Journal of Siberian Federal University. Chemistry 1 (2019 12) 18-30
УДК 547.29:614.841.41
Prediction of Physical-Chemical
and Fire Hazard Characteristics by Carbon Chain Rules. 2. Carboxylic Acids
Sergey G. Alexeev*a,b, Kirill S. Alexeevac, Nicolay M. Barbinb,c and Dar'ya L. Alexeevad
aScience and Engineering Centre "Reliability and Safety of Large Systems andMashines" UB RAS 54а Studencheskaya Str., Yekaterinburg, 620049, Russia bUral Institute of State Fire Service ofEmercom of Russia 22 Mira Str., Yekaterinburg, 620062, Russia cUral State Agrarian University 42 Karla Libknekhta Str., Yekaterinburg, 620075, Russia dChemical Technology Institute of Ural Federal University named by the first President of Russia B.N. El'tzin 28 Mira Str., Yekaterinburg, 620062, Russia
Received 01.08.2018, received in revised form 12.11.2018, accepted 05.02.2019
Investigation of the dependence of physico-chemical and fire hazard properties from the chemical structure of carboxylic acids is carried out. Forecasting of the boiling temperature, the flash point, the temperature and the concentration flammability limits, the heats of combustion and vaporization is performed by the carbon chain rules (CCR). The following empirical equations for the calculation of physico-chemical and fire hazard indices from the conventional carbon chain and from the number of carbon atoms are proposed for the convenience ofpractical application of the CCR. A comparative analysis of the proposed methods for the flash point calculating and the already known methods of GOST 12.1.044-89, Mendeleev and ACD/Lab 2014 is carried out. It is shown, basically, that the new methods give more accurate calculation results than the comparison design procedures.
Keywords: boiling point, flash point, temperature flammability limits, flammability limits, heat of combustion, heat of vaporization, carboxylic acid.
Citation: Alexeev S.G., Alexeev K.S., Barbin N.M., Alexeeva D.L. Prediction of physical-chemical and fire hazard characteristics by carbon chain rules. 2. Carboxylic acids, J. Sib. Fed. Univ. Chem., 2019, 12(1), 18-30. DOI: 10.17516/1998-2836-0105.
© Siberian Federal University. All rights reserved Corresponding author E-mail address: [email protected]
*
Прогнозирования физико-химических и пожароопасных показателей с помощью правил углеродной цепи. 2. Карбоновые кислоты
С.Г. Алексееваб, К.С. Алексеевав, Н.М. Барбинб,в, Д.Л. Алексееваг
аНИЦ «Надежность и ресурс больших систем и машин» УрО РАН Россия, 620049, Екатеринбург, ул. Студенческая, 54а бУральский институт ГПС МЧС России Россия, 620062, Екатеринбург, ул. Мира, 22 Уральский государственный аграрный университет Россия, 620075, Екатеринбург, ул. Карла Либкнехта, 42 гХимико-технологический институт Уральского федерального университета имени первого Президента России Б.Н. Ельцина Россия, 620062, Екатеринбург, ул. Мира, 28
Проведено исследование зависимости физико-химических и пожароопасных свойств от химического строения карбоновых кислот. С помощью правил углеродной цепи выполнено прогнозирование температур кипения и вспышки, температурных и концентрационных пределов воспламенения, теплот сгорания и парообразования. Для удобства практического применения правил углеродной цепи предложены следующие эмпирические уравнения для расчета физико-химических и пожароопасных показателей от условной углеродной цепи и от числа атомов углерода. Проведен сравнительный анализ предлагаемых методов расчета температуры вспышки с методами ГОСТ 12.1.044-89, Менделеева и ACD/Lab 2014. Показано, что новые методы в основном дают более точные результаты расчета, чем методы сравнения.
Ключевые слова: температура кипения, температура вспышки, температурные пределы воспламенения, концентрационные пределы воспламенения, теплота сгорания, теплота парообразования, карбоновая кислота.
Introduction
In the first part of this series of works it is noted [1] that the rate of accumulation of data on physico-chemical, fire hazard and other properties of organic compounds lag far behind either the process of their production by organic synthesis or extraction from natural raw materials and industrial wastes. In that regard, the calculation methods should reduce at least this imbalance. As part of the solution to this problem, a new direction in chemistry, which was called chemoinformatics, was appeared. This term shall be construed to mean "the use of informatics methods to solve chemical problems" [2].
Objects, methods and results
The 77 representatives of the class of aliphatic carboxylic acids were selected as objects of study (Table 1). Data for the normal boiling point (NBP), the flash point (FP), the temperature flammability limits (LFTL, UFTL), the flammability limits (LFL, UFL), the heat of combustion (Hcomb) and the heat of vaporization (Hvap) of these carboxylic acids is taken from the Handbook of Yaws and DIPPR 801 database [3, 4]. The Table 1 provides the experimental data highlighted in normal font, prediction of physico-chemical and fire hazard properties - in italic, and the abnormal values that were not considered in the present work - in bold type.
