходимы высокая жесткость системы «станок - приспособление - инструмент -заготовка» и малая скорость подачи (0,01-0,05 мм/об.), которая должна обеспечиваться технической характеристикой токарного станка.

Инструментальным материалом для высокоскоростного точения является режущая керамика и кубический нитрид бора. Каждый из материалов имеет свои преимущества и недостатки. Керамика существенно дешевле кубического нитрида бора, но она разрушается при ударной рабочей нагрузке. Кубический нитрит бора менее восприимчив к ударным нагрузкам, но характеризуется более высокой стоимостью.

Уплотнительные поверхности 5 и 6 (рис. 1, б) можно обработать обкаткой, которая заключается в пластическом деформировании поверхностного слоя гладким роликом высокой твердости. Происходит смятие неровностей, оставшихся после предшествующей обработки, создается новый профиль поверхности с малой высотой микронеровностей.

Отличие чистовой обкатки от обработки методами резания состоит в том, что поверхностный слой металла не подвергается разрушению или снятию, а деформация металла сопровождается наклепом, повышением твердости поверхностного слоя и возникновением в нем сжимающих остаточных напряжений.

С технологической точки зрения обкатка роликами имеет ряд преимуществ перед другими технологическими способами чистовой обработки: достигается среднее арифметическое отклонение профиля Ra = 0,32.0,63 мкм, а при необходимости можно получить и меньшие его значения. Обкаткой хорошо обрабатываются мягкие и вязкие стали, чистовая обработка которых лезвийным и абразивным инструментами затруднена. Приведенные данные свидетельствуют о преимуществах обкатки по сравнению с другими технологическими способами чистовой обработки, в особенности в условиях единичного и мелкосерийного производства, при которых используется универсальное металлорежущее оборудование.

Если на действующем производстве используется технологическая операция шлифования, то целесообразно проработать вопрос ее замены обкаткой. Результаты чистовой обработки обкаткой зависят от твердости обрабатываемого материала, исходной шероховатости поверхности заготовки, ее размеров, диаметра и профильного радиуса рабочего ролика, а также от режима: усилия прижатия инструмента к заготовке, числа его рабочих проходов, скорости подачи и др.

При обкатке мягких сталей проще достигаются малые значения микронеровностей по сравнению со сталями повышенной твердости. Существенное влияние на шероховатость поверхности после обкатки оказывает исходное состояние поверхностного слоя. По мере увеличения рабочего усилия, уменьшения подачи, увеличения профильного радиуса ролика и числа его проходов шероховатость поверхности снижается до определенного предела, при этом изменение скорости обкатки до 100 м/мин незначительно сказывается на значениях шероховатости обработанной поверхности.

Для финишной обработки уплотнительных поверхностей запорной арматуры может применяться также БУФО, основанная на использовании технологического комплекса, состоящего из ультразвукового генератора и ударного инструмента. Вопросами применения ультразвуковых технологий в машиностроении начали заниматься в 60-е гг. ХХ столетия.

За истекшее время ученые достигли значительных успехов, в частности, разработаны устройства и способы ультразвукового упрочнения поверхностных слоев металлов и сплавов [5], получены охранные документы на изобретения, разработана методология проектирования и расчета преобразователей для технологических установок [6], ультразвуковых колебательных систем [7], создана фундаментальная база для успешного практического применения систем БУФО [1-4, 8, 9] и др.

На основании анализа результатов исследований [10-15] можно прийти к выводу о том, что применение БУФО позволит отечественной промышленности выпускать продукцию высокого качества, отвечающую мировым стандартам.

Устройство (инструмент) для финишной ультразвуковой безабразивной обработки состоит из бачка охлаждения 1, корпуса 2, волновода 3, обмотки преобразователя 4, державки 5, уплотняющего кольца 6, гайки 7, индентора 8, штуцера 9 и гермоввода 10 (рис. 2) [9].

Ультразвуковой преобразователь представляет собой сердечник из магнитного материала - пермендюра, изготовлен в виде пластин 11, размещенных в обмотке 4, и предназначен для создания механических колебаний ультразвуковой частоты в резонансной системе «преобразователь - волновод - индентор». Он крепится к фланцу волновода 3 при помощи накидной гайки 7. Бачок 1 представляет собой пустотелый цилиндр, выполняющий роль рубашки, через которую прокачивается охлаждающая жидкость, например вода или смазочно-охлаждающая жидкость (СОЖ). Подвод жидкости осуществляется по штуцеру 9.

