2022 Т. 52 № 3 / Техника и технология пищевых производств / Food Processing: Techniques and Technology
ISSN 2074-9414 (Print) ISSN 2313-1748 (Online)
https://doi.org/10.21603/2074-9414-2022-3-2379 Original article
https://elibrary.ru/XIKMOP Available online at https://fptt.ru/en
Phase Transitions of Sweetened Condensed Milk in Extended Storage Temperature Ranges
Anastasia B. Ryabova* , Vladislav A. Tolmachev , Aram G. Galstyan
All-Russian Dairy Research Institute*1*-**, Moscow, Russia
Received: 31.05.2022 *Anastasia E. Ryabova: [email protected],
Revised: 20.06.2022 https://orcid.org/0000-0002-5712-2020
Accepted: 05.07.2022 Vladislav A. Tolmachev: https://orcid.org/0000-0001-5967-063X
Aram G. Galstyan: https://orcid.org/00 00-00 02-0786-20 55
© A.E. Ryabova, V.A. Tolmachev, A.G. Galstyan, 2022
Abstract.
Sweetened condensed milk is a popular food in various climatic zones, including those regions where average winter temperature falls below -30°C. Such low temperatures can trigger crystallization because they disrupt the native structure of biopolymers. These processes spoil the quality of sweetened condensed milk. However, no scientific publications feature the cryoscopic temperature of sweet condensed milk or systematize the data on its low-temperature storage.
Sugar, sugar-milk, and milk solutions of various concentrations were frozen to determine their cryoscopic temperature by the thermographic method using a Testo 176T4 meter (Germany) with K-type probes (NiCr-Ni) at -78.5°C. The phase transitions were studied using a Mettler Toledo DCS 822e DSC analyzer.
The nucleation temperature, the cryoscopic temperature, and the subcooling degree depended on the concentration and the type of the solute. For sugar solutions, the cryoscopic temperature varied from -0.4 ± 0.1 to -6.4 ± 0.1°C; for sugar-milk solutions, it ranged from -2.1 ± 0.1 to -10.9 ± 0.1°C; for whole milk solutions, it was from -0.4 ± 0.1 to -4.6 ± 0.1°C. The thermographic method failed to obtain the phase transition and the cryoscopic temperature in analogue models of sweetened condensed milk. The loss of fluidity was about -30°C when the storage time exceeded 2 h. This effect was comparable to 54 min of storage at -35°C. The differential scanning calorimetry method showed that the phase transition occurred at -80°C. This research opens new prospects for differential scanning calorimetry studies of phase transitions in condensed sweetened dairy products.
Keywords. Sweetened condensed milk, cryoscopic temperature, freezing, loss of fluidity, storage
For citation: Ryabova AE, Tolmachev VA, Galstyan AG. Phase Transitions of Sweetened Condensed Milk in Extended Storage Temperature Ranges. Food Processing: Techniques and Technology. 2022;52(3):526-535. (In Russ.). https://doi. org/10.21603/2074-9414-2022-3-2379
https://doi.org/10.21603/2074-9414-2022-3-2379 https://elibrary.ru/XIKMOP
Оригинальная статья https://fptt.ru
Фазовые переходы сгущенного молока с сахаром в расширенных температурных диапазонах хранения
®
А. Б. Рябова* , В. А. Толмачев , А. Г. Галстян
Всероссийский научно-исследовательский институт молочной промышленности1^,
Москва, Россия
Поступила в редакцию: 31.05.2022 Принята после рецензирования: 20.06.2022 Принята к публикации: 05.07.2022
*А. Е. Рябова: [email protected], https://orcid.org/0000-0002-5712-2020 В. А. Толмачев: https://orcid.org/0000-0001-5967-063X А. Г. Галстян: https://orcid.org/0000-0002-0786-2055
© А. Е. Рябова, В. А. Толмачев, А. Г. Галстян, 2022
Аннотация.
