Научная статья на тему 'Получение информации о шероховатости с заданной вероятностью ее распознавания на основе компьютерной обработки видеоизображений поверхности'

Получение информации о шероховатости с заданной вероятностью ее распознавания на основе компьютерной обработки видеоизображений поверхности Текст научной статьи по специальности «Нанотехнологии»

CC BY
35
7
i Надоели баннеры? Вы всегда можете отключить рекламу.

Аннотация научной статьи по нанотехнологиям, автор научной работы — Абрамов А. Д.

Рассматривается оптико-электронный метод определения микрогеометрии поверхностей деталей машин и механизмов. В основу определения шероховатости положен вероятностный подход, основанный на вычислении средней амплитуды переменной составляющей автокорреляционной функции, которая получена по видеоизображениям исследуемой поверхности. Приведены результаты оценки шероховатости цилиндрической поверхности ролика подшипника после операции шлифования.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Получение информации о шероховатости с заданной вероятностью ее распознавания на основе компьютерной обработки видеоизображений поверхности»

Информационные технологии

УДК 621.517,681.142.36

ПОЛУЧЕНИЕ ИНФОРМАЦИИ О ШЕРОХОВАТОСТИ С ЗАДАННОЙ ВЕРОЯТНОСТЬЮ ЕЁ РАСПОЗНАВАНИЯ НА ОСНОВЕ КОМПЬЮТЕРНОЙ ОБРАБОТКИ ВИДЕОИЗОБРАЖЕНИЙ ПОВЕРХНОСТИ

А.Д, Абрамов1

Самарский государственный технический университет,

443100, Самара, ул. Молодогвардейская, 244,

Рассматривается оптико-электронный метод определения микрогеометрии поверхностей деталей машин и механизмов. В основу определена шероховатости положен вероятностный подход, основанный на вычислении средней амплитуды переменной составляющей автокорреляционной функции, которая получена по видеоизображениям исследуемой поверхности. Приведены результаты оценки шероховатости цилиндрической поверхности ролика подшипника после операции шлифования.

Ключевые слова: поверхность, микрогеометрия, оптико-электронный метод, компьютер, технология, шлифование, автокорреляция.

Введение. Широко известно, что во многих случаях микрогеометрия поверхности деталей машин и механизмов определяет их надежность и долговечность. Так, например, шероховатость трущихся поверхностей различных деталей двигателя автомобиля, коробки передач, ступицы колеса и т.д. существенно влияет на его эксплуатационные характеристики. Кроме того, известно также, что очень часто разрушение многих изделий начинается с поверхности. В связи с этим получение достоверной информации о состоянии рабочей поверхности деталей машин и механизмов как при их изготовлении, так и при эксплуатации является важным фактором в процессе повышения качества выпускаемой продукции.

В настоящее время информацию о микро- и макронеровностях получают, как правило, с использованием профильных методов. Среди них наибольшее распространение получил щуповой метод, при котором алмазная игла перемещается по поверхности детали. Информация о колебаниях иглы при перемещении по поверхности является основой для определения таких параметров шероховатости, как среднее арифметическое отклонение профиля поверхности от средней линии (-йа), высота неровностей профиля по десяти точкам {Иг) и т.п. [1]. Достоинства и недостатки существующих профильных методов изложены в [2]. Там же описывается оптикоэлектронный комплекс, включающий оптическую систему, видеокамеру, компьютер и программное обеспечение, с помощью которого определялась шероховатость по-

1 Абрамов Алексей Дмитриевич, кандидат технических наук, доцент.

верхности лопаток газотурбинных двигателей. При этом оценка шероховатости выполнялась на основе измерения среднего периода колебания автокорреляционных функций, полученных по видеоизображениям исследуемых поверхностей.

Основная часть. В предлагаемой работе использовался тот же самый оптикоэлектронный комплекс, но с новой методикой, позволяющей определять шероховатость поверхности с заданной вероятностью её распознавания на основе вычисления средней амплитуды переменной составляющей автокорреляционной функции. Для исследования были изготовлены методом бесцентрового шлифования на станке СВА АКМ 25/1 абразивными кругами на вулканитовой основе три образца из стали 111X15 с различной шероховатостью поверхности. Для этих же образцов на профилографе модели ЭД-201Р были записаны профилограммы и определены стандартные параметры шероховатости: образец №1 имел Яа~0,56мкм, образец №2 -На = 0,1Ъмкм и образец №3 - Яа = 0,0Ымкм. Найденные значения среднего арифметического отклонения профиля представляют собой средние значения, вычисленные по 10-ти измерениям для каждого образца. С помощью опти ко-электронного комплекса [2] были получены видеоизображения этих поверхностей формата 320x240 пикселей, приведенные на рис.1.

