Научная статья на тему 'PolyaminipolyphospHonates and polyaminopolycarbonoates (that are chelators) in mission of inhibiting of microbiological corrosion with Desulfovibrio desulfuricans'

PolyaminipolyphospHonates and polyaminopolycarbonoates (that are chelators) in mission of inhibiting of microbiological corrosion with Desulfovibrio desulfuricans Текст научной статьи по специальности «Химические науки»

CC BY
43
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
NTA / EDTA / ATMP / EDTMP / СКОРОСТЬ КОРРОЗИИ / CORROSION RATE / СУЛЬФАТРЕДУЦИРУЮЩИЕ БАКТЕРИИ / SULFATE-REDUCING BACTERIA / СЕРОВОДОРОДНАЯ КОРРОЗИЯ / HYDROGEN SULFIDE CORROSION / ХИМИЧЕСКАЯ АДСОРБЦИЯ / CHEMICAL ADSORPTION / СТАЛЬ СТ3 / ST3S STEEL / ЖЕЛЕЗО / IRON / ПАРЦИАЛЬНЫЕ ЭФФЕКТИВНЫЕ ЗАРЯДЫ / PARTIAL EFFECTIVE CHARGES / MOLECULE RIGIDITY / ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ МОЛЕКУЛЫ / ELECTRONEGATIVITY / ГЛОБАЛЬНАЯ ЭЛЕКТРОФИЛЬНОСТЬ МОЛЕКУЛЫ / GLOBAL ELECTROPHILICITY / СОСТАВ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ / COMPOSITION OF COMPLEX COMPOUNDS / КОМПЛЕКСОНЫ / ЖЕСТКОСТЬ МОЛЕКУЛЫ

Аннотация научной статьи по химическим наукам, автор научной работы — Sikachina Andrei

In this paper, the process of adsorption of organic compounds of the polyaminopolyphosphonates and polyaminopolyсarbonoates (chelators or complexones) class on iron (available in steel St3S (Poland) 97%) is modeled using the HyperChem package version 8.0.7 using the semi-empirical ZINDO / 1 method. The structures of chelators (“complexones”) for the study were chosen so that the sequential complication of the molecular structure could be traced. Such an approach, as will be shown below, accurately reflects the process of corrosion protection with bacterial content by chemisorption of an organic compound on the metal surface to form a complex compound. In the course of the study, the compositions of the complexes obtained, the energies of the boundary orbitals, and a graph depicting the dependence of the charge density on the iron atom on the component of the corrosion rate that is due to chemisorption effects were obtained and analyzed. On the graph there are equations of lines.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

КОМПЛЕКСОНЫ В МИССИИ ИНГИБИРОВАНИЯ МИКРОБИОЛОГИЧЕСКОЙ КОРРОЗИИ, ВЫЗЫВАЕМОЙ КУЛЬТУРОЙ DESULFOVIBRIO DESULFURICANS

В публикуемой работе представлен смоделированный посредством квантовохимического пакета HyperChem версии 8.0.7 используя полуэмпирический метод ZINDO/1 процесс адсорбции органических соединений класса аминополикарбоноатов и аминополифосфонатов («комплексонов»), на железе (имеющегося в стали Ст3 в количестве 97%). Структуры комплексонов для исследования были выбраны так, чтобы прослеживалось последовательное усложнение молекулярной структуры. Такой подход, как будет показано далее, с высокой точностью отражает процесс защиты от коррозии с бактериальным контентом путем хемосорбции органического соединения на поверхности металла с образованием комплексного соединения. В процессе исследования были получены и проанализированы: составы полученных комплексов, энергии граничных орбиталей, график, отображающий зависимость плотности заряда, приходящегося на атом железа, от той составляющей скорости коррозии, которая обусловлена хемосорбционными эффектами. На графике показаны уравнения прямых.

Текст научной работы на тему «PolyaminipolyphospHonates and polyaminopolycarbonoates (that are chelators) in mission of inhibiting of microbiological corrosion with Desulfovibrio desulfuricans»

UDC 627.257:621.3.035.221.727:621.315.617.1

POLYAMINIPOLYPHOSРНONATES AND POLYAMINOPOLYCARBONOATES (THAT ARE CHELATORS) IN MISSION OF INHIBITING OF MICROBIOLOGICAL CORROSION WITH DESULFOVIBRIO DESULFURICANS

КОМПЛЕКСОНЫ В МИССИИ ИНГИБИРОВАНИЯ МИКРОБИОЛОГИЧЕСКОЙ КОРРОЗИИ, ВЫЗЫВАЕМОЙ КУЛЬТУРОЙ DESULFOVIBRIO DESULFURICANS

©Sikachina A.

SPIN-code: 8133-3363 ORCID: 0000-0002-0695-1750 Immanuel Kant Baltic Federal University Kaliningrad, Russian Federation, sikachina@list.ru

©Сикачина А. А.

SPIN-код: 8133-3363 Балтийский федеральный университет им. И. Канта г. Калининград, Россия, sikachina@list.ru

Abstract: In this paper, the process of adsorption of organic compounds of the polyaminopolyphosphonates and polyaminopolycarbonoates (chelators or complexones) class on iron (available in steel St3S (Poland) 97%) is modeled using the HyperChem package version 8.0.7 using the semi-empirical ZINDO / 1 method. The structures of chelators ("complexones") for the study were chosen so that the sequential complication of the molecular structure could be traced. Such an approach, as will be shown below, accurately reflects the process of corrosion protection with bacterial content by chemisorption of an organic compound on the metal surface to form a complex compound. In the course of the study, the compositions of the complexes obtained, the energies of the boundary orbitals, and a graph depicting the dependence of the charge density on the iron atom on the component of the corrosion rate that is due to chemisorption effects were obtained and analyzed. On the graph there are equations of lines.

Аннотация. В публикуемой работе представлен смоделированный посредством квантовохимического пакета HyperChem версии 8.0.7 используя полуэмпирический метод ZINDO/1 процесс адсорбции органических соединений класса аминополикарбоноатов и аминополифосфонатов («комплексонов»), на железе (имеющегося в стали Ст3 в количестве 97%). Структуры комплексонов для исследования были выбраны так, чтобы прослеживалось последовательное усложнение молекулярной структуры. Такой подход, как будет показано далее, с высокой точностью отражает процесс защиты от коррозии с бактериальным контентом путем хемосорбции органического соединения на поверхности металла с образованием комплексного соединения. В процессе исследования были получены и проанализированы: составы полученных комплексов, энергии граничных орбиталей, график, отображающий зависимость плотности заряда, приходящегося на атом железа, от той составляющей скорости коррозии, которая обусловлена хемосорбционными эффектами. На графике показаны уравнения прямых.

