Научная статья на тему 'Применение компьютерных моделей для оптимизации систем автоматического регулирования флотационного процесса'

Применение компьютерных моделей для оптимизации систем автоматического регулирования флотационного процесса Текст научной статьи по специальности «Химические технологии»

CC BY
114
36
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим технологиям , автор научной работы — Морозов В. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Применение компьютерных моделей для оптимизации систем автоматического регулирования флотационного процесса»

----------------------------------------------- © В.В. Морозов, 2006

УДК 622.765.001.572 В.В. Морозов

ПРИМЕНЕНИЕ КОМПЬЮТЕРНЫХ МОДЕЛЕЙ ДЛЯ ОПТИМИЗАЦИИ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ФЛОТАЦИОННОГО ПРОЦЕССА

Семинар № 24

Ту азвитие систем автоматического

.Л регулирования процесса флотации остается перспективным направлением повышения эффективности обогащения руд. В отсутствие систем усреднения руды технологический процесс флотации характеризуется значительными колебаниями всех входных, промежуточных и выходных параметров. Так для фабрик, перерабатывающих медные, медно-

молибденовые, медно-цинковые руды наблюдается значительная дисперсия содержания в твердом класса -74 мкм (КВ = 6-13 %), содержаний ценных компонентов (КВ = 7-19 %), степени окисленности (КВ = 12-20 %), концентраций флотационных реагентов (КВ = 15-25 %). Еще большие колебания параметров характерны для промежуточных циклов. Стабилизация основных технологических параметров позволяет повысить эффективность процесса флотации. Другим направлением является оптимизация процесса, заключающаяся в определении и поддержании оптимальных значений технологических параметров. Оценка показывает, что нестабильностью и неоптимальностью параметров флотационного процесса обусловлено от 3 до 6 % потерь ценных компонентов.

Основной причиной колебаний процесса флотации является смешивание добытой массы с различных участков, характеризующихся существенно отличающимися параметрами руды в исходном массиве. Другими, также существенными причинами, являются изменения параметров машин и аппаратов технологического

цикла, а также свойств применяемых реагентов. Невысокий уровень развития средств мониторинга процесса флотации, большая ошибка измерений, стадиальность и временная протяженность операций делает внутренние связи между параметрами в большей мере стохастическими, несмотря на детерминированную суть протекающих субпроцессов [1].

В этих условиях применение различных видов математических моделей не дает возможности регулировать процесс путем заданного воздействия на входящие параметры процесса с последующим точным достижением необходимых значений выходных параметров. С большим эффектом можно применять адаптивные методы, не предполагающие использование количественных моделей, а достигающие цели регулированием по отклонению.

Математические модели процесса флотации могут быть использованы в качестве управляемого объекта при отладке и оптимизации методов и систем автоматического регулирования. Для построения адекватных моделей флотации и их эффективного использования следует использовать следующие принципы.

1. Суммарный флотационный процесс подразделяется на несколько уровней, на каждом из которых действуют специфические законы и закономерности, носящие преимущественно детерминированный характер.

2. Между параметрами нижнего и верхнего уровней устанавливаются прямые и обратные связи. Количество обратных связей должно быть минимальным.

Реализация влияния обратных связей проводится методом итераций.

3. Модель реализуется в форме динамического математического алгоритма, предполагающего задание входных параметров, параметров их варьирования, расчет ожидаемых значений промежуточных и выходных параметров.

4. Искомые связи получают в результате работы алгоритма в течение заданного времени как математическое ожидание и коэффициент вариации выходного параметра при заданном наборе средних значений и коэффициентов вариации входных параметров.

Особенностью разработанной модели является возможность оценки влияния на конечные показатели не только изменения абсолютного значения входного параметра, но и параметров его нестабильности. Это важно при оценке влияния на конечные технологические показатели нестабильности состава и свойств руды, реагентов и т.д.

Полученная математическая модель имитирует реальный технологический процесс и позволяет получить характеристики связей между любыми его параметрами. Например, не составляет труда получить оценку влияния на конечные технологические показатели степени усреднения руды в процессе ее добычи и транспортировки; или определить степень негативного влияния на технологические показатели флотации погрешности измерения рН.

При разработке систем автоматического регулирования процесса флотации разработанная многоуровневая динамическая модель позволяет осуществлять выбор метода и законов регу-лирования, номенклатуры и параметров точности средств мониторинга. Фактически это выглядит как внедрение в модель обратной связи, осуществляющей регулирование одного или нескольких входных параметров по измеряемым значениям одного или нескольких выходных параметров. Погрешность и

временные задержки измерений являются дополнительным возмущающим параметром, влияющим на эффективность управления и всего технологического процесса в целом.

