Научная статья на тему 'Применение композиционных вяжущих в технологии ячеистого бетона'

Применение композиционных вяжущих в технологии ячеистого бетона Текст научной статьи по специальности «Технологии материалов»

CC BY
905
138
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОМПОЗИЦИОННОЕ ВЯЖУЩЕЕ / ЯЧЕИСТЫЙ БЕТОН / ВЯЖУЩЕЕ НИЗКОЙ ВОДОПОТРЕБНОСТИ / КЛИНКЕР / ЦЕМЕНТ / ГИПС / НАПОЛНИТЕЛЬ / СУПЕРПЛАСТИФИКАТОР / СВОЙСТВА

Аннотация научной статьи по технологиям материалов, автор научной работы — Сулейманова Л.А., Погорелова И.А., Марушко М.В.

Для получения высококачественных и энергоэффективных ячеистых бетонов и повышения эффективности использования цемента в ячеистобетонной смеси применяют композиционные вяжущие вещества. В данных материалах к основному вяжущему добавляют специальные добавки и активные минеральные компоненты, способствующие существенному улучшениюфизико-механических свойств вяжущих и ячеистых бетонов на их основе. Разработаны композиционные вяжущие с суперпластификатором Melflux 1641 F и активной минеральной добавкой карбонатного наполнителя (до 20…30 %), позволяющие регулировать сроки схватывания, воздухововлечение при перемещении и уплотнении смеси, собственные деформации цемента и бетона при твердении, плотность и прочность бетона и значительно улучшать и другие свойства в зависимости от его назначения. Это позволяет в достаточно широком диапазоне варьировать свойства композиционного вяжущего вещества для получения энергоэффективных и высококачественных ячеистых бетонов.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технологиям материалов , автор научной работы — Сулейманова Л.А., Погорелова И.А., Марушко М.В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Применение композиционных вяжущих в технологии ячеистого бетона»

DOI: 10.12737/article_5a816bda646a22.41029804

Сулейманова Л.А., д-р техн. наук, проф., Погорелова И.А., канд. техн. наук, доц., Марушко М.В., аспирант

Белгородский государственный технологический университет им. В.Г. Шухова

ПРИМЕНЕНИЕ КОМПОЗИЦИОННЫХ ВЯЖУЩИХ В ТЕХНОЛОГИИ ЯЧЕИСТОГО

БЕТОНА

ludmilasuleimanova@yandex.ru

Для получения высококачественных и энергоэффективных ячеистых бетонов и повышения эффективности использования цемента в ячеистобетонной смеси применяют композиционные вяжущие вещества. В данных материалах к основному вяжущему добавляют специальные добавки и активные минеральные компоненты, способствующие существенному улучшению физико-механических свойств вяжущих и ячеистых бетонов на их основе.

Разработаны композиционные вяжущие с суперпластификатором МвЩых 1641 Г и активной минеральной добавкой карбонатного наполнителя (до 20...30 %), позволяющие регулировать сроки схватывания, воздухововлечение при перемещении и уплотнении смеси, собственные деформации цемента и бетона при твердении, плотность и прочность бетона и значительно улучшать и другие свойства в зависимости от его назначения. Это позволяет в достаточно широком диапазоне варьировать свойства композиционного вяжущего вещества для получения энергоэффективных и высококачественных ячеистых бетонов.

Ключевые слова: композиционное вяжущее, ячеистый бетон, вяжущее низкой водопотребно-сти, клинкер, цемент, гипс, наполнитель, суперпластификатор, свойства.

В современном строительстве, одновременно с традиционными тяжелыми бетонами с прочностью 10...50 МПа, для различных видов конструкций и изделий получают и применяют новые эффективные виды бетонов: высокопрочные, безусадочные, повышенной долговечности, напрягающие и расширяющиеся, а также специальные бетоны и бетонные смеси на новых композиционных вяжущих, легкие ячеистые бетоны и другие.

Ячеистый бетон нашел широкое применение в самых различных областях строительства за счет специфических особенностей пористой структуры и многообразия его функциональных значений [1].

Традиционно, основными сырьевыми компонентами для производства ячеистых бетонов являются вяжущие различных типов и классов, кремнеземистые компоненты (песок, зола-унос ТЭС, продукты обогащения руд), порообразова-тели (пено- и газообразователи, воздухововлека-ющие добавки), регуляторы структурообразова-ния, нарастания пластической прочности, ускорители твердения, пластифицирующие добавки и вода [2].