Сгущенные молочные консервы с сахаром пользуются спросом у потребителей в различных климатических поясах, в том числе в регионах со среднегодовой температурой зимой более -30 °С. Хранение при отрицательных температурах может оказывать негативное влияние на качественные показатели продукта, что связано с процессами кристаллизации и нарушения нативной структуры биополимеров. Однако современные систематизированные данные о процессах в области низкотемпературного хранения, а также криоскопической температуры сгущенного молока с сахаром практически отсутствуют.
Объектами исследования являлись сахарные, сахарно-молочные и молочные растворы различной концентрации. Их замораживали и определяли криоскопическую температуру термографическим способом с применением измерителя Testo 176T4 с зондами К-типа (NiCr-Ni) при температуре охлаждения до -78,5 °С. Фазовые переходы в сгущенном молоке с сахаром исследовали с применением дифференциальной сканирующей калориметрии анализатора Mettler Toledo DCS 822e.
Установлено, что температуры нуклеации, криоскопическая температура и степень переохлаждения зависели от концентрации и вида растворимого вещества. Криоскопическая температура составила для сахарных растворов с различной массовой долей сухих веществ от -0,4 ± 0,1 до -6,4 ± 0,1 °С, для сахарно-молочных растворов - от -2,1 ± 0,1 до -10,9 ± 0,1 °С, для растворов цельного молока - от -0,4 ± 0,1 до -4,6 ± 0,1 °С. В моделях-аналогах сгущенного молока с сахаром зафиксировать фазовый переход и определить криоскопическую температуру термографическим методом не удалось. Однако установлено, что потеря текучести моделей-аналогов ориентировочно фиксируется при температуре -30 °С и хранении более 2-х часов. Данный эффект был сопоставим с хранением на протяжение 54 мин при температуре -35 °С. Исследования сгущенного молока с сахаром методом дифференциальной сканирующей калориметрии показали, что фазовый переход наступает при температуре около -80 °С.
Созданы предпосылки для глубокого исследования фазовых переходов в сгущенных молочных продуктах с сахаром с применением дифференциальной сканирующей калориметрии.
Ключевые слова. Сгущенное молоко, криоскопическая температура, замораживание, текучесть, хранение
Для цитирования: Рябова А. Е., Толмачев В. А., Галстян А. Г. Фазовые переходы сгущенного молока с сахаром в расширенных температурных диапазонах хранения // Техника и технология пищевых производств. 2022. Т. 52. № 3. С. 526-535. https://doi.org/10.21603/2074-9414-2022-3-2379
Introduction
Sweetened condensed milk is a strategic high-energy food product because it is rich in milk and sucrose [1-6]. It is especially popular in the Business-to-Consumer segment and highly applicable in the daily diet. Its use patterns in the industrial sector are also extremely diversified, the main consumers being the confectionery industry and the ice-cream production [7-13]. Sweetened condensed milk has a high nutritional value and a long
shelf life, which explains why this product has become an integral part of the state food reserve, humanitarian aid, dry rations, etc. [4, 7, 11]. Regions with no dairy farming of their own are stable consumers of sweetened condensed milk. The indigenous peoples of the Russian Arctic are known to depend on sweetened condensed milk because they have to eat a lot of high-carbohydrate foods [6]. The air temperature in the region can fall much below -40°C. As a result, consumers cannot but violate
Table 1. Formulation of sugar-milk solutions Таблица 1. Рецептурный состав сахарно-молочных растворов
Component Variants of solution models
Sucrose solution
А1 А2 A3 A4
Sugar, g 15.0 30.0 45.0 68.0
Distilled water, g 85.0 70.0 55.0 32.0
Sugar-milk solution
В1 В2 В3 В4
Whole milk powder, g 28,5
Distilled water, g 85.0 70.0 55.0 32.0
Sugar, g 15.0 30.0 45.0 68.0
Solids, % 33.9 45.5 57.2 75.1
Whole milk solution
С1 С2 С3 С4
Whole milk powder, g 12.5 25.0 37.5 50.0
Distilled water, g 87.5 75.0 62.5 50.0
the recommended storage conditions of 0-10°C. However, industry experts put stress on the universality of the use of sweetened dairy products, regardless of climatic conditions and geographical location, which explains the relevance of research on their low-temperature storage.