Существенной решаемой задачей является выбор целевых функций оптимизации и комплексных оптимизационных параметров для отдельных стадий или узлов технологического процесса. Усовершенствование задачи управления путем использования локальных целевых функций или комплексных оптимизационных параметров возможно с использованием разработанной многоуровневой динамической модели путем создания в ней локальных обратных связей и определением оптимальной структуры и свойств звена управления по значениям конечных технико-эко-номических параметров процесса.

Ниже описана многоуровневая динамическая модель процесса медномолибденовой флотации и приведены примеры использования этой модели для оптимизации автоматического управления расходами флотационных реагентов. Изображенная на рис. 1 принципиальная схема включает неконтролируемые параметры горного цеха (вверху), измеряемые параметры флотации (вверху слева), не измеряемые параметры флотации (вверху справа). Ниже, на нескольких уровнях изображены промежуточные измеряемые и не измеряемые параметры флотационного процесса. Внизу схемы находятся конечные измеряемые и рассчитываемые параметры. Стрелками показаны прямые связи между отдельными параметрами и группами параметров. Обратные связи модели на рисунке не показаны.

Связь модели с системой автоматического контроля процесса флотации поясняется схемами на рис. 2. Представленная на рис. 2 схема регулирования расхода извести в процесс флотации предполагает поддержание в жидкой

{ ^

Доля типов руд в руде текущей добычи

Флотируемость своб.зерен

Флотируемость

сростков

Флотируемость

шламов

Степень разруш. пены

Извлечения Извлечения

минералов металлов

Время

запаздывания

Содерж. металлов в продуктах

Экономическая

эффективность

флотации

Рис. 1. Структурная схема многоуровневой динамической модели процесса флотации с уровнем оценки экономической эффективности процесса флотации

Рис. 2. Блок-схема отладки параметров управления коллективной флотацией на многоуровневой динамической модели процесса: 1 - блок генерации контролируемых параметров; 2 - блок генерации возмущающих параметров; 3 - выходные параметры (концентрата); 4 - выходные параметры (хвостов); аД9 - содержания ценных компонентов в руде, концентрате и хвостах флотации; ри - удельный расход извести; дт - расход твердого на флотацию; ц - цены металлов в концентрате

фазе пульпы оптимального значения рНор4.

Величина рНор4 определяется с использованием критерия оптимизации (О4), рассчитываемого при флотации медномолибденовых руд по уравнению [2]:

От = є*сиЦ сиа си + є*моЦ МОаМО + є*руЦ РУа РУ; (1)

где є*; Ц; а - потери, цена и содержание в руде меди (си),молибдена (то) пирита (ру).

Под ценой пирита понимаются затраты на доизвлечение пирита в селективном цикле или потери от снижения качества товарного медного концентрата.

Важным фактором, определяющим эффективность управления, является точность измерения щелочности пульпы в технологическом процессе. В разработанной модели в функцию измерения величины рн была введена функция по-

грешности измерений. Погрешность средств аналитического контроля задавалась путем наложения на измеряемый сигнал функции ошибок, выраженную в виде периодического сигнала, например, синусоидального типа. Функция ошибок представляет собой неконтролируемый возмущающий параметр, а сам измеряемый параметр - произведение истинного сигнала на возмущающий сигнал. Математическое выражение для "реального" входного сигнала рН модели (рНв), соответствующего произведению измеряемого параметра (рНи) и возмущающей функции №).

рНв = рНи Рг (2)

Возмущающая функция имеет вид синусоиды

= 1 + К^Бш (2П/К2)) (3)

Е

о

О

го

4 6 8 10

Коэффициент вариации,%

12

14

Рис. 3. -Зависимость критерия оптимизации от погрешности измерений щелочности при автоматическом регулировании расхода извести в коллективную флотацию: Qcmo ; Рст1- значение критерия оптимизации без автоматического регулирования и с использованием системы регулирования щелочности пульпы; КВо; КВ1- соответствующие значения коэффициента вариации показаний сигнала щелочности пульпы

где Кь К2 - амплитуда и период функции ошибок; 1 - переменная модели.

Как видно из рис. 3, снижение точности измерений (повышение коэффициента вариации измеренного рН) ведет к снижению эффективности процесса (увеличению критерия оптимизации).