Keywords: NTA, EDTA, ATMP, EDTMP, corrosion rate, sulfate-reducing bacteria, hydrogen sulfide corrosion, chemical adsorption, St3S steel, iron, partial effective charges, molecule rigidity, electronegativity, global electrophilicity, composition of complex compounds.

Ключевые слова: комплексоны, скорость коррозии, сульфатредуцирующие бактерии, сероводородная коррозия, химическая адсорбция, сталь Ст3, железо, парциальные эффективные заряды, жесткость молекулы, электроотрицательность молекулы, глобальная электрофильность молекулы, состав комплексных соединений.

The list of accepted abbreviations by author: SRB — sulfate-reducing bacteria K — corrosion rate SM — the studied molecule

NP SM — researched molecule of polyaminopolyphosphonates N SM — researched molecule of polyaminopolyсarbonoates

N (ac): N (d) — ratio indicating balance between the amount of donor and acceptor groups of the molecules

FFati — Fukui function, calculated from molecular rigidity Oh — oxygen atom of the hydroxy Ok — keto oxygen atom Oh/f — oxygen/phosphoryl group

Eq is a value of the total charge, is given by: Eq = iq + 2q

Aq is changing the amount of charge in the formation of a complex of iron chelator molecule

HOMO — the highest filled molecular orbital LUMO — the lowest free molecular orbital 1 LUMO — orbital, the next lowest free molecular orbital ю — the value of the global electrophilicity roEq is the magnitude of the local electrophilicity particular atom FePq is the charge per one atom of iron (density of charge)

The current state of evidence on polyaminopolyphosphonates and polyaminopolyсarbonoates (complexone or chelators) as the corrosion inhibitors is very average. In general, the compounds of this class have been studied as inhibitors of ordinary electrochemical corrosion in cooling systems [8], hot water systems [6], refining [18] for the purification of metals and alloys against corrosion films [4], in concentrated brines [2], and the influence of the cations and anions on manifestation of the inhibitory effect [17, 19]. Extensive studies have been conducted only for some members of chelators such as HEMPA, ATMP, EDTA.

Scientists at the Institute of Physical and Colloid Chemistry (IPCC of RAoS, Moscow, Russia), the protective effect of Zn2+-HEMPA explained by the formation of mixed poorly soluble complex compounds of Zn2+ and Fe3+ with HEMPA and partial deposition Zn(OH)2 on the metal surface. Zn2+-HEMPA is an inhibitor of the mixed action, braking, mainly cathodic process, the kinetics of which are very little affected by the presence of CI- [13]. The high efficiency of Zn2+-HEMPA mission in inhibiting corrosion in aqueous solutions, and also aluminum and other non-ferrous alloys [6, 8, 13].

Not too many microbiological corrosion studies conducted [5, 8]. Many studies have been conducted in the Tambov State University and Baltic Federal University (Russia). Corrosion of different metals in aggressive acidic, for example, [1, 3, 7, 12, 14-16] and salt [24] medium are investigated a very large number of scientists worldwide.

Many of the organic compounds that perform the mission of protecting corrosion [1, 7, 16], have been investigated by the approach "structure-property" using the Pearson correlation coefficient, for example, [1, 5, 21, 11]. Chelators as inhibitors of microbial corrosion SRB-creator of content were first investigated [22]. Also, the author was modeled adsorption process on iron of chelators; iron is part of steel. Simulation according reactivity of organic compounds was undertaken in the past [10], in particular, the simulation of adsorption on the metal clusters of

научный журнал (scientific journal) №6 2017 г.

http://www. bulletennauki. com

organic compounds described hypothetical cluster where the metal surface [25, 26]. Contributed by the author changes in cluster modeling method suggest it is an organic compound adsorption capabilities with regard, in particular, to iron, and therefore there is a new value of the "charge density on the iron", i. e. the proportion of the electron density, which passed from the organic compound converted for an individual iron atom [23].

Material and methods

A variety of microbiological corrosion system

In the article investigated the heterogeneous thermodynamic system of closed type "St3S/breeding ground of Postgate of "B" class + Desulfovibrio desulfuricans cells" [5]. Samples of steel were parameters 20x50x1 mm. Samples of steel were taken from one batch, which guaranteed them the same chemical composition [11].

Organic compounds — corrosion inhibitors

This study employed SM who manifest ability to inhibit microbiological corrosion highly dependent not only on the structure of the molecule, but also on the pH [22]. In such transitions the electron density in the SM is not introduced or removed, and quantum chemical calculations and estimates based on them were taken classical formulas, almost perfectly describes a pH-dependent structure of the SM (Table 1):

Table 1.

TEST COMPOUNDS AND ADOPTED (BY AUTHOR) NUMBERING SIGNIFICANT HETEROATOMS

Abbreviation of inhibitor

Classic structural formula

pH-dependent structural formula

NTA

EDTA

научный журнал (scientific journal) №6 2017 г.

http://www. bulletennauki. com

ATMP

EDTMP

The validity of adopting classical formula

The validity of the adoption of classical formulas of complexones as an onium-type SM has been confirmed by means of quantum-chemical calculations previously performed by the author of the descriptors of the electronic structure of the forms of molecules of these SMs.

Table 2.