Our review of scientific and technical publications revealed no systematic data on the freezing point of sweetened condensed milk and its subsequent storage at freezing temperatures [14-19]. The only publication that mentioned low-temperature storage of condensed milk was that by Pavlova, where the cryoscopic temperature of fresh sweetened condensed milk ranged from -26 to -29°C [14]. When the product reaches the cryoscopic temperature, moisture begins to crystallize. The resulting crystals of various shapes can trigger the abiogenic degradation of macrocomponents, which implies a decrease in storage stability [20-23]. Low storage temperature also reduces the rate of biochemical reactions.
In theory, the freezing process for simple solutions means that the stability of one phase ends at a certain point that corresponds to a particular set of system variables. In practice, point phase transitions are abstractions that imply infinite ideal and defect-free systems [24]. In real systems, they are a priori blurred. The diffusion dilemma consists in determining the range of characteristic values. In some cases, this diffusion can be so weak that the point phase transition stops being an abstraction. In other cases, the phase transition can be so blurred that its limits are impossible to determine. Therefore, no boundary exists between phase transitions of the first and second levels. For instance, point phase transition can be determined for the system of water - The study featured sugar, sugar-milk, and milk
extra pure sucrose but not for the system of water - food solutions of various concentrations, whole milk powder,
Figure 1. Experimental stand for determining the cryoscopic temperature
Рисунок 1. Экспериментальный стенд для определения криоскопической температуры
grade sucrose - milk powder, for which the probability of a point phase transition vanishes as the concentration of the components increases.
The present research objective was to analyze the change in the aggregate state of analogue models of sweetened condensed milk in the temperature range from +20 to -50°C and to determine its cryoscopic temperature.
Study objects and methods
The research was conducted at the Laboratory of Canned Dairy Products of the All-Russian Dairy Research Institute.
Figure 2. Freezing process Рисунок 2. Схематическое представление процесса замораживания
and commercial samples of sweetened condensed milk (State Standard 31688).
The sugar solutions had a concentration of 15, 30, 45, and 68%, while the milk solutions had a concentration of 12.5, 25, 37.5, and 50%. They were prepared by dissolving a certain mass of sucrose and whole milk powder in a given amount of water at 25 and 40°C, respectively. The calculations ignored the moisture content in the powder.
To assess the effect of the milk solid concentration on freezing and defrosting, the sugar-milk solutions were obtained by restoring the whole milk powder at 40°C for 20 min, followed by adding sugar according to State Standard 33222-2015 (Table 1). The whole milk powder was produced according to State Standard 336292015: 96.46% solids, 26% fat, 26% protein, solubility index = 0.1 mL of crude residue. The low saturation of the solution was maintained by the controlled mixing rate of 27 min-1 during the dissolution process.
All the solution samples weighed 35 g. They were poured into plastic flasks and sealed hermetically with lids with integrated temperature probes (Fig. 1).
The solutions were frozen in a low-temperature laboratory freezer Vestfrort VT 327 (Denmark) at -50 ± 1°C. Solid carbon dioxide in thermally insulated containers made it possible to obtain temperatures as low as -78.5 ± 0.5°C. The temperature was recorded every second using a combined Testo 176T4 meter (Germany). The device had four waterproof food probes made of K-type stainless steel (NiCr-Ni) with boundary values from -60 to -400°C. The samples were stored at the specified temperature. After they were taken out of the freezer, they thawed at 22 ± 1°C. Instrument readings and data export to Microsoft Excel for analysis and visualization were processed using the Testo-ComSoft Basic software.
The cryoscopic temperature was determined thermographically based the temperature curve plateau [25].
The fluidity of sweetened condensed milk analogue models was determined by freezing, followed by retrievability and visual assessment of the probes at -25 ... -50°C under refrigerator conditions.
