Повышение физико-химической стабильности пива
при использовании силикагелей и поливинилполипирролидона (ПВПП)
А.Т. Дедегкаев, Д.В. Афонин
ОАО «Пивоваренная компания «Балтика» Т.В. Меледина
Санкт-Петербургский университет низкотемпературных и пищевых технологий
Для обеспечения длительного срока хранения пива и возможности его транспортирования в отдаленные районы страны или на экспорт оно должно иметь высокую биологическую и физико-химическую стойкость. Благодаря применению современных высокоэффективных моющих и дезинфицирующих средств, а также технологии безразборной мойки (СИП) и правильному выбору критических контрольных точек отбора проб по ходу технологического процесса проблема повышения биологической стойкости практически решена. В то время как проблема повышения коллоидной стойкости пива по-прежнему остается актуальной и представляет широкую область для научных исследований.
Изучение химического состава коллоидных помутнений и причин их возникновения началось в середине XX в., когда перед производителями пива встала задача — продлить срок хранения напитка с 14 дней сначала до 2 мес, а далее до 6; 9 мес и более. Исследования, возглавляемые крупнейшими учеными в области пивоварения (Вальдшмидтом-Лейтцом, Бизерте, Шапоном и др.), одновременно проводились в нескольких странах, входящих в ЕВС. При этом было установлено, что основные
компоненты осадков физической и физико-химической природы — белки, полифенолы и углеводы из солода. Однако причиной помутнений могут быть также продукты обмена дрожжей, о чем впервые показано в работе И.Я. Веселова (1957), который не мог выяснить химическую природу этих соединений. Позже, в 1975 г. Дж. Шапон привел сведения о том, что 75 % этих соединений представляют полисахариды и лишь 25 % — белки. Между тем большинство ученых по-прежнему придерживались точки зрения, что главные виновники коллоидных помутнений — белок и полифенолы, о чем свидетельствует большое количество научных трудов. В то же время в современном пивоварении именно продукты обмена дрожжей могут значительно пополнить долю мутеобразующих веществ в коллоидных осадках. Это связано с тем, что применение технологий высокоплотного пивоварения, а также сбраживание сусла в ЦКТ изменяют физиологию дрожжей, их жизнеспособность и синтез продуктов метаболизма.
Кроме того, в связи с необходимостью снижения себестоимости пива все более популярны технологии с высоким содержанием несоложе-
ных материалов как зерновой природы (в России в основном это ячмень), так и жидких, например мальтозной патоки, что, несомненно, влияет на физико-химическую стабильность напитков, причем не всегда в сторону ее повышения.
Цель данной работы — исследование причин возникновения помутнений в пиве и повышение коллоидной стойкости пива свыше 6 мес.
В работе использовали косвенные методы измерения мутности с помощью турбидиметра и нефелометра. Для измерения размера частиц мути применяли лазерные анализаторы частиц.
Поверхностный потенциал частиц и дрожжевых клеток определяли методами микроэлектрофореза и определения скорости частицы при помощи электрофоретического рассеяния света.
Для оценки прогнозируемой коллоидной стабильности пива были обоснованно выбраны методы определения чувствительных белков, способных реагировать с таннином, метод определения осаждения белка сульфатом аммония (SASPL), а также форсирующая термообработка стабилизированного пива, которую определяли путем циклического изменения температуры 60/0 °С (24 ч при каждой температуре). Циклы повторялись до достижения мутности 2 ЕВС при 00.
Для оценки мутеобразующих частиц пива применяли метод флуоресцентной цитометрии.
Физико-химические показатели пива исследовали с помощью прибора Anton Paar (Австрия). Общие полифенолы и антоцианогены определяли по методикам, приведенным в аналитике ЕВС (ЕВС 9.9.1 и 9.9.2).