THE CALCULATED VALUES OF THE CONVERSION FACTORS FOR THE CONVERSION OF THE

MOST LIKELY FORMS OF MOLECULES OF COMPLEXONES INTO CLASSICAL FORMS _(CALCULATED BY QUANTUM-CHEMICAL METHODS (DFT / B3-LYP / 3-21G *))_

Abbreviation of inhibitor

The values of the transfer coefficients k, equal to LpHdescriptorSm :LclasdescriptorSm, for example

OH

k(AE)

k(LQN)

k(LQP)

k(LQOh)

k(LQO/k)

EDTMP

0,679

1,088

0,971

0,950

1,089

АТМР EDTA

NTA

0,646 0,570

0,555

1.089 1,120

1,025

0,970

0.993 0,959

0,995

1.060 1,004

1.113

научный журнал (scientific journal) №6 2017 г.

http://www. bulletennauki. com

It was found that the pH-dependent forms of SM molecules are smaller by approximately 2 times (in N SM) and 1.5 times (in NP SM) values of energy gaps, and also the fact that the charges on heteroatoms of such forms of molecules are practically equal Charges taking place in the classical structure. Moreover, each of the coefficients, tied to the same descriptor of all SMs, is stable or more or less than one, which proves the identical distribution of descriptors of the classical structure and pH-dependent form of complexones.

The protective effect against corrosion

Data on corrosion rates obtained by the standard method of gravimetric analysis [5] were taken from [22]. According to [21], the above structure was a structural series of molecules.

The technology of quantum chemical calculations

The calculation was performed using HyperChem 8.0.7. Software, empirically, the limit was set by the number of iron atoms: a number a, when out of (a + b) given by HyperChem-user iron atoms carrying zero charge number b. The plane of neutral iron atoms specified by the user of HyperChem was 1,2 A away from the SM plane with the expectation that the program produced fewer iterations, which provides the necessary accuracy. The plane of neutral iron atoms specified by the user of HyperChem was 1,2 A away from the SM plane with the expectation that the program produced fewer iterations, which provides the necessary accuracy. Then it was assumed that the SM donor possibilities are exhausted. Equation electrophilic reaction aFe0 + SM Y = [SMY]^-Fea, where iron atoms are acceptors, which are charged negatively. Finding the values of quantum chemical descriptors held level theory OPLS / PM3 / ZINDO / 1. [9, 11, 23]. Mesomeric effect was taken into account, which is manifested in different parts of the investigated SM. In the following controlled descriptors of electronic structure: charges on heteroatoms (by Mulliken) will be calculated as Eq, i.e. charges on the same arrangement of atoms will be summarized as a result of a high degree of symmetry of the test running, the energy frontier orbitals, the resulting composition [SMY] ^ Fea, where the SM acts as a ligand. Based on these characteristics will be calculated from the data file .out: the charge density on the iron (1 atom of Fe), global and local electrophilicity, consider the complex structure. Along the length of bond "Fe-heteroatom" taken into account within the 3.00 angstroms (A).

The above simulation technology has been developed by the author for the first time tested on a number of organic compounds in Russia in 2015.

Results and discussion

The generated quantum chemically molecular parameters shown diagram, made in the form specified in [20] in Figure 1-4:

Figure 1. The energy levels of HOMO ( " ), LUMO ( ), 1LUM0( ), and the positions of the molecules hardness ( ) in the formation of the adsorption complex (right) with ATMP (left)

научный журнал (scientific journal) №6 2017 г.

http://www. bulletennauki. com

Figure 2. The energy levels of HOMO ( " ), LUMO ( ' ), 1LUM0( ), and the positions of the molecules

hardness ( ) in the formation of the adsorption complex (right) with NTA (left)

Figure 3. The energy levels of HOMO ( U ), LUMO ( ' ), 1LUM0( ), and the positions of the molecules hardness ( ) in the formation of the adsorption complex (right) with EDTMP (left)

£

-2,005 tt

Figure 4. The energy levels of orbitals HOMO ( " ), LUMO ( ), 1LUM0( ), and the positions of the molecules hardness ( ) in the formation of the adsorption complex (right) with EDTA (left)

The isolated molecules are nucleophilic. As ligands are electrophiles. The rigidity of the ligand molecule (especially NP SM class) after adsorption increases, so [SMY] ^ Fea can be nonpolarizable that confirms the ability to inhibit microbial corrosion. Obviously, the charts give the impression of the same mechanism ironcomplexones generation, so it can be assumed that the criterion of uniform symmetrical complexity of the structure does not affect the adsorption process [23]. In all cases the HOMO increases from baseline SM, LUMO and 1LUMO, the value of the stiffness of the molecule — increases similar to the HOMO. Effective charges (by Mulliken) on parts of the SMY are shown in Table 3.

Table 3.

ILLUSTRAT [TON OF THE CHARGE CHANGES IN D IFFERENT STATES COMPLEXONES

Abbreviations of chelators ^hAqo Ъ/kdqo YÀqN Ißqp

charge distribution in the starting molecules

АТМР -4,139 -2,649 0,023 6,311

NTA -0,864 -1,157 -0,042 —

EDTMP -5,520 -3,573 -0,046 8,392

EDTA -1,213 -1,552 -0,108 —

charges distribution in the ligands — the final states of the original molecules

АТМР -0,916 -0,313 -0,033 2,276

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

NTA -0,288 -0,170 0,041 —

EDTMP -1,101 -0,380 0,024 3,166

EDTA -0,522 -0,237 0,015 —

The distribution is quite common, as is happening with heteroatom Donation of electron density at the iron atoms (positive charges are sharply). Obviously, the ketooxygen atoms and electrons are depleted phosphoryl ("centers of adsorption"), the rest of the atoms investigated structures the charge density is substantially reduced down to zero (nitrogen and phosphorus, as "adsorption sites"). Least of all is expressed in EDTMP, because it has the large number of negative charges. Donation takes place both at the expense of the native electron density, and due to its overflow from the other groups.

The values of ro and FePq of NP SM are shown in Table 4.

Table 4.

THE VALUES OF ELECTROPHILICITY, THE CHARGE DENSITY FOR ATOM OF IRON

CO MPOUNDS FORMED IRONCOMPLEXONES N P SM

Abbreviations of chelators FePq ю The compositions of the complex compounds, a

ATMP 0,342 1,113 14

NTA 0,285 1,185 14

EDTMP -0,372 0,992 20

EDTA -0,335 1,059 19

Values of local electrophilicity of heteroatoms with N SM, values of [N (a): N (d)], values of (FFati) are shown in Table 5.

Table 5.