В качестве вяжущего для ячеистого бетона применяют: портландцемент, шлако-портланд-цемент, известь кальциевую, цементо-известко-вое вяжущее, известково-белитовое вяжущее, шлаковые вяжущие и другие.

Широко используются клинкерные вяжущие - преимущественно бездобавочный портландцемент общестроительного назначения, что способствует повышению прочности и морозостойкости ячеистого бетона на основе такого вяжущего. Однако наблюдаются достаточно длительные сроки схватывания и медленный набор прочности в начале твердения ячеистобетонной смеси. В связи с этим рекомендуются цементы с началом схватывания не позднее 2-х часов и окончанием схватывания не позднее 4-х часов [3,

4].

Для фиксирования структуры высокопрочного ячеистобетонного массива и предотвращения его разрушения целесообразно применение быстротвердеющих и особо быстротвердеющих специальных цементов [5].

Возможно применение в технологии ячеистого бетона цементов с гидравлическими добавками зол ТЭЦ, доменного гранулированного шлака (около 10.15 %), отличающими вяжущими свойствами и активацией твердения.

Актуально использование для производства ячеистого бетона тонкомолотых многокомпонентных цементов с повышенной дисперсностью (до 1100 м2/кг) и оптимизированной гранулометрией, тонкий помол которых способствует практически полной единовременной гидратации минералов клинкера.

Вяжущее с удельную поверхность от 800 до 1100 м2/кг - микроцемент, размер частиц которого ограничен величиной 50 мкм, используют в технологии производства. Возможно получение гранулометрического состава, близкого к микроцементу, высокой дисперсности из цемента ЦЕМ I 42,5 Н путем фракционирования седиментаций.

Для быстрого набора структурной прочности ячеистобетонной массы используют вяжущие низкой водопотребности (ВНВ), отличающиеся от портландцементов высокой дисперсностью; низкой водопотребностью за счет содержания высокоэффективного модификатора, вводимого при совместном помоле всех составляющих; высокой активностью по прочности (до 100 МПа).

Механохимическая активация цемента и получение на этой основе высокоактивных цементов становится востребованной в связи с наблюдающимся во всем мире переходом в строительстве на более высокие марки бетонов, необходимостью придания им специальных свойств, повышающих долговечность изделий и конструкций.

Механоактивированный цемент с минеральными добавками позволит радикально решить вопрос сбережения удельных энергозатрат на тонну цемента путем снижения клинкерной составляющей (до 50...75 %) с сохранением высоких физико-механических свойств [6].

Минеральные добавки, вводимые в механо-активированные цементы, должно отличать высокое содержание кремнезема и его соединений и низкая влажность.

Повышение эксплуатационных показателей бетонов на основе ВНВ можно объяснить улучшением их структурных характеристик. Установлено, что цементный камень и бетон на основе ВНВ имеют относительно низкую пористость, в них практически отсутствуют крупные капиллярные поры.

Один из основных компонентов ячеистобе-тонной смеси - высокоэффективное вяжущее вещество, получение которого сопровождается использованием сложных составов для производства высококачественных ячеистых бетонов разного функционального назначения с улучшенными и даже новыми эксплуатационными свойствами с заданной структурой. В основе создания таких вяжущих веществ заложен принцип целенаправленного управления технологией на всех ее этапах: использование активных компонентов, разработка оптимальных составов, применение химических модификаторов, а также использование механохимической активации компонентов и других приемов [7-9].

На сегодняшний день разработаны и получены [10]:

- ячеистобетонные смеси на основе ВНВ в сочетании с химическими добавками, пластическая прочность которых через 20.30 мин после изготовления составляет 0,2.0,3 МПа, что, в свою очередь, дает возможность создания безрезательной технологии при производстве качественных блоков;

- композиционное шлаковое вяжущее, способствующее получению ячеистого бетона с увеличением прочности на 45.60 %;

- конструкционно-теплоизоляционный ячеистый бетон с улучшенными свойствами на основе гидромеханоактивированного композиционного перлитового вяжущего и другие.

Композиционное вяжущее (КВ) - это продукт механохимической активации в определенных условиях портландцемента или другого вяжущего вещества с химическими модификаторами, содержащими водопонижающий компонент, и минеральными добавками [11]. К активным компонентам и модификаторам можно отнести такие вещества и минералы, как: комплексы химических модификаторов различного назначения; дисперсные наполнители; ультрадисперсные наполнители-уплотнители и активизаторы; компоненты для управления объемными изменениями структуры, а также придающие бетону специальные свойства и позволяющие управлять реологией бетонной смеси и процессами затвердевания; компоненты, позволяющие управлять физико-химическими процессами твердения и регулирующие внутреннее тепловыделение материала.

Применение современной технологии композиционных вяжущих с удельной поверхностью 500.600 м2/кг оптимального гранулометрического состава с усовершенствованной морфологией и характером поверхности частиц, с модификаторами и ультратонкими наполнителями способствует получению ячеистого бетона для энергоэффективного строительства с одновременным повышением его эксплуатационных свойств.

Применение различных минеральных наполнителей, добавок-интенсификаторов, а также рациональный подбор ингредиентов и порядок их введения и совершенствование морфологии поверхности частиц способствует достижению производства эффективных КВ. Основные свойства КВ определяются химическим и минералогическим составом клинкерной части, наличием добавок и модификаторов, а также гранулометрией и формой его частиц.

ВНВ и КВ получают механохимической обработкой из портландцемента или его смеси с минеральной добавкой в присутствии порошкообразного суперпластификатора. Последний вводится при помоле цемента или клинкера с сухой добавкой, обеспечивая капсулирование зерен цемента, что, в свою очередь, препятствует агрегированию мельчайших частиц цемента и приводит к повышению прочности и эффективности КВ.

Безвибрационные технологии потребовали создания пластифицирующих добавок, позволяющих снизить водопотребность более чем на 25.30 %. Высококачественные самоуплотняющиеся бетоны и самонивелирующиеся массы можно создать только с применением супер- и гиперпластификаторов.

Технические характеристики гиперпластиф

Действие пластификаторов нового типа (табл. 1), представляющие собой порошковый продукт, полученный методом распылительной сушки, основано на совокупности электростатического и стерического (пространственного) эффектов. Последний достигается с помощью боковых гидрофобных полиэфирных цепей молекулы поликарбоксилатного эфира. За счет этого, водо-редуцирующее действие таких пластификаторов в несколько раз сильнее и дольше, чем у обычных. Благодаря двойному механизму диспергирования, добавки МеШих позволяют достичь во-допонижающего эффекта более 30 %.

Проведена апробация суперпластификаторов Ме1теП и МеШих [10] с установлением оптимального содержания 0,16 % и 0,68 % соответственно.

Таблица 1

аторов Melment и Melflux различных видов

Тип Ме1те^ Ж 10 Ме1теП Ж 15 О МеШих 1641 Ж МеШих 2641 Ж МеШих 2651 Ж МеШих РР 100 Ж МеШих 4930 Ж МеШих 5581 Ж МеШих 6681 Ж

Химическая основа меламинформальдегид поликарбоксилат

Рекомендуемая дозировка, (мас. % на вес вяжущего) 0,1.1,0 0,1.1,1 0,05.0,6 0,05.0,6 0,05.0,5 0,05.0,3

Рекомендуемое вяжущее цемент гипс ПЦ ПЦ, ПЦ/ГЦ ПЦ, ПЦ/ГЦ ПЦ

Быстроадсорбирующиеся суперпластификаторы МеШих (табл. 1), являются новыми разработками поликарбоксилатных порошков с отличительными эксплуатационными показателями и

Распределение частиц композ

преимуществами, основные из которых: сильное разжижающее действие, обеспечивающее короткое время смешения, и снижение количества воды затворения (водоредуцирование).

Таблица 2

юнных вяжущих по размерам

Таблица соответствия размеров частиц (О, мкм) заданным значениям весовой доли

клинкер + гипс

О, мкм 1.15 2.27 3.88 6.43 9.70 13.9 20.2 31.0 49.7 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ1 (клинкер + МеШих 1641 Б+ гипс)

О, мкм 1.13 2 3.77 6.42 9.57 13.2 18.3 26.3 38.7 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ2 (клинкер + Ме1шеП Б10 + гипс)

О, мкм 1.41 3.46 6.13 9.40 13.5 18.4 24.1 31.4 43.3 600

Р, % 10 20 30 40 50 60 70 80 90 100

ЦЕМ I 42,5 Н

О, мкм 1.27 2.85 5.19 8.39 12.4 18.0 26.6 38.5 59.1 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ3 (ЦЕМ I 42,5 Н + МеШих 1641 Б)