The thawing kinetics of the analogue models was studied using a DSC822e Mettler Toledo differential scanning calorimeter under conditions of dynamic heating at a constant rate (https://www.mt.com). The results were processed using the STARe software.
Results and discussion
We divided the freezing process into three successive stages to ensure the terminological uniformity (Fig. 2):
- pre-freezing stage: the period of time between the start of freezing and the cryoscopic temperature (freezing point). At this stage, the system is supercooled to the nucleation temperature to trigger the nucleation of ice crystals. The release of latent crystallization heat corresponds to the start of the thermostatic plateau;
- freezing stage: the temperature at the considered area of the product is almost constant because the heat removal makes a large amount of water turn into ice, i.e., phase transformation;
- decline to storage temperature: most of the water has frozen, and the temperature decreases to the required end temperature [26].
At the first stage, we determined how the time of rational low-temperature storage of solutions affected their aggregation state. The main criterion for determining the exposure time in the dynamic temperature - time -concentration system was to register all the stages of the freezing process. Figure 3 shows the data for sugar
Figure 3. Thermograms of sugar solutions at various concentrations Рисунок 3. Термограммы сахарных растворов различной концентрации
Table 2. Moisture crystallization criteria in sugar, sugar-milk, and milk solutions. Таблица 2. Критерии кристаллизации влаги в сахарных, сахарно-молочных и молочных растворах
Variants of solution models Indicator
Nucleation temperature, °С Cryoscopic temperature, °С Subcooling degree Freezing time, s Point phase transition, s
А1 -1.4 ± 0.1 -0.4 ± 0.1 1.0 2827 2922
А2 -5.3 ± 0.1 -2.2 ± 0.1 3.0 2308 2500
A3 -9.9 ± 0.1 -6.4 ± 0.1 3.5 1570 1885
A4 - - - - -
В1 -2.1 ± 0.1 -2.1 ± 0.1 0 2224 2224
В2 -5.0 ± 0.1 -5.0 ± 0.1 0.9 1579 1927
В3 -10.9 ± 0.1 -10.9 ± 0.1 1.3 1276 1635
В4 - - - - -
С1 -0.4 ± 0.1 -0.4 ± 0.1 0 2730 2730
С2 -1.2 ± 0.1 -1.2 ± 0.1 0 2850 2850
С3 -2.6 ± 0.1 -2.6 ± 0.1 0 2280 2280
С4 -4.6 ± 0.1 -4.6 ± 0.1 0 1740 1740
solutions. Milk and sugar-milk solutions underwent the same procedure.
The onset of moisture crystallization process correlated with the temperature of the system: for 5% sucrose, the crystallization temperature was 0°C; for 45% sucrose, it was -9.9°C. Also, it was inversely dependent on the concentration of solids. The crystallization time decreased in proportion to the concentration of sucrose: for 5% sucrose, it was 39 min 14 s; for 45% sucrose, it lasted 6 min 40 s. However, no change in the aggregate state of the system was recorded as the sucrose concentration reached 68%. This effect was probably associated with the concentration features of the system, or inability to reach the critical temperature at which the phase transition occurs. Thus, it took the system four hours to stabilize completely and for the
temperature of the solutions to reach that of the external environment.
Table 2 shows the values of the obtained criteria that describe the process of freezing sugar, sugar-milk, and milk solutions.
Models A4 and B4 were analogues of sweetened condensed milk with sugar. They demonstrated no liquidsolid phase transition. However, a visual inspection revealed a change in the transparency of the solutions. All the samples had a firm texture, typical of frozen foods. The nucleation temperature, the cryoscopic temperature, and the subcooling degree directly depended on the concentration and the type of the solute. The dairy component had a strong impact on these indicators. The freezing time and the phase transition period declined as the concentration increased.
