Научная статья на тему 'Prediction of Physical-Chemical and Fire Hazard Characteristics by Carbon Chain Rules. 2. Carboxylic Acids'

Prediction of Physical-Chemical and Fire Hazard Characteristics by Carbon Chain Rules. 2. Carboxylic Acids Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
74
46
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
boiling point / flash point / temperature flammability limits / flammability limits / heat of combustion / heat of vaporization / carboxylic acid. / температура кипения / температура вспышки / температурные пределы воспламенения / концентрационные пределы воспламенения / теплота сгорания / теплота парообразования / карбоновая кислота.

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Sergey G. Alexeev, Kirill S. Alexeev, Nicolay M. Barbin, Dar’ya L. Alexeeva

Investigation of the dependence of physico-chemical and fire hazard properties from the chemical structure of carboxylic acids is carried out. Forecasting of the boiling temperature, the flash point, the temperature and the concentration flammability limits, the heats of combustion and vaporization is performed by the carbon chain rules (CCR). The following empirical equations for the calculation of physico-chemical and fire hazard indices from the conventional carbon chain and from the number of carbon atoms are proposed for the convenience of practical application of the CCR. A comparative analysis of the proposed methods for the flash point calculating and the already known methods of GOST 12.1.044-89, Mendeleev and ACD/Lab 2014 is carried out. It is shown, basically, that the new methods give more accurate calculation results than the comparison design procedures.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам , автор научной работы — Sergey G. Alexeev, Kirill S. Alexeev, Nicolay M. Barbin, Dar’ya L. Alexeeva

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Прогнозирования физико-химических и пожароопасных показателей с помощью правил углеродной цепи. 2. Карбоновые кислоты

Проведено исследование зависимости физико-химических и пожароопасных свойств от химического строения карбоновых кислот. С помощью правил углеродной цепи выполнено прогнозирование температур кипения и вспышки, температурных и концентрационных пределов воспламенения, теплот сгорания и парообразования. Для удобства практического применения правил углеродной цепи предложены следующие эмпирические уравнения для расчета физико-химических и пожароопасных показателей от условной углеродной цепи и от числа атомов углерода. Проведен сравнительный анализ предлагаемых методов расчета температуры вспышки с методами ГОСТ 12.1.044-89, Менделеева и ACD/Lab 2014. Показано, что новые методы в основном дают более точные результаты расчета, чем методы сравнения.

Текст научной работы на тему «Prediction of Physical-Chemical and Fire Hazard Characteristics by Carbon Chain Rules. 2. Carboxylic Acids»

Journal of Siberian Federal University. Chemistry 1 (2019 12) 18-30

УДК 547.29:614.841.41

Prediction of Physical-Chemical

and Fire Hazard Characteristics by Carbon Chain Rules. 2. Carboxylic Acids

Sergey G. Alexeev*a,b, Kirill S. Alexeevac, Nicolay M. Barbinb,c and Dar'ya L. Alexeevad

aScience and Engineering Centre "Reliability and Safety of Large Systems andMashines" UB RAS 54а Studencheskaya Str., Yekaterinburg, 620049, Russia bUral Institute of State Fire Service ofEmercom of Russia 22 Mira Str., Yekaterinburg, 620062, Russia cUral State Agrarian University 42 Karla Libknekhta Str., Yekaterinburg, 620075, Russia dChemical Technology Institute of Ural Federal University named by the first President of Russia B.N. El'tzin 28 Mira Str., Yekaterinburg, 620062, Russia

Received 01.08.2018, received in revised form 12.11.2018, accepted 05.02.2019

Investigation of the dependence of physico-chemical and fire hazard properties from the chemical structure of carboxylic acids is carried out. Forecasting of the boiling temperature, the flash point, the temperature and the concentration flammability limits, the heats of combustion and vaporization is performed by the carbon chain rules (CCR). The following empirical equations for the calculation of physico-chemical and fire hazard indices from the conventional carbon chain and from the number of carbon atoms are proposed for the convenience ofpractical application of the CCR. A comparative analysis of the proposed methods for the flash point calculating and the already known methods of GOST 12.1.044-89, Mendeleev and ACD/Lab 2014 is carried out. It is shown, basically, that the new methods give more accurate calculation results than the comparison design procedures.

Keywords: boiling point, flash point, temperature flammability limits, flammability limits, heat of combustion, heat of vaporization, carboxylic acid.

Citation: Alexeev S.G., Alexeev K.S., Barbin N.M., Alexeeva D.L. Prediction of physical-chemical and fire hazard characteristics by carbon chain rules. 2. Carboxylic acids, J. Sib. Fed. Univ. Chem., 2019, 12(1), 18-30. DOI: 10.17516/1998-2836-0105.

© Siberian Federal University. All rights reserved Corresponding author E-mail address: [email protected]

*

Прогнозирования физико-химических и пожароопасных показателей с помощью правил углеродной цепи. 2. Карбоновые кислоты

С.Г. Алексееваб, К.С. Алексеевав, Н.М. Барбинб,в, Д.Л. Алексееваг

аНИЦ «Надежность и ресурс больших систем и машин» УрО РАН Россия, 620049, Екатеринбург, ул. Студенческая, 54а бУральский институт ГПС МЧС России Россия, 620062, Екатеринбург, ул. Мира, 22 Уральский государственный аграрный университет Россия, 620075, Екатеринбург, ул. Карла Либкнехта, 42 гХимико-технологический институт Уральского федерального университета имени первого Президента России Б.Н. Ельцина Россия, 620062, Екатеринбург, ул. Мира, 28

Проведено исследование зависимости физико-химических и пожароопасных свойств от химического строения карбоновых кислот. С помощью правил углеродной цепи выполнено прогнозирование температур кипения и вспышки, температурных и концентрационных пределов воспламенения, теплот сгорания и парообразования. Для удобства практического применения правил углеродной цепи предложены следующие эмпирические уравнения для расчета физико-химических и пожароопасных показателей от условной углеродной цепи и от числа атомов углерода. Проведен сравнительный анализ предлагаемых методов расчета температуры вспышки с методами ГОСТ 12.1.044-89, Менделеева и ACD/Lab 2014. Показано, что новые методы в основном дают более точные результаты расчета, чем методы сравнения.