Образец № 1 Образец №2 Образец №3

Рис. I. Видеоизображения исследуемых поверхностей

Как видно из приведенных рисунков, образцы, выбранные для исследования, существенно отличаются друг от друга по внешнему виду. В изображении их поверхностей наблюдается ориентированная в вертикальном направлении текстура в виде чередования черных и белых полос, при этом ориентация черных и белых компонент в текстуре поверхности для образца №1 с наибольшей шероховатостью выражена более четко, чем для образца №3 с меньшей шероховатостью.

Характерные изменения уровня яркости видеосигнала по строке видеокадра поверхностей исследуемых образцов приведены на рис. 2.

Анализ приведенных видеосигналов показывает влияние шероховатости поверхности как на амплитуду видеосигнала, так и на его спектр. При этом наблюдается уменьшение амплитуды сигнала с уменьшением шероховатости. Можно было бы воспользоваться этой особенностью для идентификации шероховатости, если бы не существенная зависимость уровня видеосигнала не только от шероховатости, но и от множества других факторов, в частности, от общего уровня освещённости, от мощности падающего светового потока и т.п. Кроме того, в радиотехнике установлено, что амплитудная модуляция из всех известных обладает наименьшей устойчивостью к различным помехам [3].

В связи с вышесказанным для определения признаков, по которым можно достаточно надежно идентифицировать исследуемую поверхность, т.е. отнести ее к тому

пиксели

Образец №1

пиксели

Образец №2

255

% 192

&

й 128

О

64

О —|—|—(—I—I—I—I—I—*—^1—I—(—1—>-

О 40 80 120 160 200 240 280

пиксели

Образец №3

Р и с. 2. Уровень яркости видеосигналов исследуемых поверхностей образцов

или иному диапазону шероховатости была применена методика, изложенная в работе [2]. Вначале полутоновое черно-белое изображение преобразовывалось в бинарное. Преобразование осуществлялось с использованием окна 21*21 пиксель, которым сканировался весь кадр исходного изображения. В этом окне подсчитывался средний уровень яркости Вср, на основании которого преобразовывался центральный элемент окна Вц по правилу: Вц = 0РРН , если Вц > Вср, и Вц = ООН, ес-

ли Вц < Вср, В результате такого преобразования получался бинарный кадр формата

300x200 пикселей. Анализ полученных бинарных изображений (рис. 3) также показывает влияние шероховатости поверхности на её текстуру, а именно, образец №1 с более грубой шероховатостью имеет более четкую ориентацию черных и белых компонент (полос) в вертикальном направлении, чем образец №2, Для образца №3 указанные полосы сильно размыты, т.е. текстура изображения имеет более случайный характер.

Образец № 1 Образец №2 Образец №3

Р и с. 3. Бинарные изображения исследуемых поверхностей

Полученные бинарные изображения использовались в дальнейшем для того, чтобы с большой достоверностью различать поверхности с различной шероховатостью. Для этого в бинарном изображении задавался эталон размером NxN пикселя по центру полосы шириной в N пикселей. Этот эталон перемещался по всей выделенной полосе с шагом в 1 пиксель. При каждом совмещении эталона с текущим фрагментом изображения подсчитывалась сумма пикселей, совпавших в эталоне и текущем фрагменте. Этой сумме придавалось смысловое значение коэффициента корреляции. Для получения нормированного коэффициента корреляции найденная сумма делилась наЛ^хЛ^ пикселя. Таким образом, при полном совпадении эталона и текущего фрагмента изображения коэффициент корреляции принимал значение, равное 1, которому в памяти компьютера ставился в соответствие байт со значением ОРРН. Нулевому значению коэффициента корреляции при полном несовпадении эталона и текущего фрагмента соответствовал байт со значением 00#. После обработки первой полосы задавалась следующая полоса такой же высоты, но смещённая вниз на один пиксель, и в ней выполнялись те же действия. Таким образом, после обработки всего бинарного кадра для исследуемых образцов получались полутоновые автокорреляционные поверхности, характерный вид которых при размере эталона 64x64 пикселя приведен на рис. 4.

Образец № 1 Образец №2 Образец №3

Р и с. 4. Нормированные автокорреляционные поверхности исследуемых образцов

Их анализ показывает, что в этом случае также наблюдается ориентированная в вертикальном направлении текстура, и при этом ориентация также более четко вы-

ражена для поверхности с более грубой шероховатостью (образец № 1). Характерные изменения нормированных корреляционных сигналов представлены на рис. 5.