Table 1. Reference and calculated data of physicochemical and fire hazard properties of carboxylic acids
Acid, NBP FP LFTL UFTL LFL UFL Hcomb H,ap
number (CCC) K % (vol.) kJ/mol
1 2 3 5 6 7 8 9 10
Formic 373.91 323.22 314.92 344.32 12.02 50.02 211.52 32.101
1 (1.0) 368.03 294.13 294.13 333.73 178.23 31.603
371.34 292.84 294.64 325.54 189.34 31.894
373.75 303.0 302.18 330.19 22.695
300.96
305.57
Acetic 391.01 312.12 310.62 345.62 4.02 19.92 786.62 33.731
2 (2.0) 394.0 315.03 315.03 341.63 3.83 14.0 782.03 33.803
394.0 311.64 311.34 343.04 4 J)4 19.34 796.9 34.024
390.25 313.25 312.48 342.49 4.6)" 22.311 882.612 23.705
313.06
317.07
Propionic 414.01 330.12 328.12 357.52 2.92 12.02 1395.02 35.891
3 (3.0) 413.53 328.73 328.73 359.53 3.03 12.23 1397.33 35.903
415.84 329.34 327.24 359.84 2.94 11.64 1404.44 36.084
414.85 324.85 326.58 359.09 2.910 15.6" 1498.15 40.085
329.36
332.37
Butyric 436.01 345.22 340.62 373.42 2.02 10.02 2008.02 37.991
4 (4.0) 436.53 344.73 344.73 372.83 2.33 9.93 2006.03 38.003
436.74 345.74 342.24 375.8' 2.04 9.84 2012.04 38.044
437.55 349.85 340.0s 374.99 2.110 11.9" 2113.712 42.395
344.96
347.07
Valeric 459.01 359.22 357.12 388.12 1.62 7.82 2617.02 40.191
5 (5.0) 456.53 360.23 360.23 392.43 1.73 8.0 2619.0 40.003
456.74 361.14 356.34 391.04 1.64 8.54 2619.54 39.924
458.45 362.05 354.15 391.59 1.710 9.711 2729.212 44.575
361.26
362.37
Caproic 477.01 375.22 371.12 411.42 1.32 9.32 3230.02 41.921
6 (6.0) 477.0s 373.73 373.73 404.13 1.43 7.53 3228.03 41.903
475.8* 375.34 369.54 405.44 1.34 7.64 3227.04 41. 724
477.85 377.65 365.08 404.59 1.410 8.211 3344.712 46.615
373.96
374.47
Enanthic 495.01 388.22 381.92 420.12 1.12 7.22 3839.02 43.651
7 (7.0) 493.53 387.73 387.73 421.53 1.23 6.93 3839.03 43.503
494.04 388.44 381.94 419.14 1.14 6.94 3834.64 43.434
495.75 372.45 375.98 417.59 1.210 7.211 3960.212 48.525
386.66
386.47
1 2 3 5 6 7 8 9 10
Caproic 510.01 400.22 392.92 431.62 1.02 6.42 4448.02 45.101
8 (8.0) 511.13 400.73 400.73 431.93 1.03 6.63 4450.03 45.203
511.44 400.34 393.44 432.04 1.04 6.44 4442.14 45.064
512.55 380.55 384.88 428.39 1.0>° 6.711 4575.712 50.325
397.36
396.57
Pelargonic 527.21 413.22 404.12 443.62 0.92 5.92 5061.02 46.761
9 (9.0) 525.03 410.73 410.73 443.13 0.93 6.03 5084.03 46.103
527.84 411.14 404.04 444.14 0.94 6.04 5049.74 46.614
528.15 373.25 395.18 440.89 0.910 6.211 5191.312 52.035
409.46
408.07
Caproic 530.01 421.22 413.12 454.62 0.82 5.52 5720.02 47.041
10 (10.0) 543.43 420.73 420.73 454.13 0.83 5.63 5657.03 48.203
543.34 420.74 413.84 455.44 0.84 5.64 5657..24 48.074
542.75 394.95 0.810 5.811 5806.812 53.635
Undecylic 557.21 428.12 421.72 464.62 0.72 5.22 6253.02 49.681
11 (11.0) 556.73 429.23 429.23 465.63 0.73 5.23 6285.03 49.003
557.9* 429.24 422.64 466.04 0.74 5.34 6264.74 49.444
556.45 401.35 412.9» 462.49 0.710 5.411 6422.312 55.155
430.76
428.17
Lauric 571.01 437.12 429.72 476.62 0.62 5.12 6850.02 51.031
12 (12.0) 571.33 435.13 435.13 474.93 0.73 5.13 6853.03 50.803
571.74 436.54 430.64 475.84 0.64 5.04 6872.34 50.734
569.35 407.35 421.08 472.49 0.710 5.111 7037.85 56.59s
440.56
437.47
Tridecylic 580.61 442.12 439.12 485.12 0.62 4.92 7453.02 51.97
13 (13.0) 585.32 446.13 446.13 488.63 0.53 5.03 7447.03 52.403
584.83 442.74 437.74 484.84 0.64 4.84 7479.84 51.944
584.54 412.85 429.48 482.79 0.610 4.811 7653.412 57.965
581.45 450.66
447.07
Isobutanoic 427.01 333.22 334.12 364.12 2.02 9.22 2000.42 37.131
14 (3.5) 425.03 337.73 334.43 365.53 2.03 10.03 2008.03 36.943
426.44 337.64 334.84 367.9 2.04 9.84 2012.04 37.074
428.45 328.45 334.18 368.49 2.110 11.911 2113.712 43.235
338.56
341.17
2-Methylbutanoic 448.01 350.12 347.12 384.12 1.62 9.82 2622.02 39.141
15 (4.5) 447.53 352.23 348.93 380.83 1.63 7.83 2617.03 39.093
446.84 353.64 349.44 383.54 1.64 8.54 2619.54 38.994
448.45 347.05 346.08 383.59 1.410 8.211 2729.212 45.39
353.46
355.37
3-Methylbutanoic 448.01 351.12 346.82 385.12 1.42 9.82 2615.32 39.141
16 (4.5) 447.53 352.23 348.93 380.83 1.63 7.83 2617.03 39.093
446.84 353.64 349.44 383.54 1.64 8.54 2619.54 38.994