Ключевые слова: температура кипения, температура вспышки, температурные пределы воспламенения, концентрационные пределы воспламенения, теплота сгорания, теплота парообразования, карбоновая кислота.

Introduction

In the first part of this series of works it is noted [1] that the rate of accumulation of data on physico-chemical, fire hazard and other properties of organic compounds lag far behind either the process of their production by organic synthesis or extraction from natural raw materials and industrial wastes. In that regard, the calculation methods should reduce at least this imbalance. As part of the solution to this problem, a new direction in chemistry, which was called chemoinformatics, was appeared. This term shall be construed to mean "the use of informatics methods to solve chemical problems" [2].

Objects, methods and results

The 77 representatives of the class of aliphatic carboxylic acids were selected as objects of study (Table 1). Data for the normal boiling point (NBP), the flash point (FP), the temperature flammability limits (LFTL, UFTL), the flammability limits (LFL, UFL), the heat of combustion (Hcomb) and the heat of vaporization (Hvap) of these carboxylic acids is taken from the Handbook of Yaws and DIPPR 801 database [3, 4]. The Table 1 provides the experimental data highlighted in normal font, prediction of physico-chemical and fire hazard properties - in italic, and the abnormal values that were not considered in the present work - in bold type.

Table 1. Reference and calculated data of physicochemical and fire hazard properties of carboxylic acids