Рис. 2. Инструмент для ультразвуковой безабразивной обработки

Рабочее напряжение ультразвуковой частоты на обмотку 4 маг-нитострикционного преобразователя подается по гермовводу 10, расположенному в крышке 12. Охлаждающая жидкость из бачка 1 сливается по трубке 13, при этом жидкость можно подавать в зону обработки для охлаждения индентора 8. Бачок 1 расположен в корпусе 2 с возможностью перемещения вдоль оси инструмента, в качестве подшипников скольжения используются латунные втулки 14. Инструмент устанавливается на токарно-карусельный станок путем закрепления державки в резце-держателе суппорта.

В процессе финишной ультразвуковой безабразивной упрочняющей обработки инструмент 2 (см. рис. 1, а) прижимается к обрабатываемой поверхности 4 индентором 5, который при подаче напряжения на ультразвуковой преобразователь перемещается по стрелке Ь, периодически вступая в контакт с заготовкой. Обрабатываемые поверхности 3 и 4 наклонены к оси ЕЕ под углом 5. В момент контакта индентора с материалом заготовки в поверхностном слое возникают значительные по величине мгновенные напряжения, под действием которых проис-

ходит пластическая деформация микронеровностей и формирование среднего арифметического отклонения профиля Ra = 0,25... 6,3 мкм. Ось инструмента 2 наклонена к обрабатываемой поверхности 4 (см. рис. 1), что обусловлено стесненным пространством, в котором он размещается.

Индентор под действием динамической силы, создаваемой колебательной системой, пластически деформирует поверхностной слой, в результате чего повышается его твердость на 5-150 %, усталостная прочность - на 10-200 %, а также формируются остаточные напряжения сжатия, что позитивно сказывается на эксплуатационных показателях узла. Возможно чистовое точение и последующая финишная безабразивная обработка поверхностей за одну установку заготовки, что повышает их геометрическую точность.

БУФО можно использовать для обработки конструкционных, инструментальных, нержавеющих сталей, чугунов, цветных металлов, титановых сплавов и других материалов. Основная проблема использования БУФО для обработки уплотнительных поверхностей состоит в том, что уплотнительные поверхности корпусов, клиновых задвижек находятся в труднодоступных местах, а габаритные размеры акустической системы при обработке корпусов сравнительно небольших размеров не вписываются в имеющееся пространство затворного механизма. В этой связи для использования БУФО в стесненных условиях требуются новые конструктивные решения и научные исследования, позволяющие расширить технологические возможности инструмента.

Одним из путей решения данной проблемы является разработка системы БУФО, адаптированной под токарно-карусельный станок, что позволит обрабатывать уплотнительные поверхности корпуса для основного номенклатурного ряда выпускаемых изделий трубопроводной арматуры. Специфическая проблема возникает и при обработке клиньев. Проведенные авторами опыты показали, что под действием ударного характера работы индентора клин вибрирует, что вызвано недостаточной его жесткостью из-за наличия глубокого пропила. Вибрация клина приводит к нарушению работы технологической системы и ухудшению микрогеометрии уплотнительных поверхностей. Для решения этой задачи необходимо увеличить жесткость и разработать методику расчета клина на виброустойчивость.

Выбирая технологический способ обеспечения требуемой микрогеометрии уплотнительных поверхностей, целесообразно остановиться на безабразивной ультразвуковой финишной обработке, так как она по сравнению с известными технологическими способами в наибольшей степени отвечает требованиям экономичности, технологичности, производительности и простоты обслуживания. Решение сформулированных выше научно-технических задач позволит реализовать преимущества финишной ультразвуковой безабразивной обработки, повысить производительность и качество уплотнительных поверхностей корпуса и клина задвижек трубопроводной арматуры.

Список литературы

1. Мощный ультразвук в металлургии и машиностроении / О.В. Абрамов, В.О. Абрамов, В.В. Артемьев [и др.]. - М.: Янус-К, 2006. - 687 с.