& & & & & & & & & & & & & & & & & S2? & & &
^ Л4
Time, hh:mm:ss A1 -A2 -A3 -A4
Figure 4. Freezing and defrosting curves for sugar solutionsat variousc oncentrations Рисунок 4. Типовые кривые замерзания и размораживания сахарных растворов различной концентрации
се
S3
¡г Й н
21 15 9 3 -3 -9 -15 -21 -27 -33 -39 -45 -51
J^ и* и^ и^ J* J^
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
-С?' &
V
Time, hh:mm:ss -VI — vr - V3
V4
Figure 5. Freezing and defrosting curves for sugar solutionsat variousc oncentrations Рисунок 5. Типовые кривые замерзания и размораживания сахарно-молочных растворов различной
■ csV csV csV csV csV csV csV ciV of? of? of? of? of? м? а;. л;? of? с^Р г^Р а;? «V
4s tP ni4 пУ Vs # 4s «Р n? >3 <гР s' n? nP "O № eP <-P нР Vs
л;1? Лр Л[У Л'> Л-V й? у> «> у- <-р с,- ь- НУ НУ ь- ь- (х- О? О? Ы>
Tkne, hh:mm:ss -С1 - С2 - С3
С4
Figure 6. Freezing and defrosting cuve s for miVrsolutions at various concentrations Рисунок 6. Типовые кривые замерзания и размораживания молочных растворов различной концентрации
0:00:01 0:20:01 0:40:01 1:00:01 1:20:01 1:40:01 2:00:01 2:20:01
-2 -15
j| -28
S
P -41
! -54 н
-67
Time, hh:mm:ss
Air temperature in the chamber' Upper confidence bound
■ Average analogue model data Lower confidence bound
Figure 7. Thermograms of analogue models of sweetened condensed milk frozen with solid carbon dioxide Рисунок 7. Термограммы моделей-аналогов сгущенного молока с сахаром при замораживании твердым диоксидом углерода
-•—Sugar solution (Yi) —•— Sugar-milk solution (Y2) • Milk solution (Y3)
Figure 8. Effect of concentration on cryoscopic temperature Рисунок 8. Зависимость изменения криоскопической температуры от концентрации растворов
Figures 3, 4, and 5 visualize the typical freezing and defrosting curves for sugar, sugar-milk, and milk solutions, respectively. As the graphs show, when milk was introduced into the system, it reduced the water crystallization time, like in sugar solutions. The defrosting data were particularly remarkable. The phase transition time during defrosting was 2-2.5 times longer than during freezing. The defrosting time decreased after the milk component was introduced into the system, which resulted in a smoother phase transition. Thus, the milk component shortened the freezing/defrosting time. Probably, this phenomenon could be explained by the extra moisture-binding agents that entered the system, i.e., powdered milk components and, in particular, protein. Models A4 and B4 had a much faster defrosting rate.
As the previous stage revealed no phase transition, additional studies had to be performed. Solid carbon
dioxide with a temperature of -78.5°C served as a refrigerant. However, this experiment also demonstrated no thermostatic plateaus typical for phase transitions (Fig. 7). The obtained results did not correspond to the data published by Pavlova in [14]. However, the multiple repetition of the experiment and the convergence of the values obtained made it possible to limit the scope of possible causal relationships to several options:
1. The rate of phase transition in this temperature range is less than one second. This value corresponds to the technical parameters of signal recorded by the device;
2. The technical parameters of the probes generate errors at the temperature range from -60 to -78.5°C;
3. Phase transitions occur at lower temperatures in complex polycomponent systems;
4. Diffusion dilemma.
Figure 9. Loss of fluidity after 54 min: a - at -30°С, b - at -32.5°С, c - at -35°С
Рисунок 9. Визуализация потери текучести исследуемых образцов моделей аналогов сгущенного молока с сахаром при хранении
в течение 54 мин: a - при -30 °С; b - при -32,5 °С; c - при -35 °С
Lab: Mettler Staree SW 15.00
Figure 10. Differential scanning calorimetry of commercial sweetened condensed milk Рисунок 10. Дифференциально сканирующая калориметрия промышленного образца сгущенного молока с сахаром
Figure 8 demonstrates the correlation between the effect of the concentration of solids on the dynamics of cryoscopic temperature in the solution. The dependences were non-linear, with three-power polynomials. Solutions with < 20% solids showed no significant changes in the freezing point. Further increase in concentration led to significant changes related to the nature, concentration, and possible synergistic effects of the dissolved components.