Acid, NBP FP LFTL UFTL LFL UFL Hcomb H,ap

number (CCC) K % (vol.) kJ/mol

1 2 3 5 6 7 8 9 10

Formic 373.91 323.22 314.92 344.32 12.02 50.02 211.52 32.101

1 (1.0) 368.03 294.13 294.13 333.73 178.23 31.603

371.34 292.84 294.64 325.54 189.34 31.894

373.75 303.0 302.18 330.19 22.695

300.96

305.57

Acetic 391.01 312.12 310.62 345.62 4.02 19.92 786.62 33.731

2 (2.0) 394.0 315.03 315.03 341.63 3.83 14.0 782.03 33.803

394.0 311.64 311.34 343.04 4 J)4 19.34 796.9 34.024

390.25 313.25 312.48 342.49 4.6)" 22.311 882.612 23.705

313.06

317.07

Propionic 414.01 330.12 328.12 357.52 2.92 12.02 1395.02 35.891

3 (3.0) 413.53 328.73 328.73 359.53 3.03 12.23 1397.33 35.903

415.84 329.34 327.24 359.84 2.94 11.64 1404.44 36.084

414.85 324.85 326.58 359.09 2.910 15.6" 1498.15 40.085

329.36

332.37

Butyric 436.01 345.22 340.62 373.42 2.02 10.02 2008.02 37.991

4 (4.0) 436.53 344.73 344.73 372.83 2.33 9.93 2006.03 38.003

436.74 345.74 342.24 375.8' 2.04 9.84 2012.04 38.044

437.55 349.85 340.0s 374.99 2.110 11.9" 2113.712 42.395

344.96

347.07

Valeric 459.01 359.22 357.12 388.12 1.62 7.82 2617.02 40.191

5 (5.0) 456.53 360.23 360.23 392.43 1.73 8.0 2619.0 40.003

456.74 361.14 356.34 391.04 1.64 8.54 2619.54 39.924

458.45 362.05 354.15 391.59 1.710 9.711 2729.212 44.575

361.26

362.37

Caproic 477.01 375.22 371.12 411.42 1.32 9.32 3230.02 41.921

6 (6.0) 477.0s 373.73 373.73 404.13 1.43 7.53 3228.03 41.903

475.8* 375.34 369.54 405.44 1.34 7.64 3227.04 41. 724

477.85 377.65 365.08 404.59 1.410 8.211 3344.712 46.615

373.96

374.47

Enanthic 495.01 388.22 381.92 420.12 1.12 7.22 3839.02 43.651

7 (7.0) 493.53 387.73 387.73 421.53 1.23 6.93 3839.03 43.503

494.04 388.44 381.94 419.14 1.14 6.94 3834.64 43.434

495.75 372.45 375.98 417.59 1.210 7.211 3960.212 48.525

386.66

386.47

1 2 3 5 6 7 8 9 10

Caproic 510.01 400.22 392.92 431.62 1.02 6.42 4448.02 45.101

8 (8.0) 511.13 400.73 400.73 431.93 1.03 6.63 4450.03 45.203

511.44 400.34 393.44 432.04 1.04 6.44 4442.14 45.064

512.55 380.55 384.88 428.39 1.0>° 6.711 4575.712 50.325

397.36

396.57

Pelargonic 527.21 413.22 404.12 443.62 0.92 5.92 5061.02 46.761

9 (9.0) 525.03 410.73 410.73 443.13 0.93 6.03 5084.03 46.103

527.84 411.14 404.04 444.14 0.94 6.04 5049.74 46.614

528.15 373.25 395.18 440.89 0.910 6.211 5191.312 52.035

409.46

408.07

Caproic 530.01 421.22 413.12 454.62 0.82 5.52 5720.02 47.041

10 (10.0) 543.43 420.73 420.73 454.13 0.83 5.63 5657.03 48.203

543.34 420.74 413.84 455.44 0.84 5.64 5657..24 48.074

542.75 394.95 0.810 5.811 5806.812 53.635

Undecylic 557.21 428.12 421.72 464.62 0.72 5.22 6253.02 49.681

11 (11.0) 556.73 429.23 429.23 465.63 0.73 5.23 6285.03 49.003

557.9* 429.24 422.64 466.04 0.74 5.34 6264.74 49.444

556.45 401.35 412.9» 462.49 0.710 5.411 6422.312 55.155

430.76

428.17

Lauric 571.01 437.12 429.72 476.62 0.62 5.12 6850.02 51.031

12 (12.0) 571.33 435.13 435.13 474.93 0.73 5.13 6853.03 50.803

571.74 436.54 430.64 475.84 0.64 5.04 6872.34 50.734

569.35 407.35 421.08 472.49 0.710 5.111 7037.85 56.59s

440.56

437.47

Tridecylic 580.61 442.12 439.12 485.12 0.62 4.92 7453.02 51.97

13 (13.0) 585.32 446.13 446.13 488.63 0.53 5.03 7447.03 52.403

584.83 442.74 437.74 484.84 0.64 4.84 7479.84 51.944

584.54 412.85 429.48 482.79 0.610 4.811 7653.412 57.965

581.45 450.66

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

447.07

Isobutanoic 427.01 333.22 334.12 364.12 2.02 9.22 2000.42 37.131

14 (3.5) 425.03 337.73 334.43 365.53 2.03 10.03 2008.03 36.943

426.44 337.64 334.84 367.9 2.04 9.84 2012.04 37.074

428.45 328.45 334.18 368.49 2.110 11.911 2113.712 43.235

338.56

341.17

2-Methylbutanoic 448.01 350.12 347.12 384.12 1.62 9.82 2622.02 39.141

15 (4.5) 447.53 352.23 348.93 380.83 1.63 7.83 2617.03 39.093

446.84 353.64 349.44 383.54 1.64 8.54 2619.54 38.994

448.45 347.05 346.08 383.59 1.410 8.211 2729.212 45.39

353.46

355.37

3-Methylbutanoic 448.01 351.12 346.82 385.12 1.42 9.82 2615.32 39.141