THE VALUES OF THE LOCAL ELECTROPHILITY OF HETEROATOM. VALUES IN PARENTHESES ARE THE TRANSLATION OF THE LOCAL ELECTROPHILITY 1 ATOM OR GROUP

FOR FAIR COMPARISONS

Abbreviations of complexones o>YflN(aqN) wYjqo (rnqo) rn^qp (mqp) [N (ac):N (dM(FF,) a>Yf/Kqo (Mf/qo)

ATMP -0,062 (-0,062) 3,591 (0,598) -4,492 (-1,497) [3]/[-2.44] 2,601 (0,867)

NTA 0,098 (0,098) 0,659 (0,220) — [3] /[-2.23] 1,171 (0,390)

EDTMP 0,069 (0,034) 4,332 (0,541) -5,182 (-1,295) [2]/ [-1.98] 3,175 (0,794)

EDTA 0,129 (0,064) 0,731 (0,183) — [2]/[-1,89] 1,392 (0,348)

In N SM a is more, than N SM, because the former has lower power and chemisorption centers. There is a direct correlation between the composition ironcomplexones NP SM and N SM and value SMY ligand. ro of the N SM is greatest at the NTA, and of NP SM — from ATMP. In general, the donor properties (which are the higher, the lower the local electrophilicity), which are fundamental to the mission of inhibitor of corrosion protection, are inversely proportional to the value of [N (ac): N (d)] and, apparently, as a consequence, the value of (FFati). It should be noted that the activity of the donor of the phosphoryl oxygen atoms (in NPSM) most low in ATMP, that may be associated with steric hindrance. This version is confirmed by comparing the NSM, where donor activity of ketogroups on the basis of a comparison of the corresponding local electrophilic also quite similar, but the steric hindrance present here, but judging by the structural formula of NTA, they should appear less intense as obvious as NTA less donor is active, than EDTA. Special mention should be on the phosphorus atoms. They strongly nucleophilic, that may be associated with the decrease in the electronegativity greater and their valency and on them is that the outflow from the electron density of the iron atoms of the iron atoms in the nucleus therefore more strongly attracted to the phosphorus atoms. ro^Aqp the value is negative, that may be associated with, first, the traditionally higher charges on the atoms in the interpretation of semi-empirical methods, and secondly, with the phosphorus atom chemisorption on a negatively charged metal surface, causing it becomes part of the electron density of the surface. This phenomenon contributes to the increase in the charge density on the iron atom, and also confirms the view of the possibility of moving electrosorption in chemisorption. ro^fAqo can also associate with the value of the molar mass of the test compound. For all cases examined, it was revealed that the iron atoms are in general belong to a particular molecule under consideration, and largely localized forces donor-acceptor interaction in some parts of the molecule. For NTA ironcomplexone following structure (Table 6).

Table 6.

CHARACTERISTICS OF BONDS IN TH E Fe14NTA

The charge of a particular atom of iron Name of bonds with heteroatom quantum chemically calculated length of relationships, А The charge of a particular atom of iron Name of bonds with heteroatom quantum chemically calculated length of relationships, А

1 2 3 1 2 3

-0,478 Fe-90h Fe-N Fe-70h 2,30 2,23 2,33 -0,219 Fe-70h Fe-80K 2,65 2,21

научный журнал (scientific journal) №6 2017 г.

http://www. bulletennauki. com

End of Table 6.

1 2 3 1 2 3

-0,175 Fe-4Oh Fe-3OK 2,65 2,38 -0,426 Fe-100K Fe-70h Fe-sOK 2,51 2,68 2,42

-0,172 Fe-4Oh Fe-3OK 2,54 2,43 -0,194 Fe-90h Fe-100K 2,78 2,27

-0,231 Fe-3OK 2,41 -0,247 Fe-100K 2,30

-0,278 Fe-3OK 2,41 -0,198 Fe-90h Fe-100K 2,41 2,41

-0,253 Fe-70h 2,43 -0,386 Fe-4Oh Fe-N 2,41 2,33

-0,268 Fe-80K 2,25 -0,461 Fe-4Oh Fe-90h Fe-N 2,37 2,39 2,76

The structure of both NTA are obvious that Fe atoms with respect to the coordination number of heteroatom atoms are within the range of I ... III. In many cases, the higher the charge on the iron atom, the coordination number higher value. The highest coordination numbers are observed in the iron atoms with Q(Fe) > -0.4. The shortest bonds are Fe-0K and Fe-N (about 2.2 ... 2.4 A), the longest bonds is Fe-Oh (about 2,5 ... 2,7A). Denticity of hydroxyl oxygen atoms equal to IV, denticity of by oxygen atoms keto III ... IV. Denticity on the nitrogen atom is III.

For ATMP ironcomplexone following structure (Table 7).

Table 7.

CHARACTERISTICS OF BONDS IN ГНЕ Fe14ATMP

The charge of a particular atom of iron Name bonds to heteroatom atoms quantum chemically calculated length relationships, А The charge of a particular atom of iron Name bonds to heteroatom atoms quantum chemically calculated length relationships, А

1 2 3 1 2 3

-0.229 Fe-3Of Fe-2P Fe-4Oh 2.38 2.82 2.36 -0.442 Fe-13Oh Fe-12Oh Fe-4Oh Fe-8Oh Fe-7Of Fe-9Oh Fe-6P 2.19 2.93 2.43 2.35 2.71 2.92 2.97

-0.313 Fe-3Of Fe-2P Fe-5Oh 2.44 2.66 2.99 -0.568 Fe-N Fe-2P Fe-3Of Fe-6P Fe-7Of 2.88 2.73 2.46 2.70 2.36

-0.193 Fe-4Oh Fe-5Oh Fe-2P Fe-12Oh 2.52 2.28 2.97 2.36 -0.276 Fe-8Oh Fe-7Of 2.,47 2.25

-0.547 Fe-5Oh Fe-12Oh Fe-юР Fe-N Fe-2P 2.41 2.36 2.69 2.85 2.74 -0.286 Fe-6P Fe-8Oh 2.79 2.35

научный журнал (scientific journal) №6 2017 г.

http://www. bulletennauki. com

End Table 7.

