Научная статья на тему 'Перспективный метод ремонта нефтепроводов с помощью усиливающей композиционной муфты'

Перспективный метод ремонта нефтепроводов с помощью усиливающей композиционной муфты Текст научной статьи по специальности «Технологии материалов»

CC BY
334
44
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НЕФТЕПРОВОД / КАПИТАЛЬНЫЙ РЕМОНТ / УСИЛИВАЮЩАЯ КОМПОЗИЦИОННАЯ МУФТА / КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ / OIL PIPELINE / OVERHAUL / REINFORCING COMPOSITE COUPLING / COMPOSITE MATERIALS

Аннотация научной статьи по технологиям материалов, автор научной работы — Кочергина А.В., Томарева И.А., Беляков Р.В.

Одной из актуальных проблем в нефтегазодобывающей отрасли стали многочисленные аварии трубопроводов, которые требуют инновационных решений. В данной статье был проанализирован перспективный метод ремонта с помощью композиционных муфт, которые включают в себя множество достоинств по сравнению с конструкциями из стали. А также приведены прочностные характеристики муфт и описан их процесс установки.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

A PROMISING METHOD FOR REPAIRING OIL PIPELINES USING A REINFORCING COMPOSITE COUPLING

One of the most pressing problems in the oil and gas industry is numerous pipeline accidents that require innovative solutions. This article analyzes a promising method of repair using composite couplings, which include many advantages compared to steel structures. The strength characteristics of the couplings are also given and their installation process is described.

Текст научной работы на тему «Перспективный метод ремонта нефтепроводов с помощью усиливающей композиционной муфты»

Перспективный метод ремонта нефтепроводов с помощью усиливающей

композиционной муфты

А.В. Кочергина, И.А. Томарева, Р.В. Беляков Волгоградский государственный технический университет

Аннотация: Одной из актуальных проблем в нефтегазодобывающей отрасли стали многочисленные аварии трубопроводов, которые требуют инновационных решений. В данной статье был проанализирован перспективный метод ремонта с помощью композиционных муфт, которые включают в себя множество достоинств по сравнению с конструкциями из стали. А также приведены прочностные характеристики муфт и описан их процесс установки.

Ключевые слова: нефтепровод, капитальный ремонт, усиливающая композиционная муфта, композиционные материалы.

На данный момент в России насчитывается около 250 тыс. километров трубопроводов, находящихся в эксплуатации и предназначенных для транспортировки нефти и газа. Со временем, под влиянием перекачиваемых по ним продуктов, режима эксплуатации и внешней среды, ухудшается несущая способность нефтепроводов, что приводит к серьезным авариям и неизбежным последствиям. Большинство труб выполнены из стали, которые имеют небольшой строк эксплуатации, так как подвержены коррозии.

Выбор технологии производства работ на действующих сетях становится одной из важных проблем в нефтедобывающей отрасли, так как увеличиваются объемы работ по ремонту нефтепроводов. В связи с этим возникает необходимость разработки и совершенствовании методов ремонта нефтепроводов с применением композиционных полимерных материалов [14].

Применение чистого пластика, как полимерного материала имеет серьезные недостатки, что предполагает создание конструкций из композиционных материалов. К таким недостаткам относятся:

а) чувствительность работы на изгиб из-за недостаточной жесткости и прочности, устранение которых предполагает увеличение денежных затрат;

б) некоторые виды полимерных материалов могут разрушаться под воздействием ультрафиолета;

в) некоторые пластики подвержены ползучести, за счет чего может происходить удлинение, которое заканчивается разрушением.

Композиционный материал является одним из наиболее перспективных материалов для ремонта различных категорий трубопроводов, которые имеют такие преимущества, как прочность, легкость, коррозионная стойкость.

Состав композиционного материала может быть из двух и более материалов, свойства которых оказывают взаимоусиливающее действие. Благодаря комбинации армирующего волокна и

полиуретанового/эпоксидного связующего, композиционные ремонтные муфты могут достигать высоких характеристик сопротивления в 1,5-2 раза выше, чем у стали. Стекловолокно или углеволокно выступает в качестве армирующего компонента [5-6].

Ликвидация дефектов нефтепроводов происходит с помощью композитных материалов, которые перераспределяют кольцевые нагрузки на стенке трубы, путем переноса их на армирующее волокно. Равномерная передача напряжений достигается с помощью специальных эпоксидных составов - праймеров. Наружный слой композиционного материала создает условия для надежной эксплуатации нефтепровода при максимально допустимом рабочем давлении.