16 (4.5) 447.53 352.23 348.93 380.83 1.63 7.83 2617.03 39.093

446.84 353.64 349.44 383.54 1.64 8.54 2619.54 38.994

448.45 343.75 346.08 383.59 1.410 8.211 2729.212 45.39

353.46

355.37

tret-Pentanoic 437.01 337.22 342.12 372.12 1.62 8.12 2569.02 38.461

17 (3.5) 436.03 337.73 340.63 373.43 1.63 7.83 2617.03 37.993

436.74 337.64 342.24 375.84 1.64 8.54 2619.54 38.044

439.45 341.45 338.88 375.69 1.410 8.211 2729.212 44.415

345.66

348.07

1 2 3 5 6 7 8 9 10

2-Methylpentanoic 467.01 367.23 364.13 399.83 1.33 7.53 3230.03 40.961

18 (5.5) 468.03 368.34 363.04 398.34 1.34 7.64 3227.04 41.063

466.44 364.35 357.58 397.39 1.210 7.011 3344.712 40.834

468.65 366.86 47.585

368.07

2-Ethylbutanoic 460.22 352.22 356.12 395.12 1.32 7.72 3212.02 40.19

19 (5.0) 459.03 359.23 357.13 388.13 1.33 7.53 3230.03 39.924

456.74 361.14 356.34 391.04 1.34 7.64 3227.04 47.585

468.65 360.95 353.18 392.39 1.210 7.011 3344.712

362.06

363.5

2-Methylhexanoic 483.31 370.72 365.11 401.12 1.12 8.02 3834.02 42.521

20 (6.5) 483.12 381.73 376.53 415.83 1.13 7.53 3839.03 42.793

486.03 382.04 376.54 412.44 1.14 7.64 3834.64 42.59

485.04 378.75 368.18 408.95 1.210 7.011 3960.212 49.76

488.45 378.26

378.87

3-Methylhexanoic 483.31 381.73 376.53 415.83 1.13 7.53 3839.03 42.521

21 (6.5) 486.03 382.04 375.84 412.44 1.14 7.64 3834.64 42.793

485.04 375.95 1.210 7.011 3960.212 42.594

488.45 49.765

4-Methylhexanoic 490.71 381.73 376.53 415.83 1.13 7.53 3839.03 43.241

22 (6.5) 486.03 382.04 375.84 412.44 1.14 7.64 3834.64 42.793

485.04 375.9 373.08 414.49 1.210 7.011 3960.212 42.59

488.45 383.66 49.765

383.87

5-Methylhexanoic 486.01 381.73 376.53 415.83 1.13 7.53 3839.03 42.781

23 (6.5) 486.03 382.04 375.84 412.44 1.14 7.64 3834.64 42.793

485.04 375.9 370.08 411.09 1.210 7.011 3960.212 42.59

488.45 380.36 49.765

380.77

2.2-Dimethylpentanoic 470.01 368.12 365.12 400.22 1.12 6.92 3834.02 41.241

24 (5.5) 468.03 367.23 364.13 399.83 1.13 7.53 3839.03 41.063

466.44 368.34 363.04 398.34 1.14 7.64 3834.64 40.834

481.05 365.25 359.58 399.49 1.210 7.011 3960.212 48.945

368.96

370.17

4.4-Dimethylpentanoic 483.31 373.73 373.73 404.13 1.13 7.53 3839.03 42.521

25 (6.0) 477.03 375.34 369.54 405.44 1.14 7.64 3834.64 41.903

475.84 365.25 1.210 7.011 3960.212 41.724

481.05 48.945

2-Ethylpentanoic 483.31 373.73 373.73 404.13 1.13 7.53 3839.03 42.521

26 (6.0) 477.03 375.34 369.54 405.44 1.14 7.64 3834.64 41.903

475.84 375.9 1.210 7.011 3960.212 41.724

482.35 48.945

3-Ethylpentanoic 483.31 381.73 376.53 415.83 1.13 7.53 3839.03 42.521

27 (6.5) 486.03 382.04 375.84 412.44 1.14 7.64 3834.64 42.793

485.84 375.95 1.210 7.011 3960.212 42.595

488.45

2-Ethyl-2-methylbutanoic 483.31 367.23 364.13 399.83 1.13 7.53 3839.03 42.521

28 (5.5) 468.03 368.34 363.04 398.34 1.14 7.64 3834.64 41.063

466.44 365.25 1.210 7.011 3960.212 40.834

481.05 48.945

2-Methylheptanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331

29 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383

502.84 389.75 1.010 6.711 4575.712 44.264

507.75 51.925

1 2 3 5 6 7 8 9 10

4-Methylheptanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331

30 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383

502.84 389.75 1.010 6.711 4575.712 44.264

507.75 51.925

6-Methylheptanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331

31 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383

502.84 389.75 1.010 6.711 4575.712 44.264

507.75 51.925

2.2-Dimethylhexanoic 502.11 381.73 376.53 415.83 1.03 6.43 4448.03 44.331

32 (6.5) 477.03 382.04 375.84 412.44 1.04 6.44 4442.14 42.793

475.84 375.75 1.010 6.711 4575.712 42.594

500.85 51.145

4.4-Dimethylhexanoic 502.11 388.23 381.93 420.13 1.03 6.43 4448.03 44.331

33 (7.0) 493.53 388.44 381.94 419.14 1.04 6.44 4442.14 43.653

494.04 375.75 1.010 6.711 4575.712 43.434

500.85 51.145

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2-Ethylhexanoic 501.21 383.22 381.12 428.12 0.92 8.62 4448.02 44.251