1 2 3 1 2 3

-0.366 Fe-nOf Fe-юР 2.17 2.69 -0.155 Fe-8Oh Fe-6P Fe-9Oh 2.43 2.87 2.26

-0.352 Fe-nOf Fe-i2Oh Fe-юР Fe-i3Oh 2.25 2.43 2.64 2.83 -0.518 Fe-6P Fe-9Oh Fe-N Fe-юР Fe-i2Oh 2.81 2.36 2.75 2.80 2.25

Fe-2P 2.82

-0.359 Fe-N 2.23 -0.188 Fe-3Of Fe-5Oh 2.37 2.59

It is obvious that the iron atoms with respect to the heteroatoms have a coordination number of values in the range II ... VII. The highest coordination numbers are observed in the iron atoms with Q (Fe) = -0.4 ... -0,5. Proportionality depending on the charge of the iron atom that atom valences exhibited sufficiently clearly observed (e.g., Fe-5 and Fe-6). The shortest bonds is a Fe-Of (about 2.2 ... 2.5 A), the longest are Fe-Oh (about 2.3 ... 2.9 A) and Fe-P (about 2.7 ... 3.0 A). In general, the longer the bond, the more pronounced degree of ionicity. Dentate on phosphorus atoms is IV ... VI, denticity of hydroxyl oxygen atoms equal III ... V, denticity of by oxygen atoms of the phosphoryl group is II ... IV. IV is denticity of nitrogen atom.

For EDTA ironcomplexone following structure (Table 8).

Table 8.

CHARACTERISTICS OF BONDS IN THE Fe^EDTA

The charge of a particular atom of iron Name bonds to heteroatom atoms quantum chemically calculated length relationships, А The charge of a particular atom of iron Name bonds to heteroatom atoms quantum chemically calculated length relationships, А

1 2 3 1 2 3

-0.254 Fe-20h 2.30 -0.331 Fe-6N 2.39

-0.386 Fe-3OK Fe-8OK 2.35 2.18 -0.159 Fe-30K 2.29

-0.352 Fe-8OK 2.35 -0.168 Fe-2Oh Fe-4Oh 2.41 2.53

-0.302 Fe-7Oh 2.19 -0.420 Fe-2Oh Fe-30K Fe-4Oh 2,55 2.45 2.44

-0.561 Fe-3OK Fe-8OK Fe-1N 2.25 2.44 2.24 -0.219 Fe-4Oh Fe-5OK 2.73 2.23

-0.468 Fe-3OK Fe-9Oh Fe-10OK Fe-6N 2.27 2.65 2.57 2.,36 -0.423 Fe-6N Fe-5OK Fe-10OK 2,65 2,44 2.35

-0.532 Fe-6N Fe-90h 2.83 2.39 -0.235 Fe-4Oh 2.38

научный журнал (scientific journal) №6 2017 г.

http://www. bulletennauki. com

End Table 8.

1 2 3 1 2 3

-0.225 Fe-ioOK Fe-90h 2.24 2.47 -0.588 Fe—N Fe-20h Fe-40h 2.90 2.48 2.52

-0.264 Fe-90h Fe-ioOK 2.99 2.62 -0.329; -0.152 Fe-iN; Fe-90h 2.32; 2.322

There is no clear indicated earlier whichever is the higher charge on the iron atom, the value of the coordination number above. The structure of the EDTA Fe atoms with respect to the coordination number of the heteroatom atoms are within the range of I ... IV. The highest coordination numbers are observed in the iron atoms with Q (Fe) = -0,4 ... -0,5. It is not possible to identify the shortest bond: as such can be Fe-Ok (about 2.2 ... 2.4 a) and Fe-Oh (about 2.2 ... 2.5 A), except with those of Fe-10 (2.99A) and of Fe-15 (2.7A), the longest — Fe-N (about 2.2 ... 2.9 A). Denticity of hydroxyl oxygen atoms is I ... V, denticity by ketooxygen atoms is III ... V. VII is denticity of nitrogen atoms. This is all explained to the increasing complexity of simple molecules. For EDTMP ironcomplexone following structure (see Table 9).

Table 9.

CHARACTERISTICS OF THE BONDS IN THE Fe20 EDTMP

The charge of a particular atom of iron Name bonds to heteroatom atoms quantum chemically calculated length relationships, А The charge of a particular atom of iron Name bonds to heteroatom atoms quantum chemically calculated length relationships, А

1 2 3 1 2 3

-0.276 Fe-2P 2.82 -0.338 Fe-i5P 2.70

Fe-4Oh 2.20 Fe-i6Of 2.23

Fe-i8Oh 2.38

-0.314 Fe-3Of Fe-4Oh 2.17 2.46 -0.474 Fe-iiP Fe-i4Oh Fe-i0N Fe-i5P 2.87 2.43 2.73 2.86

Fe-iN 2.92

-0.427 Fe-7Of Fe-бР 2.28 2.69 -0.377 Fe-i0N 2.30

-0.309 Fe-7Of Fe-9Oh Fe-бР 2.18 2.79 2.69 -0.294 Fe-i2Of Fe-i4Oh 2.74 2.31

Fe-7Of 2.39 Fe-i4Oh 2.27

-0.372 Fe-бР 2.69 -0.141 Fe-i3Oh 2.32

Fe-8Oh 2.30 Fe-iiP 2.88

-0.525 Fe-3Of Fe-8Oh Fe-iN 2.34 2.28 2.21 -0.154 Fe-i4Oh Fe-i7Oh 2.29 2.31

Fe-i2Of 2.38

-0.268 Fe-4Oh Fe-5Oh Fe-2P 2.20 2.32 2.87 -0.573 Fe-i8Oh Fe-i3Oh Fe-i7Oh Fe-iiP Fe-i5P 2.74 2.67 2.49 2.71 2.76

2In this row of the table presents data on the 2 atoms of iron that has been done for reasons of compactness and tables Beauty

научный журнал (scientific journal) №6 2017 г.

http://www. bulletennauki. com

End Table 9.