448.45 343.75 346.08 383.59 1.410 8.211 2729.212 45.39
353.46
355.37
tret-Pentanoic 437.01 337.22 342.12 372.12 1.62 8.12 2569.02 38.461
17 (3.5) 436.03 337.73 340.63 373.43 1.63 7.83 2617.03 37.993
436.74 337.64 342.24 375.84 1.64 8.54 2619.54 38.044
439.45 341.45 338.88 375.69 1.410 8.211 2729.212 44.415
345.66
348.07
1 2 3 5 6 7 8 9 10
2-Methylpentanoic 467.01 367.23 364.13 399.83 1.33 7.53 3230.03 40.961
18 (5.5) 468.03 368.34 363.04 398.34 1.34 7.64 3227.04 41.063
466.44 364.35 357.58 397.39 1.210 7.011 3344.712 40.834
468.65 366.86 47.585
368.07
2-Ethylbutanoic 460.22 352.22 356.12 395.12 1.32 7.72 3212.02 40.19
19 (5.0) 459.03 359.23 357.13 388.13 1.33 7.53 3230.03 39.924
456.74 361.14 356.34 391.04 1.34 7.64 3227.04 47.585
468.65 360.95 353.18 392.39 1.210 7.011 3344.712
362.06
363.5
2-Methylhexanoic 483.31 370.72 365.11 401.12 1.12 8.02 3834.02 42.521
20 (6.5) 483.12 381.73 376.53 415.83 1.13 7.53 3839.03 42.793
486.03 382.04 376.54 412.44 1.14 7.64 3834.64 42.59
485.04 378.75 368.18 408.95 1.210 7.011 3960.212 49.76
488.45 378.26
378.87
3-Methylhexanoic 483.31 381.73 376.53 415.83 1.13 7.53 3839.03 42.521
21 (6.5) 486.03 382.04 375.84 412.44 1.14 7.64 3834.64 42.793
485.04 375.95 1.210 7.011 3960.212 42.594
488.45 49.765
4-Methylhexanoic 490.71 381.73 376.53 415.83 1.13 7.53 3839.03 43.241
22 (6.5) 486.03 382.04 375.84 412.44 1.14 7.64 3834.64 42.793
485.04 375.9 373.08 414.49 1.210 7.011 3960.212 42.59
488.45 383.66 49.765
383.87
5-Methylhexanoic 486.01 381.73 376.53 415.83 1.13 7.53 3839.03 42.781
23 (6.5) 486.03 382.04 375.84 412.44 1.14 7.64 3834.64 42.793
485.04 375.9 370.08 411.09 1.210 7.011 3960.212 42.59
488.45 380.36 49.765
380.77
2.2-Dimethylpentanoic 470.01 368.12 365.12 400.22 1.12 6.92 3834.02 41.241
24 (5.5) 468.03 367.23 364.13 399.83 1.13 7.53 3839.03 41.063
466.44 368.34 363.04 398.34 1.14 7.64 3834.64 40.834
481.05 365.25 359.58 399.49 1.210 7.011 3960.212 48.945
368.96
370.17
4.4-Dimethylpentanoic 483.31 373.73 373.73 404.13 1.13 7.53 3839.03 42.521
25 (6.0) 477.03 375.34 369.54 405.44 1.14 7.64 3834.64 41.903
475.84 365.25 1.210 7.011 3960.212 41.724
481.05 48.945
2-Ethylpentanoic 483.31 373.73 373.73 404.13 1.13 7.53 3839.03 42.521
26 (6.0) 477.03 375.34 369.54 405.44 1.14 7.64 3834.64 41.903
475.84 375.9 1.210 7.011 3960.212 41.724
482.35 48.945
3-Ethylpentanoic 483.31 381.73 376.53 415.83 1.13 7.53 3839.03 42.521
27 (6.5) 486.03 382.04 375.84 412.44 1.14 7.64 3834.64 42.793
485.84 375.95 1.210 7.011 3960.212 42.595
488.45
2-Ethyl-2-methylbutanoic 483.31 367.23 364.13 399.83 1.13 7.53 3839.03 42.521
28 (5.5) 468.03 368.34 363.04 398.34 1.14 7.64 3834.64 41.063
466.44 365.25 1.210 7.011 3960.212 40.834
481.05 48.945
2-Methylheptanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331
29 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383
502.84 389.75 1.010 6.711 4575.712 44.264
507.75 51.925
1 2 3 5 6 7 8 9 10
4-Methylheptanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331
30 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383
502.84 389.75 1.010 6.711 4575.712 44.264
507.75 51.925
6-Methylheptanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331
31 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383
502.84 389.75 1.010 6.711 4575.712 44.264
507.75 51.925
2.2-Dimethylhexanoic 502.11 381.73 376.53 415.83 1.03 6.43 4448.03 44.331
32 (6.5) 477.03 382.04 375.84 412.44 1.04 6.44 4442.14 42.793
475.84 375.75 1.010 6.711 4575.712 42.594
500.85 51.145
4.4-Dimethylhexanoic 502.11 388.23 381.93 420.13 1.03 6.43 4448.03 44.331
33 (7.0) 493.53 388.44 381.94 419.14 1.04 6.44 4442.14 43.653
494.04 375.75 1.010 6.711 4575.712 43.434
500.85 51.145
2-Ethylhexanoic 501.21 383.22 381.12 428.12 0.92 8.62 4448.02 44.251
34 (7.0) 493.53 388.23 381.93 420.13 1.03 6.43 4448.03 43.653
494.0 388.44 381.9* 419.14 1.04 6.44 4442..14 43.434
501.15 389.75 379.08 422.09 1.0° 6.7" 4575.712 51.145
391.06
390.97
3-Ethylhexanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331
