Научная статья на тему 'Представление отопительных приборов в виде эквивалентных электрических схем'

Представление отопительных приборов в виде эквивалентных электрических схем Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
233
62
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭЛЕКТРИЧЕСКАЯ СХЕМА / ПЕРЕХОДНЫЕ ПРОЦЕССЫ / КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ / ТЕПЛОВАЯ ЭНЕРГИЯ / ELECTRICAL CIRCUIT / TRANSIENTS / HEAT TRANSFER COEFFICIENT / THERMAL ENERGY

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Степной Виктор Серафимович, Абрамчук Станислав Игоревич, Мукашев Алишер Мухтарович, Пуговкин Алексей Викторович

Приведены результаты анализа тепловых режимов отопительных приборов с целью разработки достоверных методов учета потребляемой тепловой энергии. Тепловой режим помещения описывается как с помощью нестационарных дифференциальных уравнений теплового баланса, так и с помощью эквивалентных электрических схем. Рассмотрены случаи электрических цепей первого и второго порядка. Проведенные нами эксперименты подтверждают правильность выбранных моделей и предложенную методику измерения коэффициентов теплоотдачи в условиях эксплуатации отопительных приборов.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Степной Виктор Серафимович, Абрамчук Станислав Игоревич, Мукашев Алишер Мухтарович, Пуговкин Алексей Викторович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The equivalent electrical circuit of heating appliances

The article shows the results of the analysis of thermal modes of heating appliances in order to develop reliable methods of heat energy consumption. Thermal regime of the premises is described as using non-stationary heat balance differential equations and using equivalent electrical circuits. We study the cases of electric circuits of the first and second order. Our experiments confirm the correctness of the chosen models and the proposed method of measuring heat transfer coefficients in the conditions of operation of heating appliances.

Текст научной работы на тему «Представление отопительных приборов в виде эквивалентных электрических схем»

УДК 627.922

В.С. Степной, С.И. Абрамчук, А.М. Мукашев, А.В. Пуговкин

Представление отопительных приборов в виде эквивалентных электрических схем

Приведены результаты анализа тепловых режимов отопительных приборов с целью разработки достоверных методов учета потребляемой тепловой энергии. Тепловой режим помещения описывается как с помощью нестационарных дифференциальных уравнений теплового баланса, так и с помощью эквивалентных электрических схем. Рассмотрены случаи электрических цепей первого и второго порядка. Проведенные нами эксперименты подтверждают правильность выбранных моделей и предложенную методику измерения коэффициентов теплоотдачи в условиях эксплуатации отопительных приборов.

Ключевые слова: электрическая схема, переходные процессы, коэффициент теплоотдачи, тепловая энергия.

В настоящее время известны методики оценки эффективности отопительных приборов [1], есть ряд статей, в которых экспериментально исследованы такие характеристики, как коэффициент теплоотдачи приборов (радиаторный коэффициент, тепловое сопротивление) [2, 3]. Все эти работы основаны на применении аналитических методов описания отопительных приборов с помощью уравнения Ньютона-Рихмана для тепловой мощности P, отдаваемой отопительным прибором:

P — G ист '(Гист — ^возд X (1)

где Оист - коэффициент теплоотдачи; Гист - средняя температура поверхности отопительного прибора; Гвозд - температура воздуха в помещении.

В то же время представляет интерес динамическое описание тепловых процессов, когда их основные характеристики и параметры изменяются во времени. Исследования, посвященные динамике тепловых процессов, описаны в [4]. В них анализируются тепловые режимы отдельных помещений, в которых температуры воздуха и внутренних ограждений меняются во времени. Эти изменения возникают при колебаниях температуры внешней среды и при включении и выключении отопительных приборов. При этом поведение температуры отопительных приборов считается заданным, хотя на практике тепловой режим отопительного прибора в свою очередь зависит от параметров помещения (температура воздуха, наличие конвективных потоков и т.д.) В связи с этим нами рассматриваются динамические тепловые режимы радиаторов на базе нестационарных уравнений теплового баланса. Методика анализа аналогична той, которую мы применяли при исследовании тепловых режимов в помещении [4].

В качестве объектов исследования будут простые отопительные приборы типа чугунных радиаторов и более сложные конструкции, как, например, алюминиевый радиатор. Для этих радиаторов будем использовать два вида математических моделей: одноступенчатую и двухступенчатую.