34 (7.0) 493.53 388.23 381.93 420.13 1.03 6.43 4448.03 43.653

494.0 388.44 381.9* 419.14 1.04 6.44 4442..14 43.434

501.15 389.75 379.08 422.09 1.0° 6.7" 4575.712 51.145

391.06

390.97

3-Ethylhexanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331

35 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383

502.84 389.75 1.010 6.711 4575.712 44.264

507.75 51.925

4-Ethylhexanoic 502.11 394.23 387.43 425.93 1.03 6.43 4448.03 44.331

36 (7.5) 502.53 394.54 387.84 425.64 1.04 6.44 4442.14 44.383

502.84 389.75 1.010 6.711 4575.712 44.264

507.75 51.925

2-Propylpentanoic 493.21 388.23 381.93 420.13 1.03 6.43 4448.03 43.481

37 (7.0) 493.53 388.44 381.94 419.14 1.04 6.44 4442.14 43.653

494.04 384.25 373.88 416.29 1.010 6.7" 4575.7-12 43.434

493.15 385.46 50.295

385.67

2-Methyloctanoic 519.6 393.12 391.12 434.12 0.92 6.72 5056.02 46.033

38 (8.5) 518.22 406.73 398.53 437.63 0.93 5.93 5061.03 45.933

518.63 405.84 398.84 438.14 0.94 6.04 5049.74 45.854

519.74 402.95 389.28 434.29 0.910 6.2" 5191.312 54.045

526.55 403.16

402.37

3-Methyloctanoic 519.61 406.73 398.53 437.63 0.93 5.93 5061.03 46.031

39 (8.5) 518.22 405.84 398.84 438.14 0.94 6.04 5049.74 45.933

518.6 402.95 0.910 6.211 5191.312 45.854

519.74 54.045

526.55

4-Methyloctanoic 519.6 406.73 398.53 437.63 0.93 5.93 5061.03 46.031

40 (8.5) 518.22 405.84 398.84 438.14 0.94 6.04 5049.74 45.933

518.6 402.95 0.910 6.211 5191.312 45.854

519.74 54.045

526.55

6-Methyloctanoic 519.6' 406.73 398.53 437.63 0.93 5.93 5061.03 46.031

41 (8.5) 518.22 405.84 398.84 438.14 0.94 6.04 5049.74 45.933

518.6 402.95 0.910 6.211 5191.312 45.854

519.74 54.045

526.55

1 2 3 5 6 7 8 9 10

7-Methyloctanoic 519.61 406.73 398.53 43 7.63 0.93 5.93 5061.03 46.031

42 (8.5) 518.22 405.84 398.84 438.14 0.94 6.04 5049.74 45.933

518.63 402.9 0.910 6.211 5191.312 45.854

519.74 54.045

526.55

2.6-Dimethylheptanoic 519.61 400.23 392.93 431.63 0.93 5.93 5061.03 46.031

43 (8.0) 510.03 400.34 393.44 432.04 0.94 6.04 5049.74 45.103

511.44 387.55 0.910 6.211 5191.312 45.064

522.85 53.615

2-Ethylheptanoic 519.61 400.23 392.93 431.63 0.93 5.93 5061.03 46.031

44 (8.0) 510.03 400.34 393.44 432.04 0.94 6.04 5049.74 45.103

511.44 402.95 0.910 6.211 5191.312 45.064

526.55 53.615

3-Ethylheptanoic 519.61 406.73 398.53 437.63 0.93 5.93 5061.03 46.031

45 (8.5) 518.63 405.84 398.84 438.14 0.94 6.04 5049.74 45.933

519.74 402.95 0.910 6.211 5191.312 45.854

526.55 54.045

2-Ethyl-3-methylhexanoic 519.61 394.23 387.43 425.9 0.93 5.93 5061.03 46.031

46 (7.5) 502.53 394.54 387.84 425.64 0.94 6.04 5049.74 44.383

502.84 387.55 0.910 6.211 5191.312 44.264

504.15 51.515

3-Ethyl-3-methylhexanoic 519.61 400.23 392.93 431.63 0.93 5.93 5061.03 46.031

47 (8.0) 510.03 400.34 393.44 432.04 0.94 6.04 5049.74 45.103

511.44 385.45 0.910 6.211 5191.312 45.064

520.15 53.315

3.5.5-Trimethylhexanoic 504.21 394.23 387.43 425.9 0.93 5.9 5061.03 44.541

48 (7.5) 502.53 394.54 387.84 425.64 0.94 6.04 5049.74 44.383

502.84 382.65 380.08 424.19 0.910 6.211 5191.312 44.264

516.45 393.26 52.895

393.07

2-Propylhexanoic 519.61 400.23 392.93 431.63 0.93 5.93 5061.03 46.031

49 (8.0) 510.03 400.34 393.44 432.04 0.94 6.04 5049.74 45.103

511.44 402.95 0.910 6.211 5191.312 45.064

526.55 54.045

2-Methylnonanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631

50 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483

535.74 415.45 0.810 5.811 5806.812 47.354

544.85 56.125

3-Methylnonanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631

51 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483

535.74 415.45 0.810 5.811 5806.812 47.354

544.85 56.125

4-Methylnonanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631

52 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483

535.74 415.45 0.810 5.811 5806.812 47.354

544.85 56.125

8-Methylnonanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631

53 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483

535.74 415.45 0.810 5.811 5806.812 47.354

544.85 56.125

2.2-Dimethyloctanoic 536.11 406.73 398.53 437.63 0.83 5.53 5720.03 47.631

54 (8.5) 518.63 405.84 398.84 438.14 0.84 5.64 5657.24 45.933

519.74 394.46 0.810 5.811 5806.812 45.854

538.75 55.425

1 2 3 5 6 7 8 9 10

2-Ethyloctanoic 536.11 413.23 404.13 443.63 0.83 5.53 5720.03 47.631

55 (9.0) 527.23 411.14 404.04 444.14 0.84 5.64 5657.24 46.763

527.84 415.45 0.810 5.811 5806.812 46.614

544.85 56.125

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4-Ethyloctanoic 536.11 417.03 412.43 448.93 0.83 5.53 5720.03 47.631