Представленная на рис. 4 схема иллюстрирует связь модели процесса флотации и алгоритма управления расходами реагентов на основе контроля сортности руды. Процесс определения сортности руд заключается в определении массовых долей руд выделенных типов в руде, поступающей на переработку. Существует несколько математических методов определения состава смеси по ее параметрам. Один из вариантов предполагает определение отклонения параметров руды (5) по-

ступающей на переработку от параметров типовых сортов руд (1-4). Обратные величины к отклонениям параметров характеризуют сходство руды 5 к типам руд 1-4. Нормировка величин сходства позволяет рассчитать массовые доли (^- ^) руд 1-4 в руде 5, т.е. определить сортность руды 5

[3].

Упрощенные уравнения для расчета расходов реагентов, учитывающие сортность перерабатываемой руды имеют следующий вид [3]:

Расход извести

ЬБ = ^ЬБ1 + d2LD2 + dзLDз + +d4LD4

(4)

Расход собирателя:

Рис. 4. Схема отладки параметров управления коллективной флотацией по сортности руды на многоуровневой динамической модели процесса: 1 - Блок генерации контролируемых параметров; 2 -Блок генерации возмущающих параметров; 3 - выходные параметры (концентрата); 4 - выходные параметры (хвостов); аД0 - содержания ценных компонентов в руде, концентрате и хвостах флотации; уь у2; уз; у4 - массовые доли отдельных сортов руд; Рс, Рв - удельные расходы собирателя и вспенивателя; Qт - расход твердого; QС ; QВ - расходы собирателя и вспенивателя; Ц - цены металлов

СБ = ^СБ! + а2СВ2 + азСБз + +а4СБ4,

(5)

Расход вспенивателя:

АВ = В1АВ1+ В2АВ2+ В3АВ3+ +В4АВ46

(6)

где ЬБ! , ЬБ2 , ЬБ3 , ЬБ4 - расход извести для руды типа 1,2,3,4; СБ!, СБ2, СБ3, СБ4, - расход собирателя для руды типа 1,2,3,4; ББ!, ББ2, ББ3, ББ4 - расход вспенивателя для руды типа 1,2,3,4; d2 + d3 + d4 - доля руд типа 1,2,3,4.

Использование математической модели процесса медно-молибденовой флотации позволило обосновать возможность оценки сортности перерабатываемых руд на основе контроля физических и физикохимических параметров руды и процесса. Точность оценки характеризовалась вели-

чино й ко э ф фициента вариации рассчитанных долей сорта 1 в руде относительно фактических значений того же параметра для заданного периода измерений. Результаты моделирования влияния количества измеряемых параметров руды и процесса на точность оценки сортности руд, представленные в таблице 4, показали следующее. При росте количества параметров контроля наблюдается рост точности оценки. Превышение количества параметров контроля более 6 не существенно влияет на точность оценки.

Таким образом, на рассмотренных примерах пояснена методика применения математической модели процесса флотации для оценки эффективности и выбора параметров систем автоматического регулирования, значительно со-

60 55 ^ 50 А 45

к 40 ё 35 30 25

20 -I---------------------------------------------------------------

0 100 200 300 400

Время, мин

Рис. 5. Изменение точности оценки доли руды сорта 1 в общем потоке руды при изменении числа измеряемых параметров: 1 - фактическая доля сорта 1 в общем потоке; 2 - оценка доли сорта 1 при 2-х измеряемых параметрах; 3 - оценка доли сорта 1 при 3-х измеряемых параметрах; 4 - оценка доли сорта 1 при 4-х измеряемых параметрах; 5 - оценка доли сорта 1 при 5-ти измеряемых параметрах.

1

0--2 * - -3 -Ж--4 0--5

кращающая этап предварительных исследований при разработке и проектировании автоматизированных систем управления и позволяющая без значи-

1. Морозов В.В., Авдохин В.М., Столяров В. Ф. Адаптивно-детерминированное регулирование процесса селективной флотации руд цветных металлов // Труды конгресса по обогащению полезных ископаемых, Кейптаун, ЮАР, 30 сент. - 5 окт. 2003 г. - С.457.

2. Морозов В.В., Столяров В.Ф., Коновалов Н.М. Алгоритм управления процессом

тельного ущерба для технологического процесса проводить оптимизацию алгоритмов действующих АСУТП.

--------------- СПИСОК ЛИТЕРАТУРЫ

флотации на основе оперативного контроля физико-химических параметров пульпы // Горный информационно-аналитический бюллетень. - №2. -2005. -С. 312-315.

3. Морозов В.В. Управление процессами обогащения на основе измерения параметров сортности руд // Горный информационно-аналитический бюллетень. - №7. - 2005. - С.316-319

— Коротко об авторах ------------------------------------------------------------

Морозов В.В. - профессор, доктор технических наук, заведующий кафедрой химии, Московский государственный горный университет.

i Надоели баннеры? Вы всегда можете отключить рекламу.