Научная статья на тему 'Перенормировка статического собственного потенциала'

Перенормировка статического собственного потенциала Текст научной статьи по специальности «Физика»

CC BY
66
21
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СОБСТВЕННЫЙ ПОТЕНЦИАЛ / ПЕРЕНОРМИРОВКА / SELF-FORCE / RENORMALIZATION

Аннотация научной статьи по физике, автор научной работы — Попов А. А.

В работе представлен метод перенормировки собственного потенциала скалярного поля, создаваемого покоящимся точечным зарядом, во внешнем статическом гравитационном поле. Метод основан на локальном разложении поля такого заряда в его окрестности.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

RENORMALIZATION OF STATIC SELF-POTENTIAL

A method is presented which allows for the renormalization of the self-potential of a scalar point charge at rest in static curved spacetime. The method is based on the local expansion of the selfpotential for a scalar point charge at rest in general static spacetimes.

Текст научной работы на тему «Перенормировка статического собственного потенциала»

UDC 530.1; 539.1

Renormalization of static self-potential A. A. Popov

institute of Mathematics and Mechanics, Kazan Federal University, 18 Kremlyovskaya St., Kazan, 420008, Russia

E-mail: [email protected]

A method is presented which allows for the renormalization of the self-potential of a scalar point charge at rest in static curved spacetime. The method is based on the local expansion of the self-potential for a scalar point charge at rest in general static spacetimes.

Keywords: self-force, renormalization.

1 Introduction

Renormalization

It is known that a charged particle interacts with the field, the source of which is this particle [1-6]. A discussion of the self-force in detail may be found in reviews [7-9].

Calculating the self-force one must evaluate the field that the point charge induces at the position of the charge. This field diverges and must be renormalized. There are different methods of such type of renormalization. Some of them are reviewed in recent papers [10,11].

Note also the zeta function method [12] and ’’the massive field approach” for the calculation of the selfforce [13,14]. In the ultrastatic spacetimes the renormalization of the field of static charge can be realize by the subtraction of the first terms from DeWitt-Schwinger asymptotic expansion of a three dimensional Euclidean Green’s function [15-18].

In this paper similar approach expands to the case of static spacetimes. In framework of suggested procedure one subtracts some terms of expansion of the corresponding Green function of a massive scalar field with arbitrary coupling to the scalar curvature from the divergent expression obtained. The quantities of the terms to be subtracted are defined by simple rule

- they no longer vanish as the field’s mass goes to the infinity.

Such approach is similar to renormalization introduced in the context of the quantum field theory in curved spacetime [19, 20]. The Bunch and Parker method [21] is used for expansion of the corresponding Green’s function of a scalar field.

Our conventions are those of Misner, Thorne, and Wheeler [22]. Throughout this paper, we use units c = G = 1.

Let us consider equation for scalar massive field with source

^m^-(m2 + £R) = —4nqj ¿(4)(x—xo(r))—j

dr

—g(4)' (1)

where £ is a coupling of the scalar field with mass m to the scalar curvature R, g(4) is the determinant of the metric g^v, q is the scalar charge and r is its proper time. The world line of the charge is given by Xq(t). The metric of static spacetime can be presented as follows

ds2 = —gtt(xl>dt2 + gjk (x®>dxj dxk,

(2)

where i,j, k = 1, 2, 3. This means that one can write the field equation in the following way

1

d

d j i vWgvfc x0>

fgtty g(3) dxj V dxk

— (m2 + £R(x> ) ^"(x1; xQ) = —

4nq5(3) (x1, xQ>

v/g(3) ,

(3)

where m is the mass of scalar field, g(3) = det gj and we take into account that dr/dt = for the particle at rest. In the case

m » 1/L,

(4)

where L is the characteristic curvature scale of the background geometry, it is possible to construct the iterative procedure of the solution of Eq. (3) with small parameter 1/(mL) [19-21]. This expansion can be used in the regularization procedure of Rosenthal [13]

f’“<(xo) = q lim (lim d ( x0>-*»(*xo))

^ | d^0 3'X^

| qm2nM(xo> | qmaM(xo> ) ^

+ 2 + 2 p {5)

because this procedure demands the calculation of the expansion of ^m(x;x0) in terms of xg — xg mid 1/m accurate to order O ( (x — x0)2) + O (1/m) only. In the expression (5) ^(x; x0) is the massless field induced byscalar charge q and x is a point near the charge’s word line x0(r), defined as follow s. At x0 we construct a unit spatial vector ng, which is perpendicular to the object’s

x0

ngng = 1, nMwM = 0). In the direction of this vector we construct a geodesic, which extends out an invariant length S to the point x(x0,ng, S); throughout this manuscript u^d ag denote the object’s four-velocity

x0

To construct the expansion of ^m(x; x0), let us consider the equation for the three-dimensional Green’s function GE(x®,x0)

that G(y:) satisfies the equation

d 2G dy:dyj

g«,i g«,k 2gtt2

2^ , ailgii,* dG - mG+^ 2g: dj

+

g«,ik

2g«

k dG + R j yV d2G

y n j + R k i 0 r-, : ^ j

dyj 3 ay:ayj

+ (f - = -¿(3)(y).

