2022;26(1):142-153
METALLURGY AND MATERIALS SCIENCE
Original article
https://doi.org/10.21285/1814-3520-2022-1 -142-153
Percolation leaching of clay mixed copper ores
Lyutsiya M. Karimova13, Yerlan T. Kairalapov2
1 KazHydroMed LLP, Karaganda, Kazakhstan [email protected], https://orcid.org/0000-0001-6205-6585 2kairalapov. e@mail. ru
Abstract. The present work addresses the problem of improving the percolation properties of heap leaching piles of clay, slime-oxidised and mixed ores. These ores are prone to colmatation, which hinders percolation of the solution through the ore layer. Laboratory tests on percolation leaching were carried out using a 2 m column having an internal diameter of 190 mm, loaded with 89.42 kg of ore material having a grain size of -55+0 mm. In order to eliminate colmatation, the ore layer was divided into two equal parts by a drainage layer of polystyrene foam. The research object was ore material extracted from the northern Nurkazgan deposit (Karaganda region, Republic of Kazakhstan), in which copper is present in the form of sulphide (53.48%) and oxidised minerals (46.52%), including 23.5% of chrysocolla. The mineral composition of a test sample determined by optical and electron microscopy, X-ray diffraction, local X-ray spectral, X-ray fluorescence and inductively coupled plasma mass spectrometry was characterised by 93.78% of rock-forming minerals, 53.23% of which comprised layered silicates, namely, mica, chlorite and kaolinite. Ore mineralisation was characterised by both sulphide (copper sulphides, pyrite) and oxide (malachite, iron hydroxides and manganese oxides) phases. The content of easy-sliming minerals equalled 56.30%. Prior to leaching, moisture saturation during the period of one day was carried out. The ore was top irrigated with a solution of sulphuric acid having a concentration of 60 g/dm3. Pregnant solutions were processed following a sorption method (sorption/desorption-electrolysis). The copper extraction into the solution yielded 60.04% with a sulphuric acid consumption of 50.0 kