ИНФОРМАЦИОННЫЕ
УДК[519.95+518.5] :622.692.4
ПРИМЕНЕНИЕ GPS- И GSM-ТЕХНОЛОГИЙ НА ПРЕДПРИЯТИЯХ ПО ГАЗОСНАБЖЕНИЮ И ГАЗИФИКАЦИИ
ДУДОЛАД А.С., СЕДАК В.С.,
ДЗЕШУЛЬСКИЙ Е. С._________________________
Рассматривается необходимость и практическое применение автоматизации системы управления газораспределительными сетями на базе геоинформационных систем с использованием таких новых технологий как радиомодемная связь на базе GSM-модемов и GPS-навигации.
Введение
Система газоснабжения г. Харькова - одна из крупнейших и старейших в Украине. Только сеть распределительных газопроводов составляет более 4 тыс. км, из которых 360 км эксплуатируются более 40 лет.
Трудности эксплуатации газовой сети в большом промышленном центре связаны также и с разветвленной сетью метрополитена, трамвайных и железнодорожных путей, из-за работы которых часто возникают аварии на газопроводе вследствие электрохимической коррозии.
Целью данного исследования является повышение оперативности и эффективности управления в аварийной ситуации для обеспечения надежной и безаварийной работы газовой сети. В первую очередь это относится к Службе аварийно-восстановительных работ (САВР), которая должна в кратчайшие сроки прибыть на место аварии, локализовать её и устранить угрозу для населения, возникшую вследствие утечки газа.
В ходе исследования решаются следующие задачи: обнаружение местоположения аварийной ситуации, рациональная локализация аварийного участка, планирование оптимального газораспределения.
1. Использование информационно-графической системы в ОАО «Харьковгоргаз»
В последнее время многие компании, работающие в области производства коммуникационного оборудования, предлагают навигационные устройства (GPS-навигаторы), которые используют спутниковую глобальную систему позиционирования Global Position System (GPS). Модуль GPS-навигатора может быть встроен в ноутбук, карманный ПК и в более простые устройства. Соответственно, набор функций у различных устройств с GPS-навигатором варьируется в достаточно широком диапазоне. Однако предлагае-
мые аппаратно-программные решения не удовлетворяют условиям нашего предприятия в сфере применения устройств данного класса.
Для решения этих задач на предприятии ОАО «Харьковгоргаз» внедряется информационно-графическая система (ИГС). На базе этой системы предусмотрена организация ряда автоматизированных рабочих мест, в том числе для диспетчеров САВР. Это позволяет более оперативно, эффективно и качественно решать основные задачи управления в случае возникновения аварийной ситуации на газопроводе.
I этап - задача обнаружения местоположения аварийной ситуации. Наиболее часто - это звонок от населения. Использование ИГС на этом этапе позволяет быстро зарегистрировать заявку, а также оперативно получить наиболее полную и достоверную информацию об аварийном участке, как справочную, так и графическую - на мониторе у диспетчера после ввода адреса появляется карта города заданного масштаба с изображением аварийного участка газопровода. В дальнейшем программа позволяет вести, закрывать и хранить заявки, а также получать по архиву заявок разнообразную статистику (количество и характер повреждений, выполнение работ, рекомендации по замене участков труб или ЭХЗ и т.д.). Критерий управления на данном этапе - минимальное время обнаружения аварийной ситуации.
На II этапе решается задача рациональной локализации аварийного участка. Информационно-графическая система предоставляет диспетчеру сведения о запорной арматуре, отключающей данный участок от сети газоснабжения с минимальным ущербом. Диспетчер может получить информацию об отключенных потребителях на локализованном участке, паспортные данные закрываемых запорных устройств, карту города с расположением запорной арматуры, где цветом отмечены аварийный участок газопровода, а также его участки, отключенные от системы газоснабжения после локализации аварии.
Однако при работе в условиях крупных городов существуют объективные обстоятельства, затрудняющие действия САВР по локализации аварийной ситуации и связанные с разветвлённостью и состоянием автомобильных дорог, а также с интенсивностью движения транспорта в городе, которая, возрастая до пиковых значений, приводит к «пробкам» на дорогах.
Очевидно, что в таких условиях необходимо решение задачи выбора оптимального маршрута следования к месту аварии или к запорным устройствам на газопроводе и, в соответствии с этим, оперативный выбор ближайшего автомобиля с бригадой аварийной службы.
Обслуживание такой структуры как система газоснабжения города требует наличия парка специализированной автомобильной техники. Координация действий автомобилей САВР возможна только при наличии эффективной диспетчерской системы, содержа-
76
РИ, 2006, № 2
щей данные о состоянии и положении интересующей техники в городе в режиме реального времени.
2. Программно-аппаратный модуль определения положения автомобилей САВР
На нашем предприятии создан пилот-проект подобной диспетчерской системы. Основой для графического отображения положения автомобилей САВР служит ИГС, используемая в ОАО «Харьковгоргаз».
Положение автомобилей САВР определяется с помощью спутниковой системы GPS (рис. 1).
Рис. 1. Использование спутниковой глобальной системы позиционирования (GPS)
При помощи системы сотовой связи информация о местоположении передаётся диспетчерской системе (рис. 2).
Рис. 2. Положение автомобилей САВР в диспетчерской программе на карте города
Каждый автомобиль должен быть о борудован приёмником системы GPS, приёмо-передающим устройством, поддерживающим стандарт GSM, и программно-аппаратным модулем для координации взаимодействия устройств, входящих в состав комплекса (рис. 3).
В рамках разработанного на предприятии пилот-проекта определения положения автомобилей САВР был построен специализированный программно-аппаратный комплекс (схема). В составе комплекса GPS-навигатор Magellan, GSM-модем Siemens C35i, ноут-
РИ, 2006, № 2
бук с установленным коммуникационным программным обеспечением, программный модуль, обеспечивающий управление комплексом и взаимодействие с информационно-графической системой. Концепция построения комплекса и необходимое программное обеспечение были разр аботаны сотрудниками отдела АСУП ОАО «Харьковгоргаз».
I
Рис. 3. Аппаратура комплекса
Программное обеспечение состоит из двух модулей. Один из них предназначен для использования непосредственно в автомобиле САВР и осуществляет считывание навигационных данных, получаемых от GPS-навигатора, и передачу их через GSM-модем в диспетчерскую.
Другой модуль устанавливается в диспетчерской, его функциями являются приём навигационных данных по GSM каналу, преобразование и передача их информационно-графической системе.
Разработанное программное обеспечение использует протокол NMEA (National Marine Electronic Association) для считывания навигационных данных, получаемых GPS-навигатором.
Передача данных между подвижным объектом и диспетчерской осуществляется по протоколу GSM (Global System for Mobile). Соответственно, разработанное программное обеспечение реализует протокол обмена данными при помощи GSM-модема.
При разработке программной части были использованы принципы объектно-ориентированного программирования; применялись современные CASE (Computer Added Software Engineering) средства.
Такие сущности пространства решаемой задачи как GPS-навигатор, GSM-модем, информационно-графическая система представлены программными классами, содержащими необходимый набор методов и полей для реализации интерфейса этих объектов. Программные модули используют механизм многопоточности для обеспечения удобства и надёжности их использования.
В перспективе планируется заменить дорогостоящий ноутбук, входящий в состав комплекса, на специализированный микроконтроллер. Контроллер будет построен на базе однокристальной микро-ЭВМ, обладающей необходимым набором встроенной периферии и достаточным быстродействием. Такая замена позволит повысить надёжность всего комплекса и при этом значительно уменьшит его стоимость.
77
Внедрение этих технологий позволит повысить эффективность управления в аварийных ситуациях, а также оперативность устранения аварий, следовательно - повысить безопасность и стабильность работы газовой сети, снизить ущерб от прямых потерь газа и уменьшить затраты на работу автомобилей САВР.
3. Планирование газораспределения
Наконец, III этапом при управлении в аварийной ситуации является задача планирования газор аспределения в сети по критерию минимума суммарных избыточных давлений на входах потребителей (для структуры сети, возникшей в результате локализации аварийного участка). Для решения этой задачи в ИГС реализована возможность моделирования с закрытием запорной арматуры на газопроводах и гидравлического расчета для полученной модели газовой сети. Если же в результате аварии возник дефицит газа, то на этом этапе решается также задача управления региональной газовой сетью в условиях дефицита газа.
Выводы
Таким образом, для обеспечения непрерывной и безаварийной подачи газа потребителям в требуемых количествах и в заданном диапазоне давлений необходима автоматизация системы управления газораспределительными сетями на базе геоинформационных систем с применением новейших технологий.
Научная новизна исследования: в ОАО «Харьковгор-газ» впервые в Украине создана диспетчерская система, которая, используя технологии GSM-связи и GPS-навигации, позволяет осуществлять мониторинг
всех автомобилей САВР одновременно и отображать их местоположение на электронной карте города.
Практическая значимость работы связана с актуальностью внедрения данных технологий не только в крупных городах, но и в региональных газовых хозяйствах с большой протяженностью газовых сетей и р азветвленной транспортной сетью.
Перспективы исследования: планируется модернизация комплекса для повышения его надёжности и уменьшения стоимости, что позволит широко применять его для решения диспетчерских задач в газовых и других аварийных службах.
Литература: 1. Макаренко А. И., Седак В. С. Рациональное управление газовым хозяйством области. К.: ИСМО, 1998. С. 12-15. 2. Серпинас Б. Б. Глобальные системы позиционирования. М.: ИКФ “Каталог”, 2002. С.23-24, 37-41. 3. RichardB. Langley. RTKGPS. // GPS World. 1999. №1 С.7. 4. Якунин К. А., Акулов В. А., Корнев Ю. С. Математические модели местности в задачах управления движением наземных транспортных средств с применением GPS-технологий // Вестн. Самар. гос. техн. ун-та. сер. физико-математические науки. 2002. № 16. С. 6. 5. Вахтанов А. С. Исследование компьютерных технологий обновления топографических карт по материалам космической съемки (масштабы 1:25 000 - 1:200 000): Автореф. дис. ... канд. техн. наук. М., 2003. С. 20-22. 6. КарсянМ. Г., Неграфонтов С. А. Мобильные ГИС. Опытная эксплуатация ArcPad. // ARCREVIEW. Современные геоинформационные технологии. 2001. № 1. С. 4. 7. Баделин А. В. Мобильные ГИС на геологическом факультете Санкт-Петербургского государственного университета // ARCREVIEW. Современные геоинформационные технологии. 2005. № 4. С. 17.
Поступила в редколлегию 21.04.2006
Схема
78
РИ, 2006, № 2
Рецензент: д-р техн. наук, проф. Самойленко Н. И.
Дудолад Александр Стефанович, председатель правления ОАО «Харьковгоргаз».Научные интересы: новые
технологии в нефтегазовой отрасли. Адрес: Украина, 61000, Харьков, ул. Октябрьской Революции, 57/59, к.т. 80572-23-47-14.
Седак Владимир Степанович, канд. техн. наук, доцент, профессор, первый заместитель председателя правления ОАО «Харьковгоргаз» - главный инженер. Научные
УДК 519.688
ПРИМЕНЕНИЕ МЕТОДОЛОГИИ ОБЪЕКТНО-ОРИЕНТИРОВАННОГО ПРОЕКТИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ЯЗЫКА UML
ЕСИЛЕВСКИЙ В.С., НЕТЁСА П.С.,
КЛИМОВА М.В._______________________________
Рассматриваются вопросы проектирования распределенных информационных систем реального времени. Обсуждается методология объектно-ориентированного проектирования, основанная на применении языка моделирования UML. Предлагаемый подход обеспечивает решение проблем создания программного обеспечения на этапе проектирования, что повышает надежность создаваемых сложных программных систем.
1. Введение
В настоящее время создание программного продукта во многом является искусством. Это означает, что конечный результат всегда зависит от профессиональных качеств исполнителей и множества случайных факторов. В силу того, что требования к программному обеспечению (в отличие от предметов искусства) чаще всего конкретны и строги, а результат проектирования должен быть предсказуем, разработчики ищут промышленные технологии проектирования.
Ответом на эти вопросы на сегодня является методология объектно-ориентированного анализа, проектирования и программирования, предложенная основоположниками этого подхода - Бучем, Рамбо и Дже-кобсоном. Основным ее звеном является представление о жизненном цикле программного обеспечения, в котором выделяются отдельные этапы, причем этап анализа и проектирования отделен от этапа программирования.
Проектирование представляет собой способ графического представления проекта, понятного как эксперту, так и программисту. Методология определяет не только перечень графических диаграмм и способы их оформления, но и процесс его создания. Способ графического проектирования программного обеспечения доведен до стандарта в виде унифицированного языка моделирования - UML (Unified Modeling Language).
интересы: новые технологии в нефтегазовой отрасли. Адрес: Украина, 61000, Харьков, ул. Октябрьской Революции, 57/59, к.т. 8-057-783-94-73.
Дзешульский Евгений Станиславович, заместитель начальника службы аварийно-восстановительных работ ОАО «Харьковгоргаз». Научные интересы: средства коммуникации, мультимедийные технологии. Адрес: Украина, 61000, Харьков, ул. Октябрьской Революции, 57/59, к.т. 8-057-733-07-19.
Целью данной работы является описание процесса анализа и проектирования распределенных систем реального времени, а также исследование применимости для этой цели методологии объектно-ориентированного моделирования на основе языка UML.
В силу большого объема полной проектной документации в статье в качестве базового объекта проектирования используется только одна из подсистем информационно - аналитической системы, разрабатываемой для коммунального предприятия «Харьковкому-ночиствод». Это - автоматизированная подсистема сбора и обработки телеметрической информации с группы канализационных насосных станций городских служб водоотведения на основе радиомодемной GSM-связи
2. Постановка задачи
Неотъемлемой частью системы коммунальных служб городского хозяйства является подсистема водоотведения (канализация) и очистки сточных вод. В ее состав входит канализационная сеть, коллекторы и насосные станции (КНС), обеспечивающие подачу сточной воды для очистки.
Насосные станции, рассматриваемые как активная часть канализационных сетей, являются сложными технологическими объектами с большим количеством параметров контроля и управления. В настоящий момент функционирование насосных станций обеспечивается персоналом в ручном режиме с использованием локальных измерительных средств. Для увеличения эффективности их эксплуатации особенно актуальной является задача централизованного сбора и обработки телеметрической информации с группы насо сных станций.
Формально задача может быть поставлена следующим образом: разработать в графической нотации языка UML проект распределенной системы реального времени централизованного сбора и обработки информации, реализуемый средствами объектноориентированного языка программирования в рамках многозадачной операционной системы.
Принципиальным является то, что множество КНС распределено географически по территории города и информация от них необходима в реальном времени. Для этого нужно создать распределенную информационную систему реального времени, в которой предполагается наличие компьютеров или микроконтроллеров на стороне насосных станций (нижний уровень)
РИ, 2006, № 2
79