35 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383
502.84 389.75 1.010 6.711 4575.712 44.264
507.75 51.925
4-Ethylhexanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331
36 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383
502.84 389.75 1.010 6.711 4575.712 44.264
507.75 51.925
2-Propylpentanoic 493.21 388.23 381.93 420.13 1.03 6.43 4448.03 43.481
37 (7.0) 493.53 388.44 381.94 419.14 1.04 6.44 4442.14 43.653
494.04 384.25 373.88 416.29 1.010 6.7" 4575.7-12 43.434
493.15 385.46 50.295
385.67
2-Methyloctanoic 519.6 393.12 391.12 434.12 0.92 6.72 5056.02 46.033
38 (8.5) 518.22 406.73 398.53 437.63 0.93 5.93 5061.03 45.933
518.63 405.84 398.84 438.14 0.94 6.04 5049.74 45.854
519.74 402.95 389.28 434.29 0.910 6.2" 5191.312 54.045
526.55 403.16
402.37
3-Methyloctanoic 519.61 406.73 398.53 437.63 0.93 5.93 5061.03 46.031
39 (8.5) 518.22 405.84 398.84 438.14 0.94 6.04 5049.74 45.933
518.6 402.95 0.910 6.211 5191.312 45.854
519.74 54.045
526.55
4-Methyloctanoic 519.6 406.73 398.53 437.63 0.93 5.93 5061.03 46.031
40 (8.5) 518.22 405.84 398.84 438.14 0.94 6.04 5049.74 45.933
518.6 402.95 0.910 6.211 5191.312 45.854
519.74 54.045
526.55
6-Methyloctanoic 519.6' 406.73 398.53 437.63 0.93 5.93 5061.03 46.031
41 (8.5) 518.22 405.84 398.84 438.14 0.94 6.04 5049.74 45.933
518.6 402.95 0.910 6.211 5191.312 45.854
519.74 54.045
526.55
1 2 3 5 6 7 8 9 10
7-Methyloctanoic 519.61 406.73 398.53 43 7.63 0.93 5.93 5061.03 46.031
42 (8.5) 518.22 405.84 398.84 438.14 0.94 6.04 5049.74 45.933
518.63 402.9 0.910 6.211 5191.312 45.854
519.74 54.045
526.55
2.6-Dimethylheptanoic 519.61 400.23 392.93 431.63 0.93 5.93 5061.03 46.031
43 (8.0) 510.03 400.34 393.44 432.04 0.94 6.04 5049.74 45.103
511.44 387.55 0.910 6.211 5191.312 45.064
522.85 53.615
2-Ethylheptanoic 519.61 400.23 392.93 431.63 0.93 5.93 5061.03 46.031
44 (8.0) 510.03 400.34 393.44 432.04 0.94 6.04 5049.74 45.103
511.44 402.95 0.910 6.211 5191.312 45.064
526.55 53.615
3-Ethylheptanoic 519.61 406.73 398.53 437.63 0.93 5.93 5061.03 46.031
45 (8.5) 518.63 405.84 398.84 438.14 0.94 6.04 5049.74 45.933
519.74 402.95 0.910 6.211 5191.312 45.854
526.55 54.045
2-Ethyl-3-methylhexanoic 519.61 394.23 387.43 425.9 0.93 5.93 5061.03 46.031
46 (7.5) 502.53 394.54 387.84 425.64 0.94 6.04 5049.74 44.383
502.84 387.55 0.910 6.211 5191.312 44.264
504.15 51.515
3-Ethyl-3-methylhexanoic 519.61 400.23 392.93 431.63 0.93 5.93 5061.03 46.031
47 (8.0) 510.03 400.34 393.44 432.04 0.94 6.04 5049.74 45.103
511.44 385.45 0.910 6.211 5191.312 45.064
520.15 53.315
3.5.5-Trimethylhexanoic 504.21 394.23 387.43 425.9 0.93 5.9 5061.03 44.541
48 (7.5) 502.53 394.54 387.84 425.64 0.94 6.04 5049.74 44.383
502.84 382.65 380.08 424.19 0.910 6.211 5191.312 44.264
516.45 393.26 52.895
393.07
2-Propylhexanoic 519.61 400.23 392.93 431.63 0.93 5.93 5061.03 46.031
49 (8.0) 510.03 400.34 393.44 432.04 0.94 6.04 5049.74 45.103
511.44 402.95 0.910 6.211 5191.312 45.064
526.55 54.045
2-Methylnonanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631
50 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483
535.74 415.45 0.810 5.811 5806.812 47.354
544.85 56.125
3-Methylnonanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631
51 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483
535.74 415.45 0.810 5.811 5806.812 47.354
544.85 56.125
4-Methylnonanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631
52 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483
535.74 415.45 0.810 5.811 5806.812 47.354
544.85 56.125
8-Methylnonanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631
53 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483
535.74 415.45 0.810 5.811 5806.812 47.354
544.85 56.125
2.2-Dimethyloctanoic 536.11 406.73 398.53 437.63 0.83 5.53 5720.03 47.631
54 (8.5) 518.63 405.84 398.84 438.14 0.84 5.64 5657.24 45.933
519.74 394.46 0.810 5.811 5806.812 45.854
538.75 55.425
1 2 3 5 6 7 8 9 10
2-Ethyloctanoic 536.11 413.23 404.13 443.63 0.83 5.53 5720.03 47.631
55 (9.0) 527.23 411.14 404.04 444.14 0.84 5.64 5657.24 46.763