2. Абрамов О.В., Хорбенко И.Г., Швегла Ш. Ультразвуковая обработка материалов. - М.: Машиностроение, 1984. - 280 с.

3. Агранат Б. А. Основы физики и техники ультразвука: учеб. пособие для вузов. - М.: Высш. шк., 1987. - 352 с.

4. Акопян В.Б., Ершов Ю.А. Основы взаимодействия ультразвука с биологическими объектами. Ультразвук в медицине, ветеринарии и экспериментальной биологии. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. - 225 с.

5. Новый способ диффузионного термоциклического упрочнения поверхностей железоуглеродистых сплавов / А.М. Гурьев, Б.Д. Лыгде-нов, С.Г. Иванов [и др.] // Ползуновский альманах. - Барнаул, 2008. -№ 3. - С. 10-16.

6. Казанцев В. Ф. Расчет ультразвуковых преобразователей для технологических установок. - М.: Машиностроение, 1980. - 43 с.

7. Китайгородский Ю.И., Яхимович Д.Ф. Инженерный расчет ультразвуковых колебательных систем. - М.: Машиностроение, 1982. -56 с.

8. Киселев Е.С. Интенсификация процессов механической обработки использованием энергии ультразвукового поля: учеб. пособие / Ульян. гос. техн. ун-т. - Ульяновск, 2003. - 186 с.

9. Марков А.И. Ультразвуковая обработка материалов. - М.: Машиностроение, 1980. - 237 с.

10. Смелянский В.М. Механика упрочнения деталей поверхностным пластическим деформированием. - М.: Машиностроение, 2002. -300 с.

11. Хмелев В.Н. Ультразвуковые многофункциональные и специализированные аппараты для интенсификации технологических процессов в промышленности, сельском и домашнем хозяйстве. -Бийск: Изд-во Алтай. гос. техн. ун-та, 2007. - 400 с.

12. Безабразивная ультразвуковая финишная обработка металлов: примеры реализации технологии БУФО на заводах [Электронный ресурс] / ООО «Северо-западный центр ультразвуковых технологий». -http://www.bufo.ru/index.php?division=division&id=67&lang= 1 (дата обращения: 29.02.2016).

13. Аварии на нефтеперерабатывающих предприятиях [Электронный ресурс] // Нефтянка. - URL: http://neftianka.ru/avarii-na-neftepererabatyvayushhix-zavodax (дата обращения: 02.03.2016).

14. Альтернатива шлифованию - твердое точение [Электронный ресурс] / Кировстанкомаш. - URL: http://www.k-sm.ru/ru/about/articles/ alternativa-shlifovaniyu-tverdoe-tochenie (дата обращения: 03.03.2016).

15. Ультразвук - оборудование и технологии [Электронный ресурс] / ООО «Ультразвуковая техника - ИНЛАБ». - URL: http://utinlab.ru/aicles/o-kompanii (дата обращения: 05.03.2016).

References

1. Abramov O.V., Abramov V.O., Artem'ev V.V. [et al.]. Moshchnyi ul'trazvuk v metallurgii i mashinostroenii [Strong ultrasound in metallurgy and mechanical engineering]. Moscow: Ianus-K, 2006. 687 p.

2. Abramov O.V., Khorbenko I.G., Shvegla Sh. Ul'trazvukovaia obrabotka materialov [Ultrasonic processing of materials]. Moscow: Mashi-nostroenie, 1984. 280 p.

3. Agranat B.A. Osnovy fiziki i tekhniki ul'trazvuka [Fundamentals of physics and equipment of ultrasound]. Moscow: Vysshaia shkola, 1987. 352 p.

4. Akopian V.B., Ershov Iu.A. Osnovy vzaimodeistviia ul'trazvuka s biologicheskimi ob"ektami. Ul'trazvuk v meditsine, veterinarii i eksperi-mental'noi biologii [Bases of interaction of ultrasound with biological objects. Ultrasound in medicine, veterinary science and experimental biology]. Moskovskii gosudarstvennyi tekhnicheskii universitet imeni. N.E. Baumana, 2005. 225 p.

5. Gur'ev A.M., Lygdenov B.D., Ivanov O.A. [et al.]. Novyi sposob diffuzionnogo termotsiklicheskogo uprochneniia poverkhnostei zhele-zouglerodistykh splavov [New way of diffusive thermocyclic hardening of surfaces zhelezouglerodistykh of alloys]. Polzunovskii al'manakh. Barnaul, 2008, no. 3, pp. 10-16.