56 (9.5) 535.33 416.04 409.04 449.94 0.84 5.64 5657.24 47.483

535.74 415.45 0.810 5.811 5806.812 47.354

544.85 56.125

2-Propylheptanoic 536.11 413.23 404.13 443.63 0.83 5.53 5720.03 47.631

57 (9.0) 527.23 411.14 404.04 444.14 0.84 5.64 5657.24 46.763

527.84 415.45 0.810 5.811 5806.812 46.614

544.85 56.125

2.5-Dimethyl-2-ethyl- 536.11 400.23 392.93 431.63 0.83 5.53 5720.03 47.631

hexanoic 510.03 400.34 393.44 432.04 0.84 5.64 5657.24 45.103

58 (8.0) 511.44 400.35 0.810 5.811 5806.812 45.064

535.55 57.125

tret-Decanoic 536.11 413.23 404.13 443.63 0.83 5.53 5720.03 47.631

59 (9.0) 527.23 411.14 404.04 444.14 0.84 5.64 5657.24 46.763

527.84 394.45 0.810 5.811 5806.812 46.614

538.75 55.425

2-Methyldecanoic 551.81 424.43 421.23 459.43 0.73 5.23 6253.03 49.151

60 (10.5) 550.33 425.14 418.34 460.84 0.74 5.33 6264.74 48.943

550.74 427.45 0.710 5.411 6422.312 48.774

562.55 58.165

3-Methyldecanoic 551.81 424.43 421.23 459.43 0.73 5.23 6253.03 49.151

61 (10.5) 550.33 425.14 418.34 460.84 0.74 5.33 6264.74 48.943

550.74 427.45 0.710 5.411 6422.312 48.774

562.55 58.165

6-Methyldecanoic 551.81 424.43 421.23 459.43 0.73 5.23 6253.03 49.151

62 (10.5) 550.33 425.14 418.34 460.84 0.74 5.33 6264.74 48.943

550.74 427.45 0.710 5.411 6422.312 48.774

562.55 58.165

8-Methyldecanoic 551.81 424.43 421.23 459.43 0.73 5.23 6253.03 49.151

63 (10.5) 550.33 425.14 418.34 460.84 0.74 5.33 6264.74 48.943

550.74 427.45 0.710 5.411 6422.312 48.774

562.55 58.165

2.2-Dimethylnonanoic 551.81 417.03 412.43 448.93 0.73 5.23 6253.03 49.151

64 (9.5) 535.33 416.04 409.04 449.94 0.74 5.33 6264.74 47.483

535.74 402.85 0.710 5.411 6422.312 47.354

556.85 57.505

2-Ethylnonanoic 551.81 420.73 420.73 454.13 0.73 5.23 6253.03 49.151

65 (10.0) 543.43 420.74 413.84 455.44 0.74 5.33 6264.74 48.203

543.34 427.45 0.710 5.411 6422.312 48.074

562.55 58.165

2-Methylundecanoic 566.51 432.63 425.73 470.63 0.63 5.13 6850.03 50.591

66 (11.5) 564.13 433.04 426.74 471.04 0.64 5.04 6872.34 50.363

564.94 438.95 0.710 5.111 7037.812 50.104

579.75 60.175

3-Methylundecanoic 566.51 432.63 425.73 470.63 0.63 5.13 6850.03 50.591

67 (11.5) 564.13 433.04 426.74 471.04 0.64 5.04 6872.34 50.363

564.94 438.95 0.710 5.111 7037.812 50.104

579.75 60.175

10-Methylundecanoic 566.51 432.63 425.73 470.63 0.63 5.13 6850.03 50.591

68 (11.5) 564.13 433.04 426.74 471.04 0.64 5.04 6872.34 50.363

564.94 438.95 0.710 5.111 7037.812 50.104

579.75 60.175

Continued Table 1

1 2 3 5 6 7 8 9 10

2.2-Dimethyldecanoic 566.51 424.43 420.73 459.43 0.63 5.13 6850.03 50.591

69 (10.5) 550.33 425.14 413.84 460.84 0.64 5.04 6872.34 48.943

550.74 410.45 0.710 5.111 7037.812 48.774

579.75 59.535

2-Ethyldecanoic 566.51 429.23 421.23 459.43 0.63 5.13 6850.03 50.591

70 (11.0) 564.13 429.24 422.64 466.04 0.64 5.04 6872.34 49.003

564.94 438.95 0.710 5.111 7037.812 49.444

579.75 60.175

2-Butyloctanoic 566.51 429.23 421.23 459.43 0.63 5.13 6850.03 50.591

71 (11.0) 564.13 429.24 422.64 466.04 0.64 5.04 6872.34 49.003

564.94 438.95 0.710 5.111 7037.812 49.444

579.75 60.175

2-Methyldodecanoic 580.61 439.63 434.43 480.93 0.63 4.93 7453.03 51.971

72 (12.5) 578.23 439.84 434.34 480.44 0.64 4.84 7479.84 49.003

578.24 449.85 0.610 4.811 7653.412 51.354

596.55 62.145

3-Methyldodecanoic 580.61 439.63 434.43 480.93 0.63 4.93 7453.03 51.971

73 (12.5) 578.23 439.84 434.34 480.44 0.64 4.84 7479.84 49.003

578.24 449.85 0.610 4.811 7653.412 51.354

596.55 62.145

10-Methyldodecanoic 580.61 439.63 434.43 480.93 0.63 4.93 7453.03 51.971

74 (12.5) 578.23 439.84 434.34 480.44 0.64 4.84 7479.84 49.003

578.24 449.85 0.610 4.811 7653.412 51.354

596.55 62.145

11-Methyldodecanoic 580.61 439.63 434.43 480.93 0.63 4.93 7453.03 51.971

75 (12.5) 578.23 439.84 434.34 480.44 0.64 4.84 7479.84 49.003

578.24 449.85 0.610 4.811 7653.412 51.354

596.55 62.145

2.2-Dimethylundecanoic 580.61 432.63 425.73 470.63 0.63 4.93 7453.03 51.971

76 (11.5) 564.13 433.04 426.74 471.04 0.64 4.84 7479.84 50.363

564.94 417.55 0.610 4.811 7653.412 50.104

591.25 61.535

2-Ethylundecanoic 580.61 437.13 429.73 476.63 0.63 4.93 7453.03 51.971

77 (12.0) 571.03 436.54 430.64 475.84 0.64 4.84 7479.84 51.033

571.74 449.85 0.610 4.811 7653.412 50.734

596.55 62.145

Notes.12Literature data[3,4].3-5The calculated values by CCR1, the CCR2 and ACD/Lab. "^Prediction by equations 9-13.

We are developing a new method for the prediction of physico-chemical and fire hazard indices, which is called "the carbon chain rules" (hereinafter referred to as CCR). The approaches of descriptor and comparative methods are combined in the CCR. There are two variants of the CCR: the manual option or the CCR1 and the not manual option or the CCR2. The first one includes the evaluation of properties of substances as the arithmetic average between the values of the indices of the nearest neighbors of homological series, and the CCR2, which involves the use of equations based on the descriptor of the CCC (conventional carbon chain). The CCR framework and the order of application of the CCR1 and the CCR2 methods with examples are given in previously issued material (see [1, 5] and references in these articles). The studied group of compounds was divided into training and control groups to derive equations for CCR2. In the first sample the normal compounds (1)-(13) were included, and the second one consisted of compounds with isomeric structures. As a result of mathematical processing of the training sample data using the M. Excel 2010 program, equations

(1)-(8) for predicting the boiling and the flash points, the temperature and concentration flammability limits, the heat of combustion and vaporization of carboxylic acids were obtained (Table 2). According to the equations mentioned above the forecast of physico-chemical and fire hazard characteristics of carboxylic acids was performed (Table 1).

The following feature of CCR to predict the properties of organic compounds effectively, which can be described by the general formula R-F, where R is an alkyl substituent, and F is a functional or pseudo-functional group, is revealed as a result of work with CCR. A fragment of a molecule can

Table 2. The methods of CCR1, CCR2 and the comparison equations

Formula / Method No. n r RMSE AARD £ a

CCR1 (NBP) - 27 0.9% 9 2.30 0.35 1.68 1.59

Tb = -0.4/1 85(CCC)2+24.046(CCC)+347.7(CCR2) ()5 67 0.0985 3.8 5 0.41 1.93 1.84

ACD/Lab (nbP) - 8 7 0.8963 8.2 6 6^ 4 8 .64 3.41

CCR1 CM?3) -( 3 2 0.9980 2.8 3 6^ 4 ) .98 1.37

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Fp = -0.572(CbC)2+2L0(C CC) + 272.9 (0CR2) (0 - 2 0.3985 2.85 6.3 6 1.66 1.65