Since the thermographic method failed to register the cryoscopic temperature of the analogue models, we decided to determine the temperature range when liquid turns solid. The loss of fluidity depended mostly on the ambient temperature and the storage time. At -30°C and > 2 h of storage time, the effect was comparable to 54 min of storage at -35°C (Fig. 9). The appearance of crystal-like elements and the complete loss of fluidity under mechanical action were characteristic features of the structural change in the product. However, all
samples thawed within a few minutes, regardless of temperature and storage time.
Figure 10 illustrates the differential scanning calorimetry of a commercial sweetened condensed milk (State Standard 3168). The solidification occurred at -82 ... -80°C. The pronounced crystallization and thawing peaks confirmed the heterogeneity of the system and the polycrystalline nature of the freezing process.
Conclusion
The research revealed some freezing/defrosting patterns of sugar, sugar-milk, and milk solutions, depending on the nature and concentration of the components dissolved. The cryoscopic temperature decreased following the increase in the concentration of solids. In sugar and sugar-milk systems, the freezing time and the phase transition period decreased as the concentration characteristics of the system increased. In whole milk solutions, the freezing time and phase
transition increased as the concentration rose from 12.5 to 25%. With a further increase in concentration, they decreased, which was probably due to the multicomponent composition of the system and the heat of crystallization. In sweetened condensed milk, the loss of fluidity occurred at -30°C if the storage time exceeded 2 h. This result was comparable to a 54-min storage at -35°C. The methods employed failed to establish the phase transitions in analogue models of sweetened condensed milk. The research created prerequisites for a more profound differential scanning calorimetry of phase transitions in sweetened condensed dairy products.
Contribution
A.G. Galstyan and A.E. Ryabova developed the research concept and conducted a formal analysis. A.G. Galstyan developed the methodology and edited the manuscript. A.E. Ryabova and V.A. Tolmachev conducted the experiment and visualized the data. A.E. Ryabova drafted the manuscript. All the authors
were involved in the study and agreed on the final version of the manuscript.
Conflict of interest
The authors declare that there is no conflict of interests regarding the publication of this manuscript.
Критерии авторства
А. Г. Галстян и А. Е. Рябова разработали концепцию исследования и провели формальный анализ.
A. Г. Галстян разработал методологию, рассмотрел и отредактировал рукопись. А. Е. Рябова и
B. А. Толмачев провели эксперимент и визуализировали данные. А. Е. Рябова подготовила черновик рукописи. Все авторы были привлечены к исследованию, а также ознакомились и согласились с окончательным вариантом рукописи.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
References
1. Galstyan AG, Petrov AN, Radaeva IA, Turovskaya SN, Chervetsov VV, Illarionova EE, et al. Theory and practice of dairy canning. Moscow: Izdatel'skiy dom Fedotov D.A.; 2016. 181 p. (In Russ.). [Теория и практика молочно-консервного производства / А. Г. Галстян [и др.]. М.: Издательский дом «Федотов Д. А.», 2016. 181 с.].
2. Muzykantova AV, Gnezdilova AI, Vinogradova YuV, Shevchuk VB. Concentrated dairy product with sugar with increased biological value. Dairy Industry. 2021;(7):46-47. (In Russ.). https://doi.org/10.31515/1019-8946-2021-07-46-47
3. Guseva TB, Karanian OM, Kulikov TS, Radaeva IA. Scientific and practical aspects of increasing the shelf life of canned milk. Food Products Commodity Expert. 2019;(11):52-56. (In Russ.). [Научные и практические аспекты увеличения срока годности молочных консервов / Т. Б. Гусева [и др.] // Товаровед продовольственных товаров. 2019. № 11. С. 52-56.].