Рассмотрим метод ремонта трубопроводов с помощью композиционных муфт.

Композиционная муфта — это современная технологичная конструкция для ремонта трубопроводов и соединительных деталей трубопроводов (СДТ) с геометрией любой сложности (переходы, тройники, отводы). Композитные муфты с болтовыми соединениями делятся на

Я Инженерный вестник Дона, №4 (2020) ivdon.ru/ru/magazine/arcliive/n4y2020/6397

несколько типов: РСМ, КСМ, УКМТ. Расчет таких ремонтных конструкций осуществляется по стандартам ISO 24817 и ASME PCC-2, регламентирующих размеры муфт в зависимости от параметров трубопровода, типа дефекта и перекачиваемой среды. Процесс установки композитных муфт не требует использования специального оборудования, а также может осуществляться силами двух человек (при малых диаметрах труб - даже одного) [7-9].

УКМТ состоит из двух полуоболочек, изготовленных путем однонаправленной намотки стеклоровинга на фланцы из нержавеющей стали, которые с одной стороны соединены между собой шарниром, а с другой болтами (рис. 1). При работе муфты, за счет возникновения контактного давления снаружи трубы, происходит компенсация внутреннего давления в трубе. Это позволяет устанавливать муфту при рабочих давлениях с гарантированным качеством. УКМТ стягиваются болтами (ГОСТ 1173878), которые могут идти в комплекте с гроверными шайбами, не допускающими раскручивание при длительных вибрационных нагрузках. Такие шайбы актуальны при проведении ремонта трубопроводов вблизи компрессорных станций [10].

Рис. 1. - Усиливающая композиционная муфта трубопровода

Прочность силового корпуса муфты намного превосходит прочность бездефектной трубы, а усилие сжатия предоставляет практически полную разгрузку металла нефтепровода от внутреннего давления.

Прочностные характеристики УКМТ приведены в таблице № 1.

Таблица № 1

Прочностные характеристики УКМТ

Прочность при разрыве, МПа, не менее 800

Изгибающее напряжение при разрыве, МПа, не менее 200

Модуль упругости в окружном направлении, МПа, не менее 3,0х104

Плотность, кг/м3 1600-1800

Водопоглощение за 24 часа, %, не более 0,2

Последовательность процесса установки муфты проходит в несколько этапов. На первом этапе осуществляется очистка поверхности трубы с удалением жирного слоя. Второй этап заключается в подготовке вкладыша, который устраняет негативное механическое воздействие на сварные стыки. Включение вкладыша в конструкцию муфты позволяет устанавливать ее на продольно- и спиральношовные трубы и применять для ремонта дефектов, находящихся вблизи вертикального сварного стыка. Третьим этапом является нанесение клеевого состава и монтаж вкладыша. Его длина несколько больше длины силового корпуса, что делает возможным ремонтировать протяжённые прямолинейные участки нефтепровода без разрыва, устанавливая муфты встык друг за другом. Полимерный вкладыш обеспечивает изоляцию отремонтированных участков трубы от воздействия внешней среды, а также дает возможность эксплуатировать трубопровод при увеличении внутренних дефектов до сквозных. Завершающими этапами являются установка муфты, ее герметизация и восстановление изоляции.

При изучении данной темы был выявлен ряд преимуществ ремонта нефтепроводов при помощи полимерных композиционных материалов. Первым преимуществом является высокое сопротивление разрушению, по сравнению со стальными конструкциями. Помимо этого полимерные композиционные материалы являются достаточно легкими (легче, чем сталь),

следовательно, нет необходимости использовать сложное дорогое оборудование. Высокая устойчивость к коррозии и износостойкость обеспечивают увеличение срока службы труб. Возможность использования на сложных изогнутых участках (тройниках, отводах), а также в труднодоступных местах, решает больше аварийных проблем. При нагреве до температуры + 1106С материал не выделяет вредных летучих веществ, что является экологически безопасным.

Также к немаловажным преимуществам относятся: восстановление несущей способности конструкции, возможность применения для подводного ремонта, отсутствие специальной квалификации персонала, широкий диапазон сред и температур.

Главные плюсы:

а) низкая стоимость;

б) низкие временные затраты (по отношению к другим методам ремонта);

в) универсальность применения;

г) постоянный метод ремонта.