О, мкм 1.25 2.50 4.89 8.06 12.0 17.0 24.3 33.9 49.2 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ4 (ЦЕМ I 42,5 Н + Ме1шеП Б10)

О, мкм 1.61 4.08 7.30 11.4 16.6 22.6 30.1 39.7 55.7 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ5 (клинкер + карбонатный наполнитель + МеШих 1641 Б+ гипс)

О, мкм 1 1.71 3.45 6.71 11.1 17.1 27.1 41.9 71.2 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ6 (клинкер + карбонатный наполнитель + Ме1шеП Б10 + гипс)

О, мкм 1.04 2.14 5.16 9.16 14.4 22.3 33.4 50.2 82.3 600

Р, % 10 20 30 40 50 60 70 80 90 100

Окончание таблицы 2

КВ7 (ЦЕМ I 42,5 H + карбонатный наполнитель + Melflux 1641 F)

В, мкм 1.14 2.32 5.27 9.40 14.8 22.6 32.6 45.1 67.6 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ8 (ЦЕМ I 42,5 H + карбонатный наполнитель + Melment F10)

В, мкм 1.06 2.27 4.76 8.97 14.8 22.5 32.9 46.6 70.9 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ9 (клинкер + карбонатный наполнитель + гипс)

В, мкм 1.05 1.95 4.04 7.88 13.3 21.1 33.0 52.1 88.8 600

Р, % 10 20 30 40 50 60 70 80 90 100

КВ10 (ЦЕМ I 42,5 H + карбонатный наполнитель)

В,мкм 0.99 1.66 3.27 6.38 10.6 16.3 26.2 39.6 64.5 600

Р, % 10 20 30 40 50 60 70 80 90 100

Механохимическая активация композиционных вяжущих позволила установить характер кинетики помола и распределение по размеру частиц вяжущих.

Гранулометрия вяжущего оказывает существенное влияние на его водопотребность, активность, что имеет отражение на технологии производства ячеистых бетонов.

Вяжущие, полученные в процессе совместного помола клинкера с суперпластификаторами, характеризуются повышенным содержанием мелкодисперсных частиц с максимумом в интервале 5.12 мкм по сравнению с КВ, изготовленным при помоле цемента с теми же добавками (табл. 2 и рис. 1).

Добавление суперпластификаторов без введения минеральных наполнителей характеризуется на кривых сдвигом в область меньших значений по сравнению с бездобавочным составом.

Наиболее мелкодисперсный состав, по сравнению с КВ на основе цемента, имеет КВ на основе клинкера с использованием суперпластификаторов. Добавка Melflux 1641 F способствует получению более мелкодисперсного состава КВ по сравнению с составами с добавкой Ме1теП F 10 [12, 13].

Введение различных минеральных добавок при помоле отражается на гранулометрическом составе вяжущего.

7 -■

С 6 - —

се «

ва

<и 5

Н

Н

ЕЗ

И

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

£ 4

РЗ н

ва 3 аж

я н

<8

—♦— клинкер + гипс ■ КВ1 А КВ2

ж КВ3 —•— КВ4 —1— КВ2 —-— КВ2 ——— КВ7 —О— КВ8 —□— КВ2 —Д— КВ10

ч о

и

10 15 20 25

Размер частиц КВ по размерам (В), мкм

30

35

40

Рис. 1. Распределение частиц композиционных вяжущих (табл. 2) по размерам

Введение карбонатного наполнителя «сдви- крупных размеров, но с меньшим объемным со-гает» графики распределения в область частиц держанием вяжущего, по сравнению с графиками

КВ с использованием суперпластификаторов и во

8

2

0

0

5

всех случаях наблюдается более «растянутый» вид кривой. Это обусловлено, в первую очередь, особенностями строения карбонатного наполнителя, состоящего еще до помола из мельчайших частиц, что и предопределяет большее содержание мелких частиц КВ. На гранулометрических кривых КВ на основе портландцемента ЦЕМ I 42,5 Н четко просматривается диапазон мелки частиц карбонатного наполнителя, на кривых КВ на основе клинкера наблюдается большее объемное содержание мельчайших частиц, что способствует высокой скорости гидратации и увеличению водопотребности.