1 2 3 1 2 3

Fe-бР 2.74

-0.611 Fe-7Oh Fe-iN Fe-ioN Fe-i7Oh Fe-8Oh 2.63 2.96 2.98 2.40 2.44 -0.447 Fe-14Oh Fe-1N Fe-2P 2.29 2.36 2.91

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Fe-3Of 2.17

-0.247 Fe-i6Of Fe-i5P Fe-i8Oh 2.25 2.87 2.45 -0.641 Fe-5Oh Fe-12Of Fe-2P Fe-пР Fe-10N 2.87 2.41 2.77 2.77 2.95

Fe-пР 2.74

-0.337 Fe-i8Oh 2.41 -0.321 Fe-12Of Fe-14Of 2.20 2.47

In the EDTMP structure is obvious that the iron atoms with respect to the coordination number of heteroatom atoms are within the range of I ... VI. The highest coordination numbers are observed in the iron atoms with Q (Fe) = -0.5 ... -0.6. The shortest bond are Fe-Of (about 2.2 ... 2.4 A), and Fe-P (on the order of 2.7 ... 2.9 A). Intermediate length can be called Fe-Oh (about 2.2 ... 2.4 A), except Fe-4 (2.8 A), Fe-17 and Fe-19 (2.9 A), Fe-Oh (2.6 A). The association with the phosphorus atom is unimportant in the formation of the charge on the iron atom (hence the electron density at the iron in EDTMP slightly higher than that of EDTA). Dentate on the phosphorus atom is II ... V, denticity of hydroxyl oxygen atoms is I ... V, denticity of by oxygen atoms of the phosphoryl group is I ... IV. Denticity of nitrogen atoms are VIII.

The dependence of K in the presence of N SM and NP SM on the charge density on the iron expressed in Figure 5.

NPSM 2 mmoi / l NPSM 10 mmoi / l NSM 2 mmoi / l NSM 10 mmoi / l

Figure 5. Dependence of the FePq — K type

If the graphical dependence were parallel, it would mean that there is no chemisorption component in the effect of inhibiting microbiological corrosion. The greater depth of the outflow of the electron density of the molecule to the iron atoms, the lower K. This pattern is shown using NPSM. Obviously, if this type of corrosion inhibition is caused largely bactericidal than adsorption on steel construction and consideration of such dependencies impracticable. For K = 0.1, FePq is below 0.5, the inhibitory properties lost when FePq = -0.35 ... -0.30, at a higher density starting promotion of corrosion.

Conclusion

Application of article approach, such as lack of hydration molecules, the use of pure iron atoms cluster instead of steel, neglect of participation in the adsorption of molecular hydrogen sulphide and its ions, semi-empirical methods of calculation sand modelling obviously do not impose the print on the accuracy and predictive ability of the author improved cluster modeling theory. This enhancement allows you to get more information about protection of inhibitors of metal than the traditional and generally accepted theory. The improved method of quantum chemical modeling provides a much more comprehensive set of data that can serve as an effective tool for forecasting. Because ironcomplexes is not seen as superficial, and as an independent organic compound (or rather, the adduct) with well-defined chemical composition, is similar to n-complexes may be calculated as the actual value of the electronic tags last structure and function of Fukui. This represents a great promise, because currently the selection of microbial corrosion inhibitors increasingly performed quantum-chemical methods of prediction, not a screening method [22].

There is no doubt that a significant role in shaping improvements quantum chemical modeling belongs to the tremendous development of the power of new versions of quantum chemical programs, as well as the full development of visual imaging software. As soon as supercomputers are increasingly becoming an essential attribute of any area of the economy, all of the above approach will be less needed along with an increase in the level of quantum-chemical theory.

Obviously, in the case of simple NTA and ATMP, which are formed of the same composition ironcomplexones molecule, the coordination number of the iron for Fe14ATMP much higher than Fe14NTA — so the first better inhibitor than the second. He also has a higher denticity of nitrogen. Dentate nitrogen EDTMP is extremely high and there is a large amount of iron bonds with phosphorus, so this matter will be the best inhibitor. Then will follow the EDTA, the latter — NTA.

References:

1. Al-Amiery, A. A., Kadhum, A. A. H., Alobaidy, A. H. M., Mohamad, A. B., & Hoon, P. S.

(2014). Novel Corrosion Inhibitor for Mild Steel in HCl. Materials, 7, 662-672. doi:10.3390/ma7020662

2. Andreev, N., Kuznetsov, Yu. I., & Agafonkin, M. O. (2011). Fundamental Aspects of Materials and corrosion protection of metals against corrosion: Sat. Reports on Internet Conf. by memory of Akimov G. V. Moscow, IPCC of RAS, VIAM

3. Asegbeloyin, J. N., Ejikeme, P. M., Olasunkanmi, L. O., Adekunle, A. S., & Ebenso, E. E.

(2015). A Novel Schiff Base of 3-acetyl-4-hydroxy-6-methyl-(2H)pyran-2-one and 2,2'-(ethylenedioxy)diethylamine as Potential Corrosion Inhibitor for Mild Steel in Acidic Medium. Materials, 8, 2918-2934. doi:10.3390/ma8062918

4. Avdeyev, Ya. G., Tyurina, M. V., Luchkin, A. Yu., & Kuznetsov, Yu. I. (2013). Inhibition of corrosion of mild steel in solutions of citric acid. Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 18, (5), 2262-2265

5. Beloglazov, G. S., Sikachina, A. A., Beloglazov, S. M. (2014). Modelling macroscopic properties of organic species on the basis of quantum chemical analysis (on an example of

inhibiting efficiency of ureides and acetylides against corrosion). Solid State Phenomena, 225, 7-12. doi:10.4028/www.scientific.net/SSP.225

6. Chausov, F. F., & Raevskaya, G. A. (2003). Kompleksonnyi vodno-khimicheskii rezhim teploenergeticheskikh sistem nizkikh parametrov. Izdanie 2-e, ispravlennoe i dopolnennoe. Izhevsk, Regulyarnaya i khaoticheskaya dinamika, 280

7. Dibetsoe, M., Olasunkanmi, L. O., Fayemi, O. E., Yesudass, S., Ramaganthan, B., Bahadur, I., Adekunle, A. S., Kabanda, M. M., & Ebenso, E. E. (2015). Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions. Molecules, 20, 15701-15734. doi:10.3390/molecules200915701

8. Manjula, P. (2009). Corrosion Inhibition by Sodium Gluconate-Zn2+-DTPMP System. E-Journal of Chemistry, 6, (3), 887-897. doi:10.1155/2009/859218

9. Ebenso, E. E., Isabirye, D. A., & Eddy, N. O. (2010). Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. Int. J. Mol. Sci., 11, 2473-2498. doi:10.3390/ijms11062473

10. Geerlings, P., & De Proft, F. (2002). Chemical Reactivity as Described by Quantum Chemical Methods. Int. J. Mol. Sci., 3, 276-309. doi:10.3390/i3040276