ACDD-) (OP. - 8 2 0.8481 05.9 7 261 8.37 2.49

FP = ct-nbp + e (00 2 2 0.8754 6.84 0.74 6 .78 2.49

fFC a0+a0ncP+biafh (1<+a) 0 2 0.6852 9.16 3.9 4 3 .38 2.73

CCR1+lfcl) -) 19 0.6884 9.76 7^ 7 3.73 2.70

LFDL=--0.4D74(CCC)2+18.)D9)CC<e)+277.4(C CR2) (0) 19 0.0895 0 72 662 7 8.99 0.74

LFtl = ao+i=o0®+P>>i4 (1 ob: ) 8 0.9891 5 .38 LI 3 4.41 3.35

CCC1 1ultc) - 0 0 0.7962 7.0 7 0.7 0 2.82 2.42

l=FN=04O.T8-7^(e2CC81)-18.698)C(:^Cr -9307.0 (CCR2) (4) 6 0 0.9966 638 a6 3 2.50 2.17

UFTL = d0+a)Nlalnu+uJholi (10c) 19 0.9977 8.30 0.69 2.83 1.75

CcR((LFLl - 61 0.6936 0.69 9°9 5 0.05 0.08

aaa = -o.C7 + )6.880-39-3060+e- nc nc (5) 21 0.9984 7.05 2.73 0.03 0.04

cfc = i88a'ja hm I s=4 (11) 21 0.9888 0.16 6.49 0.10 0.13

CCR1 (UFL) - 15 0.9861 0.34 3.32 0.25 0.24

uFL=22.0=unc-om (6) 15 0.9835 0.35 3.40 0.26 0.25

C= = 1 OOyj^^mj+J6q)j npuP<8 Ca =)8=/0O/768U 6,754) npufi> = (12a) (12b) 15 0.9689 1.38 9.67 0.86 1.12

CCR1 (H6) - 0.9999 20.00 0.32 11.30 16.91

Hcomb = -607.54xNc + 418.2 (7) 0.9999 20.37 0.40 12.93 16.13

Hcomb = -(339.4C +1257H -108.90-225.9H )(kJ/kg) (13) 0.9999 131.55 4.17 128.47 28.99

CCR1 (Hyap) - 21 0.9968 0.38 0.56 0.25 0.30

H„p = -0.0422(CCC)2+2.2618(CCC)+29.67(CCR2) (8) 21 0.9973 0.37 0.64 0.28 0.26

ACD/Lab(HVap) - 21 0.9008 6.31 14.79 6.15 1.43

be considered as a pseudo-functional group [6, 7]. Usually the physicochemical properties of the first member of homologous series differ substantially from the properties of the subsequent compounds [8, 9]. Carboxylic acids are no exception. In particular, pKa formic acid (1) is about 1.4 times less than that of other monoacids because of the strong effect of the carboxyl group [10]. Therefore, it is not surprising that the CCR does not predict the properties of formic acid (1) well, so the properties of this compound were not taken into account in the current study. When predicting the physico-chemical and fire hazard properties of organic compounds, intramolecular interatomic interactions are often taken into account [8, 9, 11, 12]. The CCR is no exception. These interactions are taken into account by the introduction of a systematic (corrective) amendment [1]. In the case of alkane acids, it was found that the second methyl radical in a-position relative to the carboxylic group does not increase the CCC, and in the case of the location of the ethyl, propyl or butyl substituent in a-position the increase of the CCC is adjusted minus 0.5.

The isomerization of the alkyl radical for carboxylic acids, as well as for other classes of organic compounds, which have been previously explored [1, 5-7], does not significantly affect the change in the flammability limits and the heat of combustion. That's why, the equations (5)-(7) depending on the total number of carbon atoms in the molecule (^c), and not on the CCC, are derived for the calculation of parameters mentioned above.

The equations of comparison (9)-(12) are taken from GOST 12.1.044 [13] for prediction of the flash point, the temperature and the flammability limits. It was shown earlier that the Mendeleev formula (13) for determination of the heat of combustion gives accep Table results of calculation [14], therefore it was used as a method of comparison. ACD/Lab 2014 software package was used to compare the forecasts of the boiling point and the heat of vaporization of carboxylic acids (1)-(77) [15].

The discussionof resu Its

The results of prediction of physico-chemical and fire hazard properties of carboxylic acids (2)-(77) by (XRl, CCR2andby compTrisonmethodsaregiven inTable 1. Thecorre°ution coeffitient (r), RMSE (Root Mean Squated Tiror), AARD(Average AAsoluieRelative Division) [16], averogn absoluto Peviation (e) and average square deviation (o) are chosen as the comparison criteria [11].

RMSE =

=aooSV* vn-iS (-x'l-e) e=(-x-D,

where y, X/ - calculated and experimental values, n - number of compounds in the sample.

It is seen from the Table 2 that CCR1 and CCR2 methods give more accurate prediction of physico-chemical and fire hazard properties of carboxylic acids than the normative procedures of GOST 12.1.044-89, Mendeleev and ACD/Lab 2014. The only exception is CCR1 for the calculation of the upper temperature flammability limits.

Conclusion

The study finds that the proposed CCR1 and CCR2 methods can be used to calculate the physico-chemical and fire hazard properties of carboxylic acids. According to the accuracy of the boiling temperature, the flash point, the temperature and the flammability limits, the heats of combustion

- 28 -

and vaporization of carboxylic acids forecasts, the proposed CCR give better results compared to the methods of comparison (GOST 12.1.044, Mendeleev equation, ACD/Lab 2014). The only exception is CCR1 for the calculation of the upper temperature flammability limits, which shows the comparable results with the standard equation (10c). Unknown physico-chemical and/or fire hazard properties are predicted for a number of carboxylic acids (18)-(77).

References

1. Алексеев К.С., Алексеев С.Г., Барбин Н.М. Прогнозирования физико-химических и пожароопасных показателей с помощью правил углеродной цепи. 1. Алканали.Журнал Сибирского федерального университета. Химия 2018. Т. 11(2), С. 219-229. [Alexeev K.S., Alexeev S.G., Barbin N.M. Prediction of physical-chemical and fire hazard characteristics bycarbon chain rules. 1. Alkanals. Journal of the Siberian Federal University. Chemistry. 2018. Vol. 11(2), P. 219-229. (In Russ.)]