Применение карбонатных наполнителей способствует уменьшению водопотребности, во-доотделения и расслаиваемости бетонных смесей; повышению их водоудерживающей способности, плотности, пластичности и однородности; снижению усадки, водопоглощения и тепловыделения бетонов, а также улучшает их водо-, мо-розо-и кислотостойкость.

Гранулометрический состав полученного КВ подтверждает, что тонкодисперсные карбонатные наполнители, вводимые в вяжущие в количестве до 20.35 %, выполняют важную структурообразующую роль в формировании ячеистого бетона, способствуют модифицированию

Важным является и то, что КВ на клинкерной основе имеют прочность на изгиб в 1,5 раза выше, чем цемент.

На сегодняшний день для регулирования свойств КВ вводят, кроме гипер- и суперпластификаторов, и другие современные добавки и активные минеральные компоненты, позволяющие регулировать сроки схватывания, воздухововле-чение при перемещении и уплотнении смеси,

цементного камня и положительному влиянию на эксплуатационные свойства ячеистого бетона.

На основании данных по распределению частиц по размерам и физико-механических испытаний вяжущих для дальнейших исследований рассмотрим сроки схватывания и активность КВ с суперпластификатором МеШих 1641 Б и карбонатным наполнителем (КВ5 и КВ7, табл. 2) в сравнении с традиционным вяжущим ЦЕМ I 42,5 Н (рис. 2).

Наименьшая продолжительность схватывания (60 мин) наблюдается у КВ на основе цемента с добавками, у КВ на основе клинкера - 85 мин, у цемента - 100 мин.

Сроки схватывания КВ и их высокие эксплуатационные показатели позволяют сочетать процессы поро- и структурообразования ячеистых бетонов и управлять их свойствами.

КВ с минеральными добавками - карбонатный наполнитель и МеШих 1641 F - на основе портландцемента имеют прочность на сжатие (70,5 МПа к 28 суткам), которая на 32 % превышает прочность портландцемента ЦЕМ I 42,5 Н. Прирост прочности КВ на клинкерной основе с минеральными добавками - гипс, карбонатный наполнитель и МеШих 1641 F - в сравнении с прочностью портландцемента ЦЕМ I 42,5 Н составляет 54 %.

собственные деформации цемента и бетона при твердении, плотность и прочность бетона и значительно улучшать и другие свойства в зависимости от его назначения. Это позволяет в достаточно широком диапазоне варьировать свойства композиционного вяжущего вещества для получения энергоэффективных и высококачественных ячеистых бетонов.

ЦЕМ142,5 Н КВ7 КВ5

В - Активность на сжатие (левая шкала) В -Начало схватывания (правая шкала) | - Активность при изгибе (левая шкала) | -Коней схватывания (правая шкала)

Рис. 2. Физико-механические характеристики композиционных вяжущих

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Suleymanova L.A., Lesovik V.S., Kara K.A., Malyukova M.V., Suleymanov K.A. Energy-efficient concretes for green construction // Research Journal of Applied Sciences. 2014. Т. 9. № 12. С. 1087-1090.

2. Юдович Б.Э., Дмитриев А.М., Зубехин С.А., Башлыков Н.Ф., Фаликман В.Р., Сердюк В.Н., Бабаев Ш.Т. Цементы низкой водо-потребности - вяжущие нового поколения // Наука и техника. 1997. № 1. С. 15-18.

3. Сулейманова Л.А., Лесовик В.С., Глаголев Е.С. Высокая реакционная активность наноразмерной фазы кремнезема композиционного вяжущего / Сборник материалов Международной научно-практической конференции, посвященной 95-летию ФГБОУ ВПО «ГГНТУ им. акад. М.Д. Миллионщикова». Грозненский государственный нефтяной технический университет имени академика М.Д. Миллионщикова «Современные строительные материалы, технологии и конструкции». Грозный, 2015. С. 87-93.

4. Алфимова Н.И., Лесовик В.С., Савин А.В., Шадский Е.Е. Перспективы применения композиционных вяжущих при производстве железобетонных изделий // Вестник Иркутского государственного технического университета. 2014. №5 (88). С. 95-99.

5. Алфимова Н.И., Вишневская Я.Ю., Трунов П.В. Композиционные вяжущие и изделия с использованием техногенного сырья. Германия: Изд-во LAP LAMBERT Academic Publishing GmbH & Co. KG. 2013. 127 с.

6. Бикбау М.Я. Перспективы внедрения технологии механохимической переработки цемента // Строительные материалы, оборудование, технологии XXI века. 2007. №9. С. 18-20.