527.84 415.45 0.810 5.811 5806.812 46.614
544.85 56.125
4-Ethyloctanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631
56 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483
535.74 415.45 0.810 5.811 5806.812 47.354
544.85 56.125
2-Propylheptanoic 536.11 413.23 404.13 443.63 0.83 5.53 5720.03 47.631
57 (9.0) 527.23 411.14 404.04 444.14 0.84 5.64 5657.24 46.763
527.84 415.45 0.810 5.811 5806.812 46.614
544.85 56.125
2.5-Dimethyl-2-ethyl- 536.11 400.23 392.93 431.63 0.83 5.53 5720.03 47.631
hexanoic 510.03 400.34 393.44 432.04 0.84 5.64 5657.24 45.103
58 (8.0) 511.44 400.35 0.810 5.811 5806.812 45.064
535.55 57.125
tret-Decanoic 536.11 413.23 404.13 443.63 0.83 5.53 5720.03 47.631
59 (9.0) 527.23 411.14 404.04 444.14 0.84 5.64 5657.24 46.763
527.84 394.45 0.810 5.811 5806.812 46.614
538.75 55.425
2-Methyldecanoic 551.81 424.43 421.23 459.43 0.73 5.23 6253.03 49.151
60 (10.5) 550.33 425.14 418.34 460.84 0.74 5.33 6264.74 48.943
550.74 427.45 0.710 5.411 6422.312 48.774
562.55 58.165
3-Methyldecanoic 551.81 424.43 421.23 459.43 0.73 5.23 6253.03 49.151
61 (10.5) 550.33 425.14 418.34 460.84 0.74 5.33 6264.74 48.943
550.74 427.45 0.710 5.411 6422.312 48.774
562.55 58.165
6-Methyldecanoic 551.81 424.43 421.23 459.43 0.73 5.23 6253.03 49.151
62 (10.5) 550.33 425.14 418.34 460.84 0.74 5.33 6264.74 48.943
550.74 427.45 0.710 5.411 6422.312 48.774
562.55 58.165
8-Methyldecanoic 551.81 424.43 421.23 459.43 0.73 5.23 6253.03 49.151
63 (10.5) 550.33 425.14 418.34 460.84 0.74 5.33 6264.74 48.943
550.74 427.45 0.710 5.411 6422.312 48.774
562.55 58.165
2.2-Dimethylnonanoic 551.81 417.03 412.43 448.93 0.73 5.23 6253.03 49.151
64 (9.5) 535.33 416.04 409.04 449.94 0.74 5.33 6264.74 47.483
535.74 402.85 0.710 5.411 6422.312 47.354
556.85 57.505
2-Ethylnonanoic 551.81 420.73 420.73 454.13 0.73 5.23 6253.03 49.151
65 (10.0) 543.43 420.74 413.84 455.44 0.74 5.33 6264.74 48.203
543.34 427.45 0.710 5.411 6422.312 48.074
562.55 58.165
2-Methylundecanoic 566.51 432.63 425.73 470.63 0.63 5.13 6850.03 50.591
66 (11.5) 564.13 433.04 426.74 471.04 0.64 5.04 6872.34 50.363
564.94 438.95 0.710 5.111 7037.812 50.104
579.75 60.175
3-Methylundecanoic 566.51 432.63 425.73 470.63 0.63 5.13 6850.03 50.591
67 (11.5) 564.13 433.04 426.74 471.04 0.64 5.04 6872.34 50.363
564.94 438.95 0.710 5.111 7037.812 50.104
579.75 60.175
10-Methylundecanoic 566.51 432.63 425.73 470.63 0.63 5.13 6850.03 50.591
68 (11.5) 564.13 433.04 426.74 471.04 0.64 5.04 6872.34 50.363
564.94 438.95 0.710 5.111 7037.812 50.104
579.75 60.175
Continued Table 1
1 2 3 5 6 7 8 9 10
2.2-Dimethyldecanoic 566.51 424.43 420.73 459.43 0.63 5.13 6850.03 50.591
69 (10.5) 550.33 425.14 413.84 460.84 0.64 5.04 6872.34 48.943
550.74 410.45 0.710 5.111 7037.812 48.774
579.75 59.535
2-Ethyldecanoic 566.51 429.23 421.23 459.43 0.63 5.13 6850.03 50.591
70 (11.0) 564.13 429.24 422.64 466.04 0.64 5.04 6872.34 49.003
564.94 438.95 0.710 5.111 7037.812 49.444
579.75 60.175
2-Butyloctanoic 566.51 429.23 421.23 459.43 0.63 5.13 6850.03 50.591
71 (11.0) 564.13 429.24 422.64 466.04 0.64 5.04 6872.34 49.003
564.94 438.95 0.710 5.111 7037.812 49.444
579.75 60.175
2-Methyldodecanoic 580.61 439.63 434.43 480.93 0.63 4.93 7453.03 51.971
72 (12.5) 578.23 439.84 434.34 480.44 0.64 4.84 7479.84 49.003
578.24 449.85 0.610 4.811 7653.412 51.354
596.55 62.145
3-Methyldodecanoic 580.61 439.63 434.43 480.93 0.63 4.93 7453.03 51.971
73 (12.5) 578.23 439.84 434.34 480.44 0.64 4.84 7479.84 49.003
578.24 449.85 0.610 4.811 7653.412 51.354
596.55 62.145
10-Methyldodecanoic 580.61 439.63 434.43 480.93 0.63 4.93 7453.03 51.971
74 (12.5) 578.23 439.84 434.34 480.44 0.64 4.84 7479.84 49.003
578.24 449.85 0.610 4.811 7653.412 51.354
596.55 62.145
11-Methyldodecanoic 580.61 439.63 434.43 480.93 0.63 4.93 7453.03 51.971
75 (12.5) 578.23 439.84 434.34 480.44 0.64 4.84 7479.84 49.003
578.24 449.85 0.610 4.811 7653.412 51.354
596.55 62.145
2.2-Dimethylundecanoic 580.61 432.63 425.73 470.63 0.63 4.93 7453.03 51.971
76 (11.5) 564.13 433.04 426.74 471.04 0.64 4.84 7479.84 50.363