Литература

1. Аскаров P.M. Комплексный подход к ремонту газопроводов больших диаметров, пораженных стресс-коррозией. // Наука и техника в газовой промышленности. 2001. № 4. 35 с.

2. Антонов В.Г., Балдин A.B., Галиуллин З.Т. и др. Исследование условий и причин коррозионного растрескивания труб магистральных газопроводов. М.: ВНИИЭгазпром, 1991. 43 с.

3. Гумеров А.Г., Ямалеев К.М., Гумеров Р.С., Азметов Х.А. Дефектность труб нефтепроводов и методы их ремонта. М.: Недра, 1998. 252 с.

4. Гумеров А.Г., Векштейн М.Г., Гумеров Р.С. Аварийно-восстановительный ремонт магистральных нефтепроводов. М.: Недра, 1998. 271 с.

5. Айнбиндер А.Б., Камерштейн А.Г. Расчет магистральных трубопроводов на прочность и устойчивость. М.: Недра, 1982. 341 с.

6. Аникин Е.А., Габелая Р.Д., Салюков В.В. Эффективные методы ремонта магистральных трубопроводов // Обзорн. инф. Сер. «Ремонт трубопроводов». М.: ООО «ИРЦ Газпром», 2001. 108 с.

7. Березин В.Л. и др. Капитальный ремонт магистральных трубопроводов. М.: Недра, 1978. 301 с.

8. Халлыев Н.Х. Совершенствование технологии и организации капитального ремонта магистральных газопроводов // Автореферат диссертации на соискание учёной степени доктора технических наук. М.: 1986. 54 с.

9. Baker T.R., Parkins R.N., Rochfort G.G. Investigation Relating to Stress Corrosion Cracking on the Pipeline Authority's Moomba to Sydney Pipeline. Proc. of 7th Symp. Line Pipe Research. 1986. AGA, Arlington, N 15495/27-1.

10. Parkins R.N., Line pipe corrosion cracking-prevention and control. 1995. apr. Cambridge p. 18-21.

References

1. Askarov P.M. Nauka i tekhnika v gazovoy promyshlennosti. 2001. № 4. 35

p.

2. Antonov V.G., Baldin A.B., Galiullin Z.T. i dr. Issledovaniye usloviy i prichin korrozionnogo rastreskivaniya trub magistral'nykh gazoprovodov. [Investigation of the conditions and causes of corrosion cracking of pipes of gas pipelines]. M.: VNIIEgazprom, 1991. 43 p.

3. Gumerov A.G., Yamaleyev K.M., Gumerov R.S., Azmetov KH.A. Defektnost' trub nefteprovodov i metody ikh remonta. [Defective oil pipelines and methods for their repair]. M.: Nedra, 1998. 252 p.

4. Gumerov A.G., Vekshteyn M.G., Gumerov R.S. Avariyno-vosstanovitel'nyy remont magistral'nykh nefteprovodov. [Emergency recovery repairs of oil trunk pipelines]. M.: Nedra, 1998. 271 p.

5. Aynbinder A.B., Kamershteyn A.G. Raschet magistral'nykh truboprovodov na prochnost' i ustoychivost'. [Calculation of trunk pipelines for strength and stability]. M.: Nedra, 1982. 341 p.

6. Anikin E.A., Gabelaya R.D., Salyukov V.V. Obzorn. inf. Ser. «Remont truboprovodov». M.: OOO «IRTS Gazprom», 2001. 108 p.

7. Berezin B.L. i dr. Kapital'nyy remont magistral'nykh truboprovodov. [Overhaul of main pipelines]. M.: Nedra, 1978. 301 p.

8. Khallyyev N.KH. Sovershenstvovaniye tekhnologii i organizatsii kapital'nogo, remonta magistral'nykh gazoprovodov. [Improving the technology and organization of major repairs of gas pipelines]. Avtoreferat dissertatsii na soiskaniye uchenoy stepeni doktora tekhnicheskikh nauk. M.: 1986. 54 p.

9. Baker T.R., Parkins R.N., Rochfort G.G. Proc. of 7th Symp. Line Pipe Research. 1986. AGA, Arlington, N 15495/27-1.

10. Parkins R.N., Line pipe corrosion cracking-prevention and control. 1995. apr. Cambridge. pp. 18-21.

i Надоели баннеры? Вы всегда можете отключить рекламу.