7. Alfimova N.I., Sheychenko M.S., Karatsupa S.V., Yakovlev E.A., Kolomatskiy A.S., Shapovalov N.N. Features of application of high-mg technogenic raw materials as a component of composite binders // Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2014. № 5(5). P. 15861591.

8. Строкова В.В., Огурцова Ю.Н., Алфимова Н.И, Гринев А.П., Наваретте В.Ф.А. Композиционные вяжущие на основе сырья различного генетического типа для мелкозернистых бетонов. Белгород: Изд-во БГТУ, 2016. С. 189.

9. Алфимова Н.И., Лесовик В.С., Глаголев Е.С., Вишневская Я.Ю. Оптимизация условий твердения композиционных вяжущих с учетом генезиса кремнеземсодержащего компонента. Белгород: Изд-во БГТУ, 2016. 91 c.

10. Сулейманова Л.А. Газобетон неавтоклавного твердения на композиционных вяжущих / автореферат дис. ... доктора технических наук: 05.23.05 // Белгородский государственный технологический университет им. В.Г. Шухова. Белгород, 2013.

11. Сулейманова Л.А., Сулейманов К.А., По-горелова И.А. Топология пор в газобетоне // Вестник БГТУ им. В.Г. Шухова. 2016. №5. С.100-105.

12. Погорелова И.А. Сухие строительные смеси для неавтоклавных ячеистых бетонов: дис.... канд. техн. наук 05.23.05: защищена 3.07.09 / Погорелова Инна Александровна; БГТУ им. В.Г. Шухова. Белгород, 2009. 195 с.

13. Строкова В.В., Погорелова И.А. Сухие строительные смеси для пеногазобетона // Вестник БГТУ им. В.Г. Шухова. 2009. №1. С. 41-43.

Информация об авторах

Сулейманова Людмила Александровна, доктор технических наук, профессор, зав. кафедрой строительства и

городского хозяйства.

E-mail: ludmilasuleimanova@y andex. ru

Белгородский государственный технологический университет им. В.Г. Шухова. Адрес: Россия, 308012, Белгород, ул. Костюкова, д. 46.

Погорелова Инна Александровна, кандидат технических наук, доцент кафедры строительства и городского хозяйства.

E-mail: innapogorelova@yandex.ru

Белгородский государственный технологический университет им. В.Г. Шухова. Адрес: Россия, 308012, Белгород, ул. Костюкова, д. 46.

Марушко Михаил Викторович, аспирант кафедры строительства и городского хозяйства. E-mail: 12michailmar@mail.ru

Белгородский государственный технологический университет им. В.Г. Шухова. Адрес: Россия, 308012, Белгород, ул. Костюкова, д. 46.

Поступила в декабре 2017 г.

© Сулейманова Л.А., Погорелова И.А., Марушко М.В., 2018

L.A. Suleymanova, I.A .Pogorelova, M.V. Marushko USE OF POLYDISPERSE COMPOSITE BINDERS IN TECHNOLOGY OF AERATED CONCRETE

For getting high quality and energy efficient aerated concretes and increase of efficiency of cement use in aerated concrete mix use composite binders. In these materials to main binder special additives and active mineral components are added, which promote significant improvement of physical and mechanical properties of binders and aerated concretes on their base.

Were developed composite binders with superplasticizer Melflux 1641 F and active mineral admixture of carbonate extender (to 20...30 %), which allow to regulate time of set, air entrainment with movement and mix sealing, own deformations of cement and concrete during hardening, density and concrete strength and significantly improve other properties depending on its purpose. It allows in sufficiently wide range variate properties of composite binder for getting of energy efficient and high quality aerated concretes.

Keywords: composite binders, aerated concrete, binder of low water requirements, clinker, cement, gypsum, extender, superplasticizing admix, properties._

Information about the authors

Lyudmila A. Suleymanova, PhD, Professor.

E-mail: ludmilasuleimanova@yandex.ru

Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, Kostyukov st. 46.

Inna A. Pogorelova, PhD, Assistant professor. E-mail: innapogorelova@yandex.ru

Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, Kostyukov st. 46.

Michael V. Marushko, Postgraduate student. E-mail:12michailmar@mail.ru

Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, Kostyukov st. 46.

Received in December 2017

i Надоели баннеры? Вы всегда можете отключить рекламу.