6. Kazantsev V.F. Raschet ul'trazvukovykh preobrazovatelei dlia tekhnologicheskikh ustanovok [Calculation of ultrasonic converters for technological installations]. Moscow: Mashinostroenie, 1980. 43 p.

7. Kitaigorodskii Iu.I., Iakhimovich D.F. Inzhenernyi raschet ul'trazvukovykh kolebatel'nykh system [Engineering calculation of ultrasonic oscillatory systems]. Moscow: Mashinostroenie, 1982. 56 p.

8. Kiselev E.S. Intensifikatsiia protsessov mekhanicheskoi obrabotki ispol'zovaniem energii ul'trazvukovogo polia [Intensification of processes of machining by use of energy of the ultrasonic field]. Ul'ianovskii gosu-darstvennyi tekhnicheskii universitet, 2003. 186 p.

9. Markov A.I. Ul'trazvukovaia obrabotka materialov [Ultrasonic processing of materials]. Moscow: Mashinostroenie, 1980. 237 p.

10. Smelianskii V.M. Mekhanika uprochneniia detalei poverkhnost-nym plasticheskim deformirovaniem [Mechanics of hardening of details superficial plastic deformation]. Moscow: Mashinostroenie, 2002. 300 p.

11. Khmelev V.N. Ul'trazvukovye mnogofunktsional'nye i spetsializi-rovannye apparaty dlia intensifikatsii tekhnologicheskikh protsessov v pro-myshlennosti, sel'skom i domashnem khoziaistve [Ultrasonic multipurpose and specialized devices for an intensification of technological processes in the industry, rural and a household]. Biisk: Altaiskii gosudarstvennyi tekhnicheskii universitet, 2007. 400 p.

12. Bezabrazivnaia ul'trazvukovaia finishnaia obrabotka metallov: primery realizatsii tekhnologii BUFO na zavodakh [Bezabrazivny ultrasonic finishing processing threw: examples of realization of the BUFO technology at plants]. OOO "Severo-zapadnyi tsentr ul'trazvukovykh tekhnologii", available at: http://www.bufo.ru/index.php?division=division&id=67&lang=1 (accessed 29 February 2016).

13. Avarii na neftepererabatyvaiushchikh predpriiatiiakh [Accidents at the oil processing enterprises]. Neftianka, available at: http://neftianka.ru/ avarii-na-neftepererabatyvayushhix-zavodax (accessed 2 March 2016).

14. Al'ternativa shlifovaniiu - tverdoe tochenie [Alternative to grinding - firm turning]. Kirovstankomash, available at: http://www.

k-sm.ru/ru/about/articles/alternativa-shlifovaniyu-tverdoe-tochenie (accessed 3 March 2016).

15. Ul'trazvuk - oborudovanie i tekhnologii [Ultrasound - the equipment and technologies]. OOO "Ul'trazvukovaia tekhnika - INLAB", available at: http://utinlab.ru/aicles/o-kompanii (accessed 5 March 2016).

Получено 16.03.2016

Об авторах

Гусев Владимир Григорьевич (Владимир, Россия) - доктор технических наук, профессор, профессор кафедры «Технология машиностроения» Владимирского государственного университета им. А.Г. и Н.Г. Столетовых; e-mail: prof_gusev@mail.ru.

Зуев Максим Сергеевич (Владимир, Россия) - магистрант кафедры «Технологии машиностроения» Владимирского государственного университета им. А.Г. и Н.Г. Столетовых; e-mail: zms1446@ rambler.ru.

About the authors

Vladimir G. Gusev (Vladimir, Russian Federation) - Doctor of Technical Sciences, Professor, Department of Mechanical Engineering Technology, Vladimir State University named under A.G and N.G. Stole-tovyh; e-mail: prof_gusev@mail.ru.

Maksim S. Zuev (Vladimir, Russian Federation) - Master Student, Department of Mechanical Engineering Technology, Vladimir State University named under A.G and N.G. Stoletovyh; e-mail: zms1446@rambler.ru.

i Надоели баннеры? Вы всегда можете отключить рекламу.