Влияние мутности сусла на мутность пива. Исследовали образцы сусла, существенно отличающие-
Рис. 1. Зависимость мутности сусла от количества частиц в интервале 0,1—3,0 мкм
Рис. 2. Зависимость мутности сусла от количества частиц в интервале 0,1—1,1 мкм
Таблица 1
Диапазон взвешенных частиц, мкм
Брожение, 0,01-0,10 0,1- 1,0 1-3
сут Дзета-потенциал, мВ 2[й1(0)]/й0, % Дзета-потенциал, мВ
0 244 37 137 33 68
2 241 37 123 33 81
4 231 39 106 35 72
6 225 41 91 38 79
8 219 43 83 41 64
10 213 45 79 41 53
12 212 47 75 42 47
14 204 49 73 41 32
После фильтрации 169 62 39 48 0
Таблица 2
Объект Доля частиц, %
исследования Полипептиды Полифенолы Полисахариды
Сусло 55 25 20
Пиво из ЦКТ (до фильтрования) 36 22 42
Смыв с дрожжей 71 12 17
Готовое пиво 29 14 57
Таблица 3
Образец пива Марка силикагеля Расход силикагеля, г/гл Чувствительные белки, ед. ЕВС Предел осаждения, см3 ^Н4)^04/100 см3пива
1 Гидрогель (ШаШе QD-7) 60 0,2 24,9
2 Гидрогель (ВК-200) 40 0,1 26,4
3 Гидрогель фагасЬг) 40 0,1 24,1
4 Ксерогель (ЬиаЙе Р(5Х) 30 0,1 24,2
5 Ксерогель (ШаШе РС-9) 40 0,1 24,5
6 Контроль — 0,8 15,0
ся друг от друга по мутности. Установлено, что мутность сусла, измеряемая мутномерами, представляет собой интегральную характеристику в зоне 0,1-3,0 мкм (рис. 1), в то время как мутность готового пива определяется взвешенными частицами в диапазоне 0,1-1,0 мкм, но в этом диапазоне отсутствует корреляция между мутностью сусла в варочном цехе (или/и мутностью лабораторного сусла) и пива (рис. 2).
Брожение в ЦКТ. В процессе брожения уменьшается количество взвешенных частиц и повышается их поверхностный потенциал (табл. 1, на примере пива «Балтика классическое» № 3).
Для диапазона частиц инициальной мутности характерна стабилизация изменения содержания частиц и их поверхностного потенциала ориентировочно на 8-е сутки брожения. Таким образом, наиболее существенные изменения для этого диапазона происходят в течение брожения, в то время как для диапазона частиц 0,01-0,10 мкм (холодной мути) характерно изменение поверхностного потенциала, как в
500
Ь 450
400
(1)
350
(V =1 300
со 250
200
Брожение пи
£
5
■е
Процесс фильтрации ^
8 10 Сутки
12 14 16
течение брожения,так и в фазе коллоидной стабилизации в ЦКТ. С учетом уменьшения взвешенных частиц в диапазоне мутности Н25 следует особо подчеркнуть факт необходимой длительности фазы коллоидной стабилизации в ЦКТ. Общее время (фаза брожения плюс фаза коллоидной стабилизации в ЦКТ) — не менее 13 сут (рис. 3).
Дополнительно проводили качественный анализ взвешенных частиц диапазона 0,1-1,0 мкм, полученных в виде осадков при мембранной фильтрации (табл. 2). Для этой цели использовали метод инфракрасной спектроскопии.
Из приведенных данных видно, что качественный состав взвешенных частиц в течение брожения претерпевает существенные изменения: вклад полипептидной фракции постепенно снижается, при этом доля частиц, сорбирующихся на дрожжах, увеличивается. Что касается полифенольной фракции, то ее доля в осадках постепенно снижается в результате седиментации. Важно отметить увеличение вклада полиса-харидной фракции в течение броже-
Рис. 3. Изменение общего содержания взвешенных частиц в пиве в течение брожения и коллоидной стабилизации
ния, что связано с защитными свойствами самих декстринов как сильно гидратированных веществ.
В процессе брожения поверхностный потенциал падает с 44±2 до 25±3 мВ. Исследование дрожжевых клеток, взятых из сборника семенных дрожжей, показало, что средний размер частиц, адсорбированных на клетках, составляет 0,31-0,39 мкм. По мере промывания дрожжей водой и особенно в результате их аэрирования поверхностный потенциал дрожжей растет и достигает 44-46 мВ, что свидетельствует о повышении их физиологической активности.
Стабилизация коллоидной системы пива с помощью силика-гелей. В связи с тем что на рынке представлены два типа силикагелей, отличающихся по целому ряду технологических признаков, и прежде всего степенью гидратированности, размером частиц и размером пор, была изучена эффективность их действия с точки зрения удаления чувствительных белков.
Для исследования были выбраны образцы силикагелей трех фирм производителей, выпускающих препараты под марками Lucilite, Вес-о£иг Daraclar. Препараты вносили во время текущего дозирования при фильтровании пива с массовой долей сухих веществ 12 %, в состав засыпи которого входил только солод. Как следует из табл. 3, при использовании гидрогеля «Дараклар» в дозировке 40 г/гл пива можно достичь такого же эффекта по снижению чувствительных белков, как при той же дозировке при внесении ксерогеля Люсилайт РС-90. При внесении другой марки ксерогеля (Люсилайт РС^Х) расход уменьшается до 30 г/гл.