11. Junaedi, S., Al-Amiery, A. A., Kadihum, A., Kadhum, A. A. H., & Mohamad, A. B. (2013). Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies. Int. J. Mol. Sci., 14, 11915-11928. doi:10.3390/ijms140611915

12. Kadhum, A. A. H., Mohamad, A. B., Hammed, L. A., Al-Amiery, A. A., San, N. H., Musa, A. Y. (2014). Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin. Materials, 7, 4335-4348. doi:10.3390/ma7064335

13. Kuznetsov, Yu. I. (1996). Organic inhibitors of corrosion of metals. Leningrad, Plenum Press, 283

14. Mashuga, M. E., Olasunkanmi, L. O., Adekunle, A. S., Yesudass, S., Kabanda, M. M., Ebenso, E. E. (2015). Adsorption, Thermodynamic and Quantum Chemical Studies of 1-hexyl-3-methylimidazolium Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in HCl. Materials, 8, 3607-3632. doi:10.3390/ma8063607

15. Eddy, N. O., Momoh-Yahaya, H., & Oguzie, E. E. (2015). Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminum in 0.1 M HCl. Journal of Advanced Research, 6, (2), 203-217. doi:10.1016/j.jare.2014.01.004

16. Peme, T., Olasunkanmi, L. O., Bahadur, I., Adekunle, A. S., Kabanda, M. M., & Ebenso, E. E. (2015). Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions. Molecules, 20, 16004-16029. doi:10.3390/molecules200916004

17. Polenov, A. L. (2004). Resource and energy saving methods of water treatment and purification of heat supply systems. Scientific-practical seminar. Kazan, Kazan State University, 79-82

18. Polovnyak, V. K., Timofeeva, I. V., Bystrova, O. N., Polovnyak, S. V., & Aimanov, R. D. (2006). Protective action of nitrogen- and phosphor-containing inhibitors of hydrogen sulfide corrosion of steel and their industrial tests under the conditions of oil output and refining. Praktika protivokorrozionnoi zashchity, (3), 44-48

19. Potapov, S. A. (2003). Modern water treatment technology and equipment protection against corrosion and scale formation. Praktika protivokorrozionnoi zashchity, 20-23

20. Reutov, O. A., Kurtz, A. L., Butin, K. P. (2010). Organic Chemistry. 3rd ed. Moscow, MSU, 1, 700

21. Sikachina, A. A. (2015). Brief materials on a particular aspect of the study inhibitory activity of organic compounds. Abstracts of the 69th International Youth Scientific Conference Oil and Gas — 2015. Moscow, 2, 235. Available at: goo.gl/2GTz66

22. Sikachina, A. A., & Beloglazov, S. M. (2014). Use of aminopolykarbonoates and aminopolyphosphonates both biocides and inhibitors of microbial corrosion generated with Desulfovibrio desulfuricans. Sovremennye nauchnye issledovaniya i innovatsii, (2), 2. Available at: goo.gl/cSY5ju.

23. Sikachina, A. A. (2015). Quantum chemical modeling of the adsorption of organic compounds on steel carbon structural. Internet-zhurnal Naukovedenie, 7, (4), 96. doi:10.15862/47TVN415

24. Singh, A., Lin, Y., Quraishi, M. A., Olasunkanmi, L. O., Fayemi, O. E., Sasikumar, Y., Ramaganthan, B., Bahadur, I., Obot, I. B., Adekunle, A. S., Kabanda, M. M., & Ebenso, E. E. (2015). Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies. Molecules, 20, 15122-15146. doi:10.3390/molecules200815122

25. Saranya, J., Sounthari, P., Kiruthika, A., Saranya, G., Yuvarani, S., Parameswari, K., & Chitra, S. (2014). Experimental and Quantum chemical studies on the inhibition potential of some Quinoxaline derivatives for mild steel in acid media. Orient. J. Chem., 30, (4), 1719-1736

26. Zilberberg, I., Pelmenschikov, A., Mcgrath, C. J., Davis, W., Leszczynska, D., & Leszczynski, J. (2002). Reduction of Nitroaromatic Compounds on the Surface of Metallic Iron: Quantum Chemical Study. Int. J. Mol. Sci., 3, 801-813. doi:10.3390/i3070801

Список литературы:

1. Al-Amiery A. A., Kadhum A. A. H., Alobaidy A. H. M., Mohamad A. B., Hoon P. S. Novel Corrosion Inhibitor for Mild Steel in HCl // Materials. 2014. V. 7. 662-672. DOI: 10.3390/ma7020662.

2. Андреев Н., Кузнецов Ю. И., Агафонкин М. О. // Международная конференция, посвященная 110-летию со дня рождения член-кор. АН СССР Г. В. Акимова «Фундаментальные аспекты коррозионного материаловедения и защиты металлов от коррозии» (Москва, 18-20 мая 2011 г.): тез. докл. М.: ИФХЭ РАН, ВИАМ ГНЦ, ВАКОР. 2011. С. 216-217.

3. Asegbeloyin J. N., Ejikeme P. M., Olasunkanmi L. O., Adekunle A. S., Ebenso E. E. A Novel Schiff Base of 3-acetyl-4-hydroxy-6-methyl-(2H)pyran-2-one and 2,2'-(ethylenedioxy)diethylamine as Potential Corrosion Inhibitor for Mild Steel in Acidic Medium // Materials. 2015. V. 8. P. 2918-2934. DOI: 10.3390/ma8062918.

4. Авдеев Я. Г., Тюрина М. В., Лучкин А. Ю., Кузнецов Ю. И. Об ингибировании коррозии низкоуглеродистой стали в лимоннокислых растворах // Вестник Тамбовского университета. Серия: естественные и технические науки. 2013. Т. 18, №5, С. 2262-2265.

5. Beloglazov G. S., Sikachina A. A., Beloglazov S. M. Modelling macroscopic properties of organic species on the basis of quantum chemical analysis (on an example of inhibiting efficiency of ureides and acetylides against corrosion) // Solid State Phenomena. 2014. V. 225. P. 7-12. DOI: 10.4028/www.scientific.net/SSP.225.

6. Чаусов Ф. Ф., Раевская Г. А. Комплексонный водно-химический режим теплоэнергетических систем низких параметров. Издание 2-е, исправленное и дополненное. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2003. 280 с.