Рассмотрим одноступенчатую модель, где тепловая энергия поступает в отопительный прибор и нагревает его. Одновременно часть энергии испускается и нагревает воздух в помещении. Эти процессы можем описать следующим уравнением:

дQИCT r дТист р G (Т Т ) (2)

_ _ гист ■ _ ~рвх~ °ист ■(Т ист- Т возд Л (2)

dt dt

r б дТист

где Сист - теплоемкость отопительного прибора; ------ - скорость изменения температуры во вре-

дt

мени; Рвх - подводимая мощность, которая может быть реализована двумя способами: 1 - электрический способ (когда электронагреватель помещается внутрь радиатора), в этом случае Рвх = Рэлектр.; 2 - тепловой способ (когда тепловой поток подается из системы централизованного отопления). В этом случае Рвх = М*(Твх - Твых), где М - массовый расход теплоносителя; Твх и Твых- температуры входящего и выходящего теплового потока соответственно.

Результаты моделирования на основе уравнения (2) приведены на рис. 1. При этом моделировались процессы нагревания (Рвх не равно нулю) и остывания нагретого прибора (Рвх равно нулю). Значения параметров: Сист = 35000 кДж/(кг-К), Оист =10 Вт/К, Рвх = 500 Вт, Тист-Твозд (в начальный момент времени) = 0 °С. Следует заметить, что моделирование проводится в линейном приближении, когда бист = const. Хотя на практике этот режим может не выполняться. Приведем графики зависимости температуры, отдаваемой чу-

гунным радиатором от времени при включении и отключении от подачи тепла.

Рис. 1. Переходные процессы для ступенчатой модели

Из приведенной математической модели следует алгоритм нахождения Оист . При Рвх = 0 (отключение батареи от подачи тепла) она начинает остывать. В этом случае из уравнения (2) получим:

^йст ='

Сист ■ дТист

(3)

д ■ (Гист Твозд )

Выражение (3) применимо как в линейном, так и нелинейном режиме остывания.

Для описания отопительных приборов можно также воспользоваться принципом эквивалентности между законом Ньютона-Рихмана (1) и законом Ома, связывающим ток в электрической цепи I и напряжение на ее зажимах и:

I = ви, (4)

где в - электрическая проводимость. При этом напряжение эквивалентно температуре Гист, а ток -подводимой тепловой мощности. В соответствии с этим принципом эквивалентности [5] уравнение (2) можно представить в виде простой электрической цепи (рис. 2, а).

Рис. 2. Эквивалентные электрические схемы: а - одноступенчатая: б - двухступенчатая

На этой схеме = Сист, ток I эквивалентен подаваемой тепловой мощности Рвх, а С1 эквивалентна теплоемкости отопительного прибора. Электрические процессы в этой цепи представляют собой заряд конденсатора через внутреннее сопротивление генератора тока и его разряд через резистор с проводимостью 01. Аналитическое описание этой цепи можно проводить как во временной области, так и в спектральной области. В линейном приближении операторный коэффициент передачи будет равен

Gвх (р) = ^ = G + pCi. U (P)

(5)

Этот коэффициент также позволяет рассчитать переходные процессы, которые соответствуют рис. 1.

Рассмотрим двухступенчатую модель. Алюминиевый радиатор имеет более сложную конфигурацию, и в отличие от одноступенчатой модели подаваемая мощность распределяется в двух направлениях. Часть тепловой энергии от внутреннего корпуса передается в воздух за счет конвектив -ного теплообмена. Другая часть этой энергии за счет теплопроводности передается к внешним

ребрам радиатора и затем отдается в воздух. Эти процессы можно описать следующей системой уравнений:

Сі ^it = Pвх -Gl ^ (Tl -Tвoзд ) - Gl2 ■ (Ti -T2),

C2 ■ Ц. = G12 ■ (Ti -T2)-G2 ■ (T2 -?возд),

(б)

где С - теплоемкость теплоносителя и внутреннего каркаса; С2 - теплоемкость внешних и соединительных ребер; Т\ - температура внутреннего корпуса; Т2 - температура поверхности внешнего ребра; 61 - коэффициент теплопередачи внутреннего корпуса; 012 - коэффициент теплопередачи между корпусом и внешними ребрами; 62 - коэффициент теплоотдачи внешних ребер.

Рассмотрим эквивалентную электрическую схему для этого случая (рис. 2, б).

Здесь две ЛС-цепочки связаны между собой резистором с проводимостью 612. Операторный коэффициент этой цепи в линейном приближении выглядит следующим образом:

(61 + Р• С1)• Л12 • (0ист + Р• С2) + 0 + Р• С1 + 6ист + Р•С2

Gиcт ( p) ="

(7)

R12 ■ (Сист + Р■ C2) +1

Анализ этого выражения показывает, что оно имеет два корня, характеризующих переходные процессы в RC-цепочках. Математические выражения для переходных процессов в этом случае громоздки, поэтому дальше приведем результаты моделирования в среде Workbench. На рис. 3 представлены переходные процессы для двухступенчатой цепи. При этом значения параметров следующие: С1, С2 = 1 мкФ; /?1, R2 = 1 кОм; R12 = 100 кОм; ивх = 12 В.