Как показали данные гель-хроматографии, уровень извлечения наиболее важных полипептидов примерно одинаков при использовании всех исследуемых препаратов и не
2 • 2006
0
2 4
6
27
зависит от дозы вносимого силика-геля. Также следует отметить, что пенообразующие белки при внесении силикагелей не извлекаются. В связи с этим был сделан вывод о целесообразности использования на производстве гидрогеля, который может частично или полностью заменить тонкую фракцию кизельгура при фильтровании пива, в то время как ксерогели склонны к образованию пыли и снижают пропускную способность фильтра.
Дальнейшие исследования были проведены в промышленных условиях. Результаты показали, что доза силикагеля (гидрогеля), необходимая и достаточная для извлечения чувствительных белков, составляет 40-50 г/гл (табл. 4).
На выбор дозы силикагеля также влияют состав засыпи и содержание дрожжевых клеток в пиве, поступающем на фильтрование. В частности, использование мальтозного сиропа (30 %) повышает значение показателя предела осаждения с 24,1-26,4 см3 до 33,1 см3 при расходе гидрогеля 60 г/гл, в то время как внесение ячменя снижает этот показатель (рис. 4). Сепарирование пива перед фильтрованием позволяет снизить расход силикагеля (табл. 5), при этом физико-химическая стабильность продукта будет высокой.
Также имеет значение время контакта пива с силикагелем. Установлено, что наилучший эффект был достигнут при выдержке пива в течение
Таблица4
Дозировка силикагеля, г/гл Начальная мутность пива, ед. ЕВС Чувствительные белки, ед. ЕВС* Предел осаждения, см3 ^Н4)^04 /100 см3 пива
0 0,5 1,1 19,8
30 0,5 0, 1 23,2±0, 4
40 0,6 0,1 22,9±1,1
50 0,5 0 24,4±0,7
60 0,5 0,1 24,2±0,6
80 0,6 0 25,0±0,8
* Чувствительность прибора — 0,1 ед. ЕВС.
Таблица 5
Показатель Пиво перед фильтрованием Стабилизация пива
после сепаратора неосветленное при дображивании
Концентрация клеток в пиве, млн/ мл 0,5-1,0 3-10 5-12
Расход гидрогеля, г/ гл 30-70 50-100 60-100
Коэффициент эффективной адсорбции гидрогеля* 0,0037-0,005 0,0026-0,0037 0,0024-0,0032
' Учитывает экранирование активной поверхности силикагеля и структуру двойного электрического слоя.
, 30
СЦ
ЁЁ 25
ф 5
И 20
ГО О
ё<15 | 5 10
ё 5 0
20 40 60 80 Доза силикагеля, г/гл
100
Рис. 4. Зависимость величины предела осаждения белков насыщенным раствором сульфата аммония от расхода силикагеля (содержание клеток перед фильтрованием 5—8 млн кл./мл)
Таблица 6
Вариант намыва Количество частиц в 1 см3, N•10' Объем фильтрационного канала, 10-12 см3 Количество активных каналов в 1 см3, 108 Активная проницаемость*
1 7,3 6,3 40 400
2 5,9 5,3 38 380
* Границей хорошей активной проницаемости слоя, при которой еще не образуются выделенные каналы, является величина 360.
Таблица 7
№ образца пива Раход ПВПП, г/ гл Концентрация, мг/ л Индекс Число
Танноиды АЦГ ПФ полимеризации циклов 600/00
1 0 78,9 78 253 0,62 1
20 11,8 36 155 0,30 7
40 11,4 34 155 0,29 6
2 0 78,0 83 242 0,66 1
20 16,1 46 144 0,43 6
40 13,7 36 132 0,37 6
3 0 82,0 67 234 0,63 1
20 11,6 24 120 0,29 9
20 15,2 36 152 0,34 7
4 0 96,0 88 231 0,79 1
20 12,6 27 109 0,36 10
20 14,1 39 135 0,39 9
6 мин при температуре как +1 °С, так и -1 °С.
Образование выделенного канала. При выявлении причин не-прогнозированного помутнения пива было установлено формирование выделенного канала при его фильтровании из-за высокой дозации тонкой фракции кизельгура. Так, при изменении величины отношения средней фракции к тонкой с 1/1 до 2/1 мутность пива уменьшалась с 0,32 до 0,12 ед. ЕВС, в результате содержание в пиве чувствительных белков снижалось с 0,7 до 0,1 ед. ЕВС, а предел осаждения возрастал с 21,4 до 29,0 см3.