564.94 417.55 0.610 4.811 7653.412 50.104
591.25 61.535
2-Ethylundecanoic 580.61 437.13 429.73 476.63 0.63 4.93 7453.03 51.971
77 (12.0) 571.03 436.54 430.64 475.84 0.64 4.84 7479.84 51.033
571.74 449.85 0.610 4.811 7653.412 50.734
596.55 62.145
Notes.12Literature data[3,4].3-5The calculated values by CCR1, the CCR2 and ACD/Lab. "^Prediction by equations 9-13.
We are developing a new method for the prediction of physico-chemical and fire hazard indices, which is called "the carbon chain rules" (hereinafter referred to as CCR). The approaches of descriptor and comparative methods are combined in the CCR. There are two variants of the CCR: the manual option or the CCR1 and the not manual option or the CCR2. The first one includes the evaluation of properties of substances as the arithmetic average between the values of the indices of the nearest neighbors of homological series, and the CCR2, which involves the use of equations based on the descriptor of the CCC (conventional carbon chain). The CCR framework and the order of application of the CCR1 and the CCR2 methods with examples are given in previously issued material (see [1, 5] and references in these articles). The studied group of compounds was divided into training and control groups to derive equations for CCR2. In the first sample the normal compounds (1)-(13) were included, and the second one consisted of compounds with isomeric structures. As a result of mathematical processing of the training sample data using the M. Excel 2010 program, equations
(1)-(8) for predicting the boiling and the flash points, the temperature and concentration flammability limits, the heat of combustion and vaporization of carboxylic acids were obtained (Table 2). According to the equations mentioned above the forecast of physico-chemical and fire hazard characteristics of carboxylic acids was performed (Table 1).
The following feature of CCR to predict the properties of organic compounds effectively, which can be described by the general formula R-F, where R is an alkyl substituent, and F is a functional or pseudo-functional group, is revealed as a result of work with CCR. A fragment of a molecule can
Table 2. The methods of CCR1, CCR2 and the comparison equations
Formula / Method No. n r RMSE AARD £ a
CCR1 (NBP) - 27 0.9% 9 2.30 0.35 1.68 1.59
Tb = -0.4/1 85(CCC)2+24.046(CCC)+347.7(CCR2) ()5 67 0.0985 3.8 5 0.41 1.93 1.84
ACD/Lab (nbP) - 8 7 0.8963 8.2 6 6^ 4 8 .64 3.41
CCR1 CM?3) -( 3 2 0.9980 2.8 3 6^ 4 ) .98 1.37
Fp = -0.572(CbC)2+2L0(C CC) + 272.9 (0CR2) (0 - 2 0.3985 2.85 6.3 6 1.66 1.65
ACDD-) (OP. - 8 2 0.8481 05.9 7 261 8.37 2.49
FP = ct-nbp + e (00 2 2 0.8754 6.84 0.74 6 .78 2.49
fFC a0+a0ncP+biafh (1<+a) 0 2 0.6852 9.16 3.9 4 3 .38 2.73
CCR1+lfcl) -) 19 0.6884 9.76 7^ 7 3.73 2.70
LFDL=--0.4D74(CCC)2+18.)D9)CC<e)+277.4(C CR2) (0) 19 0.0895 0 72 662 7 8.99 0.74
LFtl = ao+i=o0®+P>>i4 (1 ob: ) 8 0.9891 5 .38 LI 3 4.41 3.35
CCC1 1ultc) - 0 0 0.7962 7.0 7 0.7 0 2.82 2.42
l=FN=04O.T8-7^(e2CC81)-18.698)C(:^Cr -9307.0 (CCR2) (4) 6 0 0.9966 638 a6 3 2.50 2.17
UFTL = d0+a)Nlalnu+uJholi (10c) 19 0.9977 8.30 0.69 2.83 1.75
CcR((LFLl - 61 0.6936 0.69 9°9 5 0.05 0.08
aaa = -o.C7 + )6.880-39-3060+e- nc nc (5) 21 0.9984 7.05 2.73 0.03 0.04
cfc = i88a'ja hm I s=4 (11) 21 0.9888 0.16 6.49 0.10 0.13
CCR1 (UFL) - 15 0.9861 0.34 3.32 0.25 0.24
uFL=22.0=unc-om (6) 15 0.9835 0.35 3.40 0.26 0.25
C= = 1 OOyj^^mj+J6q)j npuP<8 Ca =)8=/0O/768U 6,754) npufi> = (12a) (12b) 15 0.9689 1.38 9.67 0.86 1.12
CCR1 (H6) - 0.9999 20.00 0.32 11.30 16.91
Hcomb = -607.54xNc + 418.2 (7) 0.9999 20.37 0.40 12.93 16.13
Hcomb = -(339.4C +1257H -108.90-225.9H )(kJ/kg) (13) 0.9999 131.55 4.17 128.47 28.99
CCR1 (Hyap) - 21 0.9968 0.38 0.56 0.25 0.30
H„p = -0.0422(CCC)2+2.2618(CCC)+29.67(CCR2) (8) 21 0.9973 0.37 0.64 0.28 0.26
ACD/Lab(HVap) - 21 0.9008 6.31 14.79 6.15 1.43