Let us present G(yi) = G0(yi) + G1(yi) + G2 (yi) + . . . :

(11)

(12)

where Ga(y®) has a geometrical coefficient involving a derivatives of the metric at point y® = 0. Then these functions satisfy the equations

+

gjk dgtt dGE(x:,x0) dxj dxk

¿(3) (x:, x0)

d2Go

dy:dyj

d2Gi

dy:dyj

- m2Go = -¿(3)(y),

- m2G1 +

gti,j dGo 2gtt dyj

(6)

and introduce the Riemann normal coordinates y® in 3D space with origin at the point x0 [23]. In these coordinates one has

(yi) = % - 3-Rikji|y=o ykyi + O fLy-3

d2.G2 . - m2 G2 + ^

dy:dyj 2gu dyj

dGo dyj

|R : j yky1 d2Go , f R \ G

(7) +jR ki~ M3 - eR)Go = °.

I rjj A g«,ik g«i g«,kA k

- 2gtt2 j y

(13)

(14)

(15)

g(3)(y:)

1 3|y=oy y

(8)

where the coefficients here and below are evaluated at

y® = 0 (i.e. at the point x0), Sj denotes the metric of a flat three-dimensional Euclidean spacetime, and denote the components of Riemann and Ricci tensors of the three-dimensional spacetime with metric

R = R-

2g«

gti,i’

|

4gtt2 g«,i 5^ 2gtt2

G(y:) = G (y:)

The function Go(y:) satisfies the condition R< j k i d2Go r: . dGo n

R k i y y - - jy =°,

dy:dyj

dy:

|

(9)

where git,® denotes the covariant derivative of a scalar function gti(yj) with respect to y® in 3D space with metric gj (yk) (gtt^j is the covariant derivative of a vector git i at point yk = 0 in 3D space, which coincides with partial derivative as rj = 0 at yk =0 in the Riemann normal coordinates). All indices are raised and lowered with Sj. Defining G(y®) by

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

- ^R Go = °.

(16)

since Go(y:) can ^e ^^e function only of y:yj. Therefore Eq. (15) may be rewritten

d2G!2(y:) - m2G2(y:) + ^^j1

dy:dyj 2gu dyj

(17)

Let us introduce the local momentum space associated with the point y® =0 by making the 3-dimensional Fourier transformation

G„(y:)

dfcid&2 d&3

(2n)3

exp(*kjy:)Ga(k:). (18)

(10)

and retaining in (6) only the terms with coefficients involving two derivatives of the metric or fewer one finds

It is not difficult to see that

Go(k:) = 1

k2 + m2 '

°

G1(ki) = i

(20)

G2(k:) =

(k2 + m2)2

k:kj¿:kW 2Rji + gttji 5gtt,j gtt,i

|

gtt

4gtt2

(k2 | m2)3

where k2 = k.kj. Substituting (18), (19), (20), (21)

in (12) and integrating leads to

Go(y:) + G1(y:) + G2(y:) =

exp(-my) 8n

gtt,i y. + ^gtt,

2gtt y m 4gtt

¿3 | 3^:jgii,j gii,j - cr

|

16gtt2

I — | I I gii,*3 I 5gtt,: g«,j

~6j \ 4g7 16g«2 6

Ri.

yV

where

y = y ¿¿j yV.

1

H— m

gtt,

12gtt

+

8n [ V2a 2gi^v/2a

5gtt,igtt,: /_ 1

48gtt

2gtt

+ m2 V2a +

gtt,

12gtt V 2a + ( +

5gtt,i gtt^ 48gtt2

13gtt : gtt -

6gtt

a/2^

48gtt2 1

+O

(mS)+o (

3/2

(24)

where we take into account that in the arbitrary coordinates of 3D space

y: ^ u:(xo)As = -a:,

(25)

with metric gj (xo) (gtt,i;з• is the covariant derivative of a vector gtt : at point xo in 3D space),

g:j (xo)

2

(26)

is one half the square of the distance between the points x0 and x® along the shortest geodesic connecting them and (see, e.g., [24,25])

(21)

= - (x: - ;

Ip - 2ij'k

d r:

(xk -; (xk -;

(x; — x0) + O ^(x — x0)^ , (27)

where the Christoflfel symbols rjk are calculated at the

x0

Now we can use the expansion of

, (22)

(23)

^m(x:; x*o) = 4nqGE(x:; x*o)

(28)

in the regularization procedure (5). But if we take the limits before the partial differentiation in (5), then the last two terms do not to appear in the expression for /gelf (x0). And in the considered case of a charge at rest in a static spacetime we can renormalize self-potential