Выбор величины отношения кизельгур/силикагель. Определению оптимальной величины отношения фракций кизельгура и силикагеля предшествовали теоретические расчеты, для чего воспользовались формулой Смолоховского, с помощью которой можно ориентировочно рассчитать площадь фильтрационного канала 5 и далее его диаметр.
5 = k 1 фагсудД),
¡=1 111
где k — геометрический коэффициент сопряжения силикагеля и кизельгура в фильтрационном объеме; % — кинетический фактор формирования фильтрационного объема; А — массовое отношение различных фракций кизельгура и силикагеля к общей текущей до-зации.
Анализ полученных результатов расчета показал, что минимальный расход средней фракции кизельгура, при которой еще не будет происходить десорбции чувствительных бел-
0
Рис. 5. Зависимость стойкости пива от содержания полифенолов
ков, составляет 30 г/ гл, но при этом не было учтено наличие дрожжевых клеток в пиве.
В табл. 6 приведены данные для активной проницаемости фильтровального слоя для двух вариантов текущей дозации кизельгура при постоянном, установленном ранее оптимальном расходе силикагеля (50 г/гл) и концентрации дрожжевых клеток после сепарации 1 млн кл./мл, дельта Р-1 бар. В 1-м случае для текущей дозации использовали 35 г/гл средней фракции и 15 г/гл тонкой фракции, во 2-м варианте полностью исключили тонкую фракцию кизельгура.
Как следует из табл.6, можно снизить расход кизельгура, при этом еще не будут образовываться выделенные каналы, характеризующиеся большим диаметром (4-10 мкм).
Стабилизация пива с помощью ПВПП. Существенный вклад в коллоидные осадки, выявляемые в пиве, вносят полифенолы (ПФ), и в частности такие фракции, как ан-тоцианогены (АЦГ) и танноиды. Обработка пива силикагелем снижает уровень чувствительных белков в пиве, но при этом незначительно (на 7,2±0,9 %) изменяет индекс полимеризации.
В качестве адсорбента полифенолов в настоящее время используется ПВПП. Исследования по влиянию этого препарата на коллоидную стойкость пива показали, что для получения напитка длительного срока хранения достаточно обрабатывать его ПВПП из расчета 20 г/гл пива (табл. 7). Кроме того, показана корреляционная зависимость между содержанием полифенолов в пиве после обработки и сроком его хранения (рис. 5).
Таким образом, применение си-ликагеля увеличивает коллоидную стойкость пива с 1 до 3 мес и не влияет на содержание полифенолов в пиве. Для повышения коллоидной стойкости пива свыше 6 мес достаточна доза стабилизатора ПВПП — 20 г/гл. ®
Роспродмаш-2006
В Москве 7-10 февраля 2006 г. на ВВЦ (пав. № 57) прошла XV национальная выставка агро-перерабатывающего оборудования «Роспродмаш-2006» — Оборудование для перерабатывающих отраслей АПК. Организатор выставки — ФГУП МНИЦ «Агросистеммаш» Минпромэнерго РФ при содействии Минсельхоза РФ и Российского союза машиностроителей пищевого и перерабатывающего оборудования.
Основные направления тематики выставки — оборудование для перерабатывающих отраслей АПК, в том числе для фасования, упаковки и розлива пищевых продуктов; а также весовая, измерительная, торговая и холодильная техника.
В выставке приняли участие около 50 предприятий, организаций и фирм — ведущих производителей машиностроительной продукции из России и стран ближнего зарубежья, которые представили и натурные образцы, в том числе действующие. Информационную поддержку выставки обеспечили свыше 20 средств массовой информации и официальных информационных партнеров, в том числе журналы издательства «Пищевая промышленность».
Отметим наиболее интересное оборудование для розлива пищевых жидкостей.
Одно из направлений исследований и разработок ФГУП НИИ «Мир-Продмаш» (Москва) — разливоч-но-укупорочное, моечное оборудование, транспортеры для линий розлива. Одна из новинок — разливочная машина А1-МРК регулируемой производительности (от 3500 до 7000 бут/ч), предназначенная для розлива ликероводочной продукции, «тихих» вин и других негазированных пищевых жидкостей в стеклянные бутылки.