4. Jafari S, Jouki M, Soltani M. Modification of physicochemical, structural, rheological, and organoleptic properties of sweetened condensed milk by maltodextrin, fructose, and lactose. Journal of Food Measurement and Characterization. 2021;15(4):3800-3810. https://doi.org/10.1007/s11694-021-00976-w
5. Hasan SM, Ullah S, Umer M, Shah MK, Zaman A, Hussain I, et al. An-overview on buffalo condensed milk and its products with emphasis of their biochemical properties. Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences. 2021;64(3):301-306. https://doi.org/10.52763/PJSIR.BI0L.SCI.64.3.2021.301.306
6. Andronov S, Lobanov A, Popov A, Luo Y, Shaduyko O, Fesyun A, et al. Changing diets and traditional lifestyle of Siberian Arctic Indigenous Peoples and effects on health and well-being. Ambio. 2021;50(11):2060-2071. https://doi. org/10.1007/s13280-020-01387-9
7. Illarionova EE, Turovskaya SN, Radaeva IA. To the question of increasing of canned milk storage life. Relevant Issues of the Dairy Industry, Intersectoral Technologies, and Quality Management Systems. 2020;1(1):225-230. (In Russ.). https://doi.org/10.37442/978-5-6043854-1-8-2020-1-225-230
8. Jouki M, Jafari S, Jouki A, Khazaei N. Characterization of functional sweetened condensed milk formulated with flavoring and sugar substitute. Food Science and Nutrition. 2021;9(9):5119-5130. https://doi.org/10.1002/fsn3.2477
9. Rawendra RDS, Puspita VO. Use of Six sigma methods to reduce packaging defect in sweetened condensed milk sachets: A case study in XYZ milk industry, Indonesia. IOP Conference Series: Earth and Environmental Science. 2020;426(1). https://doi.org/10.1088/1755-1315/426/1/012174
10. Demina EN, Berezina NA, Kazakov AV. Optimization of the formulation of ice cream by the method of simplexlattice planning. Storage and Processing of Farm Products. 2021;(1):104-116. (In Russ.). https://doi.org/10.36107/spfp.2021.192
11. Turovskaja S, Illarionova E, Radaeva I, Galstyan A. Improving the regulatory framework for the production and circulation of canned milk. Production Quality Control. 2018;(1):28-33. (In Russ.). [Совершенствование нормативной базы производства и обращения молочных консервов / С. Н. Туровская [и др.] // Контроль качества продукции. 2018. №. 1. С. 28-33.].
12. Golovan DS, Berseneva A, Belova MP, Chernega OP. Expansion of the range of confectionery products enriched with vegetable components. Bulletin of Youth Science. 2021;28(1). https://doi.org/10.46845/2541-8254-2021-1(28)-11-11
13. Voronina MS, Gulyaeva AN, Nisteryuk DI, Shlyapnikova EN. Formulation development and analysis of the properties of ice cream with the addition of beer. Polzunovskiy Vestnik. 2022;(1):67-72. (In Russ.). https://doi.org/10.25712/ ASTU.2072-8921.2022.01.009
14. Artyukhova SI, Kozlova OV, Тolstoguzova ТТ. Developing freeze-dried bioproducts for the Russian military in the Arctic. Foods and Raw Materials. 2019;7(1):202-209. http://doi.org/10.21603/2308-4057-2019-1-202-209
15. Pavlova YuV. Long-term storage of sweet condensed milk at low temperatures. Cand. eng. sci. abstract diss. Moscow, 1991. 21 p. (In Russa.). [Павлова Ю. В. Длительное хранение сгущенного молока с сахаром при отрицательных температурах: автореф. дис. ... канд. техн. наук: 05.18.15. М., 1991. 21 с.].
16. Turovskaya SN, Galstyan AG, Radaeva IA, Illarionova EE. Effect of freezing on the quality of defrosted condensed raw milk. Milk Processing. 2018;221(3):28-29. (In Russ.). [Влияние замораживания на качество дефростированного сгущенного молока-сырья / С. Н. Туровская [и др.] // Переработка молока. 2018. Т. 221. № 3. С. 28-29.].