be considered as a pseudo-functional group [6, 7]. Usually the physicochemical properties of the first member of homologous series differ substantially from the properties of the subsequent compounds [8, 9]. Carboxylic acids are no exception. In particular, pKa formic acid (1) is about 1.4 times less than that of other monoacids because of the strong effect of the carboxyl group [10]. Therefore, it is not surprising that the CCR does not predict the properties of formic acid (1) well, so the properties of this compound were not taken into account in the current study. When predicting the physico-chemical and fire hazard properties of organic compounds, intramolecular interatomic interactions are often taken into account [8, 9, 11, 12]. The CCR is no exception. These interactions are taken into account by the introduction of a systematic (corrective) amendment [1]. In the case of alkane acids, it was found that the second methyl radical in a-position relative to the carboxylic group does not increase the CCC, and in the case of the location of the ethyl, propyl or butyl substituent in a-position the increase of the CCC is adjusted minus 0.5.
The isomerization of the alkyl radical for carboxylic acids, as well as for other classes of organic compounds, which have been previously explored [1, 5-7], does not significantly affect the change in the flammability limits and the heat of combustion. That's why, the equations (5)-(7) depending on the total number of carbon atoms in the molecule (^c), and not on the CCC, are derived for the calculation of parameters mentioned above.
The equations of comparison (9)-(12) are taken from GOST 12.1.044 [13] for prediction of the flash point, the temperature and the flammability limits. It was shown earlier that the Mendeleev formula (13) for determination of the heat of combustion gives accep Table results of calculation [14], therefore it was used as a method of comparison. ACD/Lab 2014 software package was used to compare the forecasts of the boiling point and the heat of vaporization of carboxylic acids (1)-(77) [15].
The discussionof resu Its
The results of prediction of physico-chemical and fire hazard properties of carboxylic acids (2)-(77) by (XRl, CCR2andby compTrisonmethodsaregiven inTable 1. Thecorre°ution coeffitient (r), RMSE (Root Mean Squated Tiror), AARD(Average AAsoluieRelative Division) [16], averogn absoluto Peviation (e) and average square deviation (o) are chosen as the comparison criteria [11].
RMSE =
=aooSV* vn-iS (-x'l-e) e=(-x-D,
where y, X/ - calculated and experimental values, n - number of compounds in the sample.
It is seen from the Table 2 that CCR1 and CCR2 methods give more accurate prediction of physico-chemical and fire hazard properties of carboxylic acids than the normative procedures of GOST 12.1.044-89, Mendeleev and ACD/Lab 2014. The only exception is CCR1 for the calculation of the upper temperature flammability limits.
Conclusion
The study finds that the proposed CCR1 and CCR2 methods can be used to calculate the physico-chemical and fire hazard properties of carboxylic acids. According to the accuracy of the boiling temperature, the flash point, the temperature and the flammability limits, the heats of combustion
- 28 -
and vaporization of carboxylic acids forecasts, the proposed CCR give better results compared to the methods of comparison (GOST 12.1.044, Mendeleev equation, ACD/Lab 2014). The only exception is CCR1 for the calculation of the upper temperature flammability limits, which shows the comparable results with the standard equation (10c). Unknown physico-chemical and/or fire hazard properties are predicted for a number of carboxylic acids (18)-(77).
References
1. Алексеев К.С., Алексеев С.Г., Барбин Н.М. Прогнозирования физико-химических и пожароопасных показателей с помощью правил углеродной цепи. 1. Алканали.Журнал Сибирского федерального университета. Химия 2018. Т. 11(2), С. 219-229. [Alexeev K.S., Alexeev S.G., Barbin N.M. Prediction of physical-chemical and fire hazard characteristics bycarbon chain rules. 1. Alkanals. Journal of the Siberian Federal University. Chemistry. 2018. Vol. 11(2), P. 219-229. (In Russ.)]