На рис. 3 представлены фазы нагревания, стационарный режим и остывание.

Рис. З. Переходные процессы для двухступенчатой цепи

Особенности двухступенчатой модели заключаются в том, что процесс остывания происходит в два этапа: медленный участок и быстрый. Поведение температуры на медленном участке объясняется следующим образом. Внешнее ребро отопительного прибора отдает энергию в воздух (в2), но одновременно происходит поступление тепла от внутреннего каркаса через в12. Поэтому температура Г2 меняется медленно. Когда эти два процесса уравновешиваются, наступает фаза быстрого остывания. Это обстоятельство необходимо учитывать при нахождении коэффициента теплоотдачи отопительного прибора и потребляемой тепловой энергии.

Для проверки адекватности математических моделей были проведены экспериментальные исследования режима остывания как на чугунном радиаторе (одноступенчатая модель), так и на алюминиевом (двухступенчатая модель). Результаты эксперимента приведены на рис. 4.

g 10 2G 30 4G 5G t, мин

а

0 10 20 З0 40 50 t, мин

б

Рис. 4. Экспериментальные зависимости: а - алюминиевый радиатор; б - чугунный радиатор

Проведенные исследования позволяют сделать следующие выводы:

1. Динамический метод исследования тепловых процессов расширяет возможности исследования основных режимов отопительных приборов. Дополнительное представление о тепловых процессах дает метод эквивалентных электрических схем, который может быть применен и для более сложных конструкций отопительных приборов.

2. Динамический метод описания отопительных приборов позволяет экспериментально найти и детально изучить коэффициент теплоотдачи в широком диапазоне температур.

3. Проведенные экспериментальные исследования подтверждают адекватность предложенных математических моделей и эквивалентных электрических схем.

Литература

1. Действующая методика испытания отопительных приборов / В.И. Сасин, Г. А. Бершидский, Т.Н. Прокопенко, Б.В. Швецов [Электронный ресурс]. - Режим доступа: http://www.pkf-sk.ru/artic-les.php?id=365.html, свободный (дата обращения: 22.03.2014).

2. Низовцев М.И. Влияние физических параметров на радиаторные коэффициенты регистраторов расхода тепла отопительных приборов / М.И. Низовцев, В.И. Терехов, З.П. Чепурная / Институт теплофизики СО РАН // Журнал АВОК - 2005. - № 5. - С. 36-40.

3. Казачков В.С. Учет теплопотребления в многоквартирных домах / В.С. Казачков, В.В. Шалай, А.А. Попов // Омский научный вестник. Сер. Приборы, машины и технологии. - 2007. - № 3(60). -

С. 78-83.

4. Математическая модель теплоснабжения помещений для АСУ энергосбережения / А.В. Пу-говкин, С.В. Купреков, Д.В. Абушкин и др. // Доклады ТУСУРа. - 2010. - № 2 (2). - С. 293-297.

5. Дульнев Г.Н. Тепло- и массообмен в радиоэлектронной аппаратуре: учеб. для вузов по специальности «конструирование и производство радиоаппаратуры». - М.: Высш. шк., 1984. - 247 с.

Степной Виктор Серафимович

Зав. лаб. каф. телекоммуникаций и основ радиотехники (ТОР) ТУСУРа

Тел.: 8-913-101-22-57

Эл. почта: stepnoyVS@tor.tusur.ru

Абрамчук Станислав Игоревич

Инженер ООО «Энергоэффект» при ТУСУРе

Тел.: 8-906-959-78-40

Эл. почта: zidanes@sibmail.com

Мукашев Алишер Мухтарович

Студент 3-го курса радиотехнического факультета ТУСУРа

Тел.: 8-952-160-81-95

Эл. почта: ali_2475@mail.ru

Пуговкин Алексей Викторович

Д-р техн. наук, профессор каф. ТОР

Тел.: 8-913-822-95-60

Эл. почта: PugovkinAV@tor.tusur.ru

Stepnoj VS., Abramchuk S.I., Mukashev A.M., Pugovkin A.V.

The equivalent electrical circuit of heating appliances

The article shows the results of the analysis of thermal modes of heating appliances in order to develop reliable methods of heat energy consumption. Thermal regime of the premises is described as using non-stationary heat balance differential equations and using equivalent electrical circuits. We study the cases of electric circuits of the first and second order. Our experiments confirm the correctness of the chosen models and the proposed method of measuring heat transfer coefficients in the conditions of operation of heating appliances.

Keywords: electrical circuit, transients, heat transfer coefficient, thermal energy.

i Надоели баннеры? Вы всегда можете отключить рекламу.