2. Handbook of Chem informatics. From Data to Knowledge in 4 Volumes. Under Ed. Gasteiger J. Weinheim: Wiley-VCHVerlag GmbH & Co. KgaA, 2003. 1915 p.

3. Yaws C.L. Thermophysical Properties of Chemicals and Hydrocarbons. Amsterdam: Gulf Professional Publishing, 2014. 991 p.

4. DIPPR 801. Available at https://dippr.aiche.org/.

5. Смирнов В.В., Алексеев С.Г., Барбин Н.М. Прогнозирование температуры вспышки диалкиламинов. Журнал Сибирского федерального университета. Химия 2016. Т. 9 (1), С. 68-77. [Smirnov V.V., Alexeev S.G., Barbin N.M. Prediction of the dialkylamine's flash points. Journal of the Siberian Federal University. Chemistry 2016. Vol. 9(1), P. 68-77. (In Russ.)]

6. Алексеев С.Г., Мавлютова Л.К., Кошелев А.Ю., Алексеев К.С., Барбин Н.М. Связь показателей пожарной опасности с химическим строением. XII. Алкилбензолы и диалкилбензолы. Пожаровзрывобезопасность 2014. Т. 23(6), С. 38-46. [Alexeev S.G., Mavlyutova L.K., Koshelev A.Yu., Alexeev K.S., Barbin N.M. Correlation of fire hazard characteristics withchemical structure. XII. Alkyl benzenes and dialkyl benzenes. Pozharovzryvobezopasnost' 2014. Vol. 23(6), P. 38-46. (In Russ.)]

7. Алексеев С.Г., Кошелев А.Ю., Барбин Н.М. Связь показателей пожарной опасности с химическим строением. XVIII. Алкильные производные аминометанола. Пожаровзрывобезопасность 2015. Т. 24(2), С. 36-44. [Alexeev S.G., Koshelev A.Yu., Barbin N.M. Correlation offire hazard characteristics with chemical structure. XVIII. Alkyl derivatives aminoethanol. Pozharovzryvobezopasnost' 2015. Vol. 24(2), P. 36-44. (In Russ.)]

8. Батов Д.В., Мочалова Т.А., Петров А.В. Использование аддитивно-группового метода для расчета температуры вспышки спиртов, кетонов и сложных эфиров. Журнал прикладной химии 2011. Т. 84(1), С. 55-60. [Batov D.V., Mochalova T.A., Petrov A.V. Additive group techniques for calculating the flash point of alcohols, ketones and esters. Russian Journal of Applied Chemistry 2011. Vol. 84(1), P. 54-59. (In Russ.)]

9. Батов Д.В., Мочалова Т.А., Петров А.В. Описание и прогнозирование температуры вспышки сложных эфиров в рамках аддитивно-группового метода. Пожаровзрывобезопасность 2010. Т. 19(2), С. 15-18. [Batov D.V., Mochalova T.A., Petrov A.V. Description and prediction of flash temperature of esters within the limits of additive-group method. Pozharovzryvobezopasnost' 2010. Vol. 19(2), P. 15-18. (In Russ.)]

10. Общая органическая химия. Под ред. Д. Бартона и УД. Оллиса. Москва: Химия, 1983. Т. 4. 728 с. [Comprehensive organic chemistry. Under Ed. Sir D Barton and and W.D. Ollis. Oxford, Pergamon Press, 1979. Vol. 2. 1344 p. (In Russ.)]

11. Смоляков В.М. Зависимость свойств органических веществ от строения их молекул: расчетно-теоретическое исследование. Дис. ... д-ра хим. наук. Тверь, 1995. 81 с. [Smolyakov V.M. Dependence of the properties of organic substances on the structure of their molecules: a computational and theoretical study. Dr. chem. sci. diss. Tver', 1995, 81 p. (In Russ.). Available at: htps://dlib.rsl. ru/01000024557]

12. Батов Д.В. Использование аддитивно-группового метода для анализа, систематизации и прогнозирования показателей пожарной опасности горючих жидкостей. Российский химический журнал 2014. Т. 58(2), С. 4-14. [Batov D.V. The use of the additive group method for analysis, systematization and prediction of fire hazard indicators of flammable liquids. Rossiyskiy khimicheskiy zhurnal 2014. Vol. 58(2), P. 4-14. (In Russ.)]

13. ГОСТ 12.1.044-89*. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения. М.: Стандартинформ, 2006. 100 с. [State Standard 12.1.044-89*. Occupational Safety Standards System. Fire and Explosion Hazard of Substances and Materials. Moscow: Standartinform, 2006. 100 p. (In Russ.)]

14. Демидов П.Г., Сау шев В.С. Горение и свойства горючих веществ. М.: ВИПТШМВД СССР, 1975. 280 с. [Demidov P.G., Saushev V.S. Combustion and properties of combustible substances. Moscow: VIPTShMVD SSSR, 1975. 280 p. (In Russ.)]

15. ACD/Boiling Point. Version for Microsoft Windows. User's guide. Calculating the boiling point, vapor pressure, and related properties. Toronto: Advanced Chemistry Development, 2013. 29 p.

16. GharagheiziaF.,Ilani-KashkouliaP.,AcreeJr.W.E.,MohammadiaA.H.,RamjugernathD.Agroup contribution model for determining the vaporization enthalpy of organic compounds at the standard reference temperature of 298 K. Fluid Phase Equilibria 2013. Vol. 360, P. 279-292.

i Надоели баннеры? Вы всегда можете отключить рекламу.