Из приведенных зависимостей также видно, что с увеличением шероховатости увеличивается частота колебаний автокорреляционной функции и увеличивается доля регулярной составляющей. При этом для поверхности с наилучшей шероховатостью (образец Х»3) наблюдается резкое падение амплитуды корреляционного сигнала от места взятия эталона, что может служить характерным признаком для идентификации (распознавания) изделий с заданными высокими показателями по качеству поверхности.

пиксели

Образец №1

пиксели

Образец №2

пиксели

Образец №3

Р и с. 5. Графики изменения нормированных автокорреляционных сигналов для исследуемых поверхностей

Для введения количественной оценки, на основании которой можно с заданной вероятностью надёжно распознать оптико-электронным методом неизвестную шероховатость исследуемой поверхности, в предлагаемой работе был применен следующий алгоритм, В автокорреляционной поверхности вычислялся средний уровень яркости Вср. Затем из каждого байта этой поверхности В1 вычиталось значение Вср

и подсчитывалась сумма всех разностей по абсолютной величине. После этого сумма делилась на площадь автокорреляционной поверхности:

v-»-s , О)

где S = N х N - количество пикселей (байт) в анализируемой поверхности.

Полученной таким образом оценке U можно придать смысловое значение средней амплитуды переменной составляющей двухмерной автокорреляционной функции. Отметим, что величина U также является безразмерной величиной, как и Bt. Путем применения рассмотренного алгоритма получения оценки шероховатости к исследуемым поверхностям для различных размеров эталонов были получены результаты, представленные в таблице.

Анализ приведенных данных показывает существенное влияние размера эталона как на среднюю амплитуду переменной составляющей автокорреляционной функции (АКФ), так и на её среднеквадратическое отклонение (СКО). При этом наилучшее различие по амплитуде и СКО для образцов с различной шероховатостью наблюдается при использовании эталона размером 64 х 64 пикселя. Для этого случая на рис. 6 приведен график зависимости среднего арифметического отклонения профиля исследуемых поверхностей от средней амплитуды переменной составляющей АКФ.

Как видно из приведенного графика, с увеличением среднего арифметического отклонения профиля от средней линии возрастает и средняя амплитуда переменной составляющей в автокорреляционной функции. Для получения аналитической зависимости Ra — f(U) в данной работе был использован интерполяционный метод Лагранжа [4], который позволил получить уравнение для Ra в виде

Ra = (4S*U3 -1044*{У2 + 7935*[/ -12069)*10-5,jwo* . (2)

Зависимость средней амплитуды переменной составляющей автокорреляционной функции от размера эталона

Ra, мкм Средняя амплитуда U

Эталон 2x2 Эталон 4x4 Эталон 8x8 Эталон 16x16 Эталон 32x32 Эталон 64x64

0,084 U = 70,8 о=3,6 U = 44,8 а-2,1 U = 26,9 о=1,4 и = 15,9 о=1,2 U = 9,6 ст=1,1 U = 6,1 о=0,8

0,13 U = 76,2 0=8,4 U = 54,3 а=5,6 U = 37,1 о=4,8 U = 24,2 о=3,7 U = 16,3 о=2,8 U = 11,4 о=2,7

0,56 U = 79,6 0=9,8 U = 56,0 0=6,4 [/ = 38,1 о=5,1 U = 26,7 а=4,6 С/= 21,0 о=3,5 U = 17,2 о=3,2

Для определения доверительных интервалов Iр, в которые попадает случайная

величина V, зададим вероятность распознавания шероховатости поверхности Р = 0,99. Проведенными исследованиями было установлено, что образец №1 имел среднеквадратическое отклонение от и, равное а = 3,2, образец №2 - а = 2,7 и образец №3 - сг = 0,8 (см. табл. 1), а сама случайная величина V подчиняется нормальному закону распределения. В этом случае число среднеквадратических отклонений 1р, которое нужно отложить вправо и влево от центра рассеивания для того,

чтобы вероятность попадания случайной величины £/ в полученный интервал была Р = 0,99, имеет значение 2,576 [5]. Для каждого образца было обработано по 30 изображений с различных участков исследуемой поверхности, т.е. п=30. Тогда среднеквадратическое отклонение оценки для и определяется по формуле [5]

о-,«

(3)

(Т у

ср

Следовательно, для образца №1 имеем аг = 0,58, для образца №2 ит = 0,49 и для образца №3 ит = 0,15 .Через величины и ат доверительный интервал выражается в виде

1р = (¿/ - *ат-,и + гр * ат ). (4)

Округляя вычисленные значения *<т1 в сторону увеличения, получим: для образца № 1 ~ 1 $= 1,5,- • -15,7 < С/ < 18,7; для образца №2 - Iе = 1,3,- * ■ 10,1 < 11 < 12,7; для образца № 3 - = 0,4,- • -5,7 < V <6,5.