Using the definition of G(y:) (10), expansion (8), and expressions (9) one finds

n t i ^ _ 1 J 2 , gtt,:a

Ge (x ; xo) = 7T~ { +------------------- 2m

as

^ren(x) = lim (^(x; xo) - ^DS(x; xo)),

Xo -^-x

where

V v^a dxo 4gtt(xo)v/20:

(29)

(30)

and ^(x; x0) is the solution of (1) in the case of arbitrary mass m (even m = 0). Finally the self-force acting on a static scalar charge is

/uei/(x) = -I

qd^re„(x) 2"

(31)

3 Conclusion

The considered approach gives the possibility to renormalize (29) the self-potential of scalar point charge q at rest in static spacetime (2) and to calculate the self-force (31) acting on this charge. Note that in

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1/m

scalar field is much smaller than the characteristic scale L of curvature of the background gravitational field at

x

imated expression for the renormalized self-potential

u®(x0) is the unit tangent vector to the shortest

x0 x

lated at points x0 and directed from x0 to x, As is the distance between these points along the considered geodesic, gtt,® denotes the covariant derivative of a scalar function gtt(x0) with respect to x0 in 3D space

^re:

q

2m

,(x) = lim (^m(x; xo) - ^DS(x; xo))

Xo^X

gtt,

12gtt

I

5gtt,:gtt/

48gtt2

- lC- 6 1R

+O

i2L3

(32)

:j

a

k

j

j

a

o

o

o

k

j

j

o

o

y

m

m

Of course the order of this expression in l/(mL) is less Acknowledgments than the correspondent order of фгеп for the massless field (or field with mass m < l/L). However the expression (32) can be used for the verification of asymptotic This work was supported in part by grant 11-02-

behavior of фгеп in the limit m ^ to. 01162 from the Russian Foundation for Basic Research.

References

[1] P. Dirac 1938 Proc. R. Soc. London, Ser. A 167, 148.

[2] B. DeWitt and R. Brehme I960 Ann. Phys. (N. Y.) 9, 220.

[3] J. Hobbs 1968 Ann. Phys. 47, 141.

[4] Y. Mino, M. Sasaki, and T. Tanaka 1997 Phys. Rev. D 55, 3457.

[5] Т. C. Quinn and R. M. Wald 1997 Phys. Rev. D 56, 3381.

[6] Т. C. Quinn 2000 Phys. Rev. D 62, 064029.

[7] E. Poisson 2004 Living Rev. Relativity 7 6.

[8] S. Detweiler 2005 Class. Quantum Grav. 22 S681.

[9] N. R. Khusnutdinov 2005 Usp. Fiz. Nauk 175 603

[10] W. Hikida, H. Nakano, M. Sasaki 2005 Class. Quantum Grav. 22 S753.

[11] L. Barack 2009 Class. Quantum Grav. 26 213001.

[12] С. O. Lousto 2000 Phys. Rev. Lett. 84 5251.

[13] E. Rosenthal 2004 Phys. Rev. D 69 064035.

[14] E. Rosenthal 2004 Phys. Rev. D 70 124016.

[15] N. R. Khusnutdinov and I. V. Bakhmatov 2007 Phys. Rev. D 76 124015.

[16] S. Krasnikov 2008 Class. Quant. Grav. 25 245018.

[17] V. B. Bezerra and N. R. Khusnutdinov 2009 Phys. Rev. D 79 064012.

[18] A. A. Popov 2010 Phys. Lett. В 693 180.

[19] В. S. DeWitt, Dynamical Theory of Groups and Field (Gordon and Breach, New York, 1965).

[20] S. M. Christensen 1978 Phys. Rev. D 17 946.

[21] 1979 T. S. Bunch and L. Parker, Phys. Rev. D 20, 2499.

[22] C. W. Misner, K. S. Thorne and J. A. Wheeler Gravitation (Freeman, San Francisco, 1973).

[23] A. Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969).

[24] J.L. Synge, Relativity: the general theory (North-Holland publishing company, Amsterdam, I960).

[25] A. Popov 2007 Grav. & Cosm. 13, 119.

Received 01.10.2012

А. А. Попов

ПЕРЕНОРМИРОВКА СТАТИЧЕСКОГО СОБСТВЕННОГО ПОТЕНЦИАЛА

В работе представлен метод перенормировки собственного потенциала скалярного поля, создаваемого покоящимся точечным зарядом, во внешнем статическом гравитационном поле. Метод основан на локальном разложении поля такого заряда в его окрестности.

Ключевые слова: собственный потенциал, перенормировка.

Попов A.A., кандидат физико-математических наук, доцент.

Казанский (Приволжский) федеральный университет.

Ул. Кремлевская, 18 , Казань, Россия, 420008.

E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.