Компания «Продвижение» (Москва) представила линию производства ПЭТ-бутылок вместимостью 0,25-5,0 л; освоила укупорочный автомат УА-3000 для закручивания надежно фиксируемых забивных или винтовых пробок на ПЭТ-бутылках. При этом обеспечивается ориентация пробок, их позиционирование на горлышке бутылки и надежная фиксация. Автомат может быть выполнен в различных модификациях для заданной линии розлива. Компания предлагает, в частности, моноблок розлива питьевой воды производительностью 6 м3 питьевой воды в час в бутылки вместимостью 19 л производительностью 300 бут/ч; эти-кетировочные машины (до 6000 этикет./ч) для оформления различной тары (стеклянных и ПЭТ-бутылок и банок) круговыми полипропиленовыми этикетками с автоматической подачей бутылок, этикеток с рулона, с бесступенчатым регулированием скорости конвейера с высокой точностью этикетирования и минимальным расходом клея.
ОАО «Орел-Легмаш» изготовляет автоматические и полуавтоматические линии розлива различных жидкостей, в том числе пищевых, в частности машины для розлива в стеклянные и ПЭТ-бутылки производительностью до 6000 бут/ч; разливочно-укупорочные блоки для розлива и укупоривания газированных напитков (3000 бут/ч), для парфюмерных жидкостей (4000 бут/ч); линии розлива питьевой воды в ПЭТ-бутыли вместимостью от 5 (1500 бут/ч) до 10 л (800 бут/ч). Линия состоит из автоматической машины розлива линейного типа с одновременным наполнением 4 бутылей (включает транспортеры и
бактерицидный тоннель для УФ-облучения тары) и автоматической машины укупоривания винтовой пластиковой крышкой (с УФ-облучателем крышек).
Впервые на выставке приняло участие НПО «АВИС» (Ижевск). Предприятие проектирует и производит блоки выдува ПЭТ-тары вместимостью до 2 л (до 1000 бут/ч) и до 6 л (до 500 бут/ч), а также разливочное оборудование: автоматы розлива газированных и негазированных напитков линейного типа, автоматы розлива спокойных жидкостей, полуавтоматы розлива пива, газированных напитков, кваса, растительных масел и других напитков в ПЭТ-тару; укупорочные автоматы и полуавтоматы; ориен-таторы винтовой пробки роторного и транспортного типа и др.
Оригинальные системы дозирования жидкостей в стеклянную и пластиковую тару и многокомпонентного укупоривания предлагает ПКФ «Оптиматик» (Москва). Оборудование позволяет комплектовать линии розлива минеральной воды, газированных напитков, соков, вина, растительного масла, кетчупа, косметики.
Традиционно в выставке приняли участие ООО «Борпак», ЗАО «Промбиофит», ЗПО «Агроспец-маш», НПП «Насосы и уплотнения» и др.
В рамках выставки прошел «круглый стол» машиностроителей на тему «Выбираем отечественное. Тенденции развития оборудования», что способствовало пропаганде всего лучшего, созданного сегодня. Организаторами «круглого стола» явились Российский Союз машиностроителей пищевого и перерабатывающего оборудования, издательство «Пищевая промышленность» и ФГУП «МНИЦ «Агросистеммаш» при поддержке Минпромэнерго РФ и Минсельхоза РФ. Были заслушаны сообщения президента Российского Союза машиностроителей пищевого и перерабатывающего оборудования Ю.А. Розова, зам. председателя Совета по машиностроению и приборостроению Отделения хранения и переработки сельскохозяйственной продукции РАСХН В.И. Базикова, зам. директора ФГУП «НИИ «Мир-Продмаш» В.А. Карамзина, исполнительного директора ассоциации производителей упаковочного и перерабатывающего оборудования «ПАКМАШ» Г.К. Хмелевского, ведущего менеджера ООО «ММ Прис» В.В. Ажгиреева и др.
Большой интерес вызвало выступление зав. отделом мембранных технологий ВНИИ пищевой биотехнологии В.Л. Кудряшова о комплексных технологических линиях переработки вторичного сырья предприятий пищевой промышленности (спиртза-водов, пивоваренных заводов и молокозаводов) на основе мембранных процессов; перспективы и эффективность. В частности, на основе применения отечественных неорганических мембран последнего поколения из керамики и металлокерамики эффективно решаются проблемы очистки «холодной» стерилизации соков, алкогольных и безалкогольных напитков, сиропов.
Внимание потенциальных клиентов к отечественной продукции показывает, что выпускаемое в России оборудование, в частности разливочно-уку-порочное и этикетировочное, пользуется стабильным спросом. Повышаются качество и надежность, расширяется ассортимент, предлагается доступный и быстрый сервис, индивидуальное обслуживание заказчика.
М.Р. АЗРИЛЕВИЧ
2 • 2006 пшо.шшитта
29