7. Dibetsoe M., Olasunkanmi L. O., Fayemi O. E., Yesudass S., Ramaganthan B., Bahadur I., Adekunle A. S., Kabanda M. M., Ebenso E. E. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions // Molecules. 2015. V. 20. P. 15701-15734. DOI: 10.3390/molecules200915701.

8. Manjula P. Corrosion Inhibition by Sodium Gluconate-Zn2+-DTPMP System // E-Journal of Chemistry. 2009. V. 6. №3, P. 887-897. DOI: 10.1155/2009/859218.

9. Ebenso E. E., Isabirye D. A., Eddy N. O. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium // Int. J. Mol. Sci. 2010. V.11. P. 2473-2498. DOI: 10.3390/ijms11062473.

10. Geerlings P., De Proft F. Chemical Reactivity as Described by Quantum Chemical Methods // Int. J. Mol. Sci. 2002. V. 3. P. 276-309. DOI: 10.3390/i3040276.

11. Junaedi S., Al-Amiery A. A., Kadihum A., Kadhum A. A. H., Mohamad A. B. Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies // Int. J. Mol. Sci. 2013. V. 14. P. 11915-11928. DOI: 10.3390/ijms140611915.

12. Kadhum A. A. H., Mohamad A. B., Hammed L. A., Al-Amiery A. A., San N. H., Musa A. Y. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin // Materials. 2014. 7. P. 4335-4348. DOI: 10.3390/ma7064335.

13. Кузнецов Ю. И. Органические игибиторы коррозии металлов. Ленинград: Пленум Пресс, 1996. 283 с.

14. Mashuga M. E., Olasunkanmi L. O., Adekunle A. S., Yesudass S., Kabanda M. M., Ebenso E. E. Adsorption, Thermodynamic and Quantum Chemical Studies of 1-hexyl-3-methylimidazolium Based Ionic Liquids as Corrosion Inhibitors for Mild Steel in HCl // Materials. 2015. V. 8. P. 3607-3632. DOI: 10.3390/ma8063607.

15. Eddy N. O., Momoh-Yahaya H., Oguzie E. E. Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminum in 0.1 M HCl // Journal of Advanced Research. 2015. V. 6. №2. P. 203-217. DOI: 10.1016/j.jare.2014.01.004.

16. Peme T., Olasunkanmi L. O., Bahadur I., Adekunle A. S., Kabanda M. M., Ebenso E. E. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions // Molecules. 2015. V. 20. P. 16004-16029. DOI: 10.3390/molecules200916004.

17. Поленов А. Л. Ресурсо- и энергосберегающие методы очистки воды и систем теплоснабжения. Научно-практический семинар. Казань: Казанский государственный университет, 2004. С. 79-82.

18. Половняк В. К., Тимофеева И. В., Быстрова О. Н., Половняк С. В., Айманов Р. Д. Защитное действие азот-, фосфорсодержащих ингибиторов сероводородной коррозии стали и их промышленные испытания в условиях нефтедобычи и нефтепереработки // Практика противокоррозионной защиты. 2006. №3. С. 44-48.

19. Потапов С. А. Современная технология очистки воды и защита оборудования от коррозии и накипи // Практика противокоррозионной защиты. 2003. С. 20-23.

20. Реутов О. А., Курц А. Л., Бутин К. П. Органическая химия. Изд. 3-е. М.: МГУ, 2010, Т. 1. 700 с.

21. Сикачина А. А. Краткие материалы по конкретному аспекту исследования ингибиторной активности органических соединений // 69-ая международная молодежная научная конференция «Нефть и газ — 2015. Секция 4. Инженерная и прикладная механика в нефтегазовом комплексе» (14-16 апреля 2015 г.): сборник тезисов. М., 2015. Т. 2. С. 235. Режим доступа: goo.gl/2GTz66.

22. Сикачина А. А., Белоглазов С. М. Использование аминополикарбоноатов и аминополифосфонатов как биоцидов и ингибиторов микробиологической коррозии, порождаемой Desulfovibrio desulfuricans // Современные научные исследования и инновации. 2014. №2. С. 2. Режим доступа: goo.gl/cSY5ju.

23. Сикачина А. А. Квантовохимическое моделирование адсорбции органических соединений на стали углеродистой конструкционной // Интернет-журнал Науковедение. 2015. Т. 7. №4 (29). С. 96. DOI: 10.15862/47TVN415.

24. Singh A., Lin Y., Quraishi M. A., Olasunkanmi L. O., Fayemi O. E., Sasikumar Y., Ramaganthan B., Bahadur I., Obot I. B., Adekunle A. S., Kabanda M. M., Ebenso E. E. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies // Molecules. 2015. V. 20. P. 15122-15146. DOI: 10.3390/molecules200815122.

25. Saranya J., Sounthari P., Kiruthika A., Saranya G., Yuvarani S., Parameswari K., Chitra S. Experimental and Quantum chemical studies on the inhibition potential of some Quinoxaline derivatives for mild steel in acid media // Orient. J. Chem. 2014. V. 30. №4. P. 1719-1736. Режим доступа: http://www.orientjchem.org/?p=5335.

26. Zilberberg I., Pelmenschikov A., Mcgrath C. J., Davis W., Leszczynska D., Leszczynski J., Reduction of Nitroaromatic Compounds on the Surface of Metallic Iron: Quantum Chemical Study // Int. J. Mol. Sci. 2002. V. 3. P. 801-813. DOI: 10.3390/i3070801.

Работа поступила Принята к публикации

в редакцию 11.05.2017 г. 15.05.2017 г.

Cite as (APA):

Sikachina, A. (2017). Polyaminipolyphosрнonates and polyaminopolycarbonoates (that are chelators) in mission of inhibiting of microbiological corrosion with Desulfovibrio desulfuricans. Bulletin of Science and Practice, (6), 24-40

Ссылка для цитирования:

Sikachina A. Polyaminipolyphosрнonates and polyaminopolycarbonoates (that are chelators) in mission of inhibiting of microbiological corrosion with Desulfovibrio desulfuricans // Бюллетень науки и практики. Электрон. журн. 2017. №6 (19). С. 24-40. Режим доступа: http://www.bulletennauki.com/sikachina-aa (дата обращения 15.06.2017).

i Надоели баннеры? Вы всегда можете отключить рекламу.