17. Guryeva KB, Ivanova EV, Tyugay OA. Studying the effect of temperature parameters on the quality of canned milk - "whole condensed milk with sugar". Food Products Commodity Expert. 2019;(7):55-61. (In Russ.). [Гурьева К. Б., Иванова Е. В., Тюгай О. А. Изучение влияния температурных параметров на качество молочных консервов «молоко цельное сгущенное с сахаром» // Товаровед продовольственных товаров. 2019. № 7. С. 55-61.].
18. Zavorokhina NV, Leontyeva NA. Research quality of the sweetened condensed milk at long storage. Storage and Processing of Farm Products. 2016;(2):22-24. (In Russ.). [Заворохина Н. В., Леонтьева Н. А. Исследование качества молока сгущенного с сахаром при длительном хранении // Хранение и переработка сельхозсырья. 2016. № 2. С. 22-24.].
19. Kruchinin AG, Illarionova EE, Bigaeva AV, Turovskaya SN. The role of dry milk technological properties in forming the quality of food systems. Bulletin of KSAU. 2020;161(8):166-173. (In Russ.). https://doi.org/10.36718/1819-4036-2020-8-166-173
20. Long-term storage in permafrost in the Russian Federation [Internet]. [cited 2022 May 13]. Available from: https://rosrezerv.gov.ru/Konsultativnij_sovet/Obmen_opitom/JEksperiment_po_dlitelnomu_hraneniju_v_v [Эксперимент по длительному хранению в вечной мерзлоте продолжается (Российская Федерация). URL: https://rosrezerv.gov.ru/ Konsultativnij_sovet/Obmen_opitom/JEksperiment_po_dlitelnomu_hraneniju_v_v (дата обращения: 13.05.2022).].
21. James C, Hanser P, James SJ. Super-cooling phenomena in fruits, vegetables and seafoods. 11th International Congress on Engineering and Food (ICEF 2011); 2011; Athens. Athens; 2011. p. 22-26.
22. Vizgalov SV, Mustafin TN, Ibraev AM. Fish freezing in chambers with intensive air circulation. Bulletin of the Technological University. 2010;(10):281-286. (In Russ.). [Визгалов С. В., Мустафин Т. Н., Ибраев А. М. Оценка времени замораживания рыбы в камерах с интенсивной циркуляцией воздуха // Вестник технологического университета. 2010. № 10. С. 281-286.].
23. James C, Seignemartin V, James SJ. The freezing and supercooling of garlic (Allium sativum L.). International Journal of Refrigeration. 2009;32(2):253-260. https://doi.org/10.1016/j.ijrefrig.2008.05.012
24. Kharenko EN, Arkhipov LO, Yarichevskaya NN. Influence of cryoscopic temperature variability on water freezing. Trudy VNIRO. 2019;176:81-94. (In Russ.). [Харенко Е. Н., Архипов Л. О., Яричевская Н. Н. Установление функциональной зависимости количества вымороженной воды от индивидуальных криоскопических температур рыбы // Труды ВНИРО. 2019. Т. 176. С. 81-94.].
25. Bogdanov VD, Simdyankin AA. Thermal properties of commercial hydrobionts' tissues in the freezing process. Foods and Raw Materials. 2019;7(2):247-254. http://doi.org/10.21603/2308-4057-2019-2-247-254
26. Diffused phase transitions. Vol. 1. Riga, 1970. 115 p. (In Russ.). [Размытые фазовые переходы. Вып. 1. Рига, 1970. 115 с.].
27. James C, Lejay I, Tortosa N, Aizpurua X, James SJ. The effect of salt concentration on the freezing point of meat simulants. International Journal of Refrigeration. 2005;28(6):933-939. https://doi.org/10.1016/j.ijrefrig.2005.01.011
28. International Institute of Refrigeration: Guidelines for frozen food production and storage. Refrigeration Technology. 2015;(9):58-59. (In Russ.). [Рекомендации Международного института холода по производству и хранению замороженных пищевых продуктов // Холодильная техника. 2015. № 9. С. 58-59.].