Как видно из приведенных данных, доверительные интервалы для £/ с увеличением шероховатости возрастают и, что очень важно, не перекрываются. График зависимости 1р =/Р) приведен на рис. 7.

Яд, мхм

Р и с. 7. Зависимость доверительного интервала от средней амплитуды переменной составляющей автокорреляционной функции

Как видно из графика, зависимость Iр = /{и) имеет нелинейный характер. Используя и в этом случае интерполяционный метод Лагранжа, получили для доверительного интервала аналитическое выражение в виде

1р =(-1,2*гУ2 + 3853*гУ-150)*10-\ (5)

Заключение. Рассмотренная выше методика была применена для оценки шероховатости цилиндрической поверхности бомбинированного ролика подшипника ступицы колеса автомобиля ВАЗ. Отметим, что исследуемые образцы №1,...,№3 были изготовлены на том же оборудовании и по той же технологии, что и ролик. Для ролика режим шлифования был следующим: скорость абразивного круга 50 м/с, скорость ведущего круга 70 м/с, снимаемый припуск 0,01 мм, скорость продольной подачи 300 м/мин, работа с охлаждением и периодической правкой алмазным карандашом.

Бинарное изображение участка цилиндрической поверхности ролика, а также результаты преобразования этого изображения по рассмотренной выше методике приведены на рис. 8.

в

Р и с. 8. Результаты обработки исходного изображения участка цилиндрической поверхности ролика: а — бинарное изображение; б — автокорреляционная поверхность; в - график изменения

коэффициента автокорреляции

В связи с тем, что цилиндрическая поверхность ролика из-за своей кривизны по-разному отображается в фокальной плоскости видеосистемы (рис. 9), для вычисления I/ был взят центральный участок поверхности размером 239x80 пикселей. Обработка 30 бинарных изображений автокорреляционных поверхностей дали значение и = 7,3. Подставляя это значение в формулу (5), получаем 1р = 0,66 . Следова-

тельно, U min - 6,64 и U шах = 7,96. Используя найденные значения в формуле (2), получим: Ra = 0,089л(км, Äamin =0,086лиси и Дятах-0,091л«ои. Найденные значения среднего арифметического отклонения профиля цилиндрической поверхности ролика вполне согласуются со значениями, определёнными с помощью профилографа модели SJ-201P.

Таким образом, рассмотренный оптико-электронный комплекс и методика определения стандартных параметров шероховатости на основе компьютерной обработки видеоизображений анализируемых участков позволяют оценивать качество поверхности различных изделий, не нанося ей механических повреждений и в тех местах, где применение других методов не представляется возможным. Кроме того, этот комплекс позволяет организовать оперативный 100%-ный контроль качества выпускаемых изделий непосредственно в ходе их производства.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Дунин-Барковский И.В., Карташова А.Н. Измерение и анализ шероховатости, волнистости и некругл ости поверхности, - М: Машиностроение, 1987. - 232 с.

2. Абрамов А.Д Оценка микрогеометр ни поверхности лопаток ГТД на основе анализа их автокорреляционных функций Ü Вестник Самар, гос. техн. ун-та. - 2007. - №2.

3. Котельников В.А. Теория потенциальной помехоустойчивости. - М.: Радио и связь, 1998. - 151 с.: ил.

4. Мышкис А.Д Математика для технических вузов. Специальные курсы, 2-е изд. - СПб.: Лань, 2002,632 с.

5. Вентцель Е.С. Теория вероятностей: учебник для вузов. 5-е изд. - М.: Высшая школа, 1998. — 576 с.

Статья поступила в редакцию 6 октября 2008 г.

UDC 621,517,681.142.36

INFORMATION OF SURFACE ROUGHESS WITH DETERMINATED PROBOBILITY ON BASE OF COMPUTER TECHNOLOGIES OF OPTIC-ELECTRONIC MEANS

A.D. Abramov1

Samara State Technical University,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

244( Molodogvardeyskaya str., Samara, 443100.

In this article is offered optic-electronic method of determination surface microgeometry of machine and mechanism details. In the foundation of this method is laid in probable approach based on the calculation everage amplitude of alternating component of autocorrelative function as result of computer technologies of optic-electronic surface means. Here is estimation of roughness cilindric roll surface after grinding.

Key words: surface, microgeometry, optic-electronic means, computer, technologies, grinding, autocorrelation.

1 Aleksey D. Abramov, Candidate of Technical Sciences, Associate professor.

i Надоели баннеры? Вы всегда можете отключить рекламу.