2. Handbook of Chem informatics. From Data to Knowledge in 4 Volumes. Under Ed. Gasteiger J. Weinheim: Wiley-VCHVerlag GmbH & Co. KgaA, 2003. 1915 p.
3. Yaws C.L. Thermophysical Properties of Chemicals and Hydrocarbons. Amsterdam: Gulf Professional Publishing, 2014. 991 p.
4. DIPPR 801. Available at https://dippr.aiche.org/.
5. Смирнов В.В., Алексеев С.Г., Барбин Н.М. Прогнозирование температуры вспышки диалкиламинов. Журнал Сибирского федерального университета. Химия 2016. Т. 9 (1), С. 68-77. [Smirnov V.V., Alexeev S.G., Barbin N.M. Prediction of the dialkylamine's flash points. Journal of the Siberian Federal University. Chemistry 2016. Vol. 9(1), P. 68-77. (In Russ.)]
6. Алексеев С.Г., Мавлютова Л.К., Кошелев А.Ю., Алексеев К.С., Барбин Н.М. Связь показателей пожарной опасности с химическим строением. XII. Алкилбензолы и диалкилбензолы. Пожаровзрывобезопасность 2014. Т. 23(6), С. 38-46. [Alexeev S.G., Mavlyutova L.K., Koshelev A.Yu., Alexeev K.S., Barbin N.M. Correlation of fire hazard characteristics withchemical structure. XII. Alkyl benzenes and dialkyl benzenes. Pozharovzryvobezopasnost' 2014. Vol. 23(6), P. 38-46. (In Russ.)]
7. Алексеев С.Г., Кошелев А.Ю., Барбин Н.М. Связь показателей пожарной опасности с химическим строением. XVIII. Алкильные производные аминометанола. Пожаровзрывобезопасность 2015. Т. 24(2), С. 36-44. [Alexeev S.G., Koshelev A.Yu., Barbin N.M. Correlation offire hazard characteristics with chemical structure. XVIII. Alkyl derivatives aminoethanol. Pozharovzryvobezopasnost' 2015. Vol. 24(2), P. 36-44. (In Russ.)]
8. Батов Д.В., Мочалова Т.А., Петров А.В. Использование аддитивно-группового метода для расчета температуры вспышки спиртов, кетонов и сложных эфиров. Журнал прикладной химии 2011. Т. 84(1), С. 55-60. [Batov D.V., Mochalova T.A., Petrov A.V. Additive group techniques for calculating the flash point of alcohols, ketones and esters. Russian Journal of Applied Chemistry 2011. Vol. 84(1), P. 54-59. (In Russ.)]
9. Батов Д.В., Мочалова Т.А., Петров А.В. Описание и прогнозирование температуры вспышки сложных эфиров в рамках аддитивно-группового метода. Пожаровзрывобезопасность 2010. Т. 19(2), С. 15-18. [Batov D.V., Mochalova T.A., Petrov A.V. Description and prediction of flash temperature of esters within the limits of additive-group method. Pozharovzryvobezopasnost' 2010. Vol. 19(2), P. 15-18. (In Russ.)]
10. Общая органическая химия. Под ред. Д. Бартона и УД. Оллиса. Москва: Химия, 1983. Т. 4. 728 с. [Comprehensive organic chemistry. Under Ed. Sir D Barton and and W.D. Ollis. Oxford, Pergamon Press, 1979. Vol. 2. 1344 p. (In Russ.)]
11. Смоляков В.М. Зависимость свойств органических веществ от строения их молекул: расчетно-теоретическое исследование. Дис. ... д-ра хим. наук. Тверь, 1995. 81 с. [Smolyakov V.M. Dependence of the properties of organic substances on the structure of their molecules: a computational and theoretical study. Dr. chem. sci. diss. Tver', 1995, 81 p. (In Russ.). Available at: htps://dlib.rsl. ru/01000024557]
12. Батов Д.В. Использование аддитивно-группового метода для анализа, систематизации и прогнозирования показателей пожарной опасности горючих жидкостей. Российский химический журнал 2014. Т. 58(2), С. 4-14. [Batov D.V. The use of the additive group method for analysis, systematization and prediction of fire hazard indicators of flammable liquids. Rossiyskiy khimicheskiy zhurnal 2014. Vol. 58(2), P. 4-14. (In Russ.)]
13. ГОСТ 12.1.044-89*. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения. М.: Стандартинформ, 2006. 100 с. [State Standard 12.1.044-89*. Occupational Safety Standards System. Fire and Explosion Hazard of Substances and Materials. Moscow: Standartinform, 2006. 100 p. (In Russ.)]
14. Демидов П.Г., Сау шев В.С. Горение и свойства горючих веществ. М.: ВИПТШМВД СССР, 1975. 280 с. [Demidov P.G., Saushev V.S. Combustion and properties of combustible substances. Moscow: VIPTShMVD SSSR, 1975. 280 p. (In Russ.)]
15. ACD/Boiling Point. Version for Microsoft Windows. User's guide. Calculating the boiling point, vapor pressure, and related properties. Toronto: Advanced Chemistry Development, 2013. 29 p.
16. GharagheiziaF.,Ilani-KashkouliaP.,AcreeJr.W.E.,MohammadiaA.H.,RamjugernathD.Agroup contribution model for determining the vaporization enthalpy of organic compounds at the standard reference temperature of 298 K. Fluid Phase Equilibria 2013. Vol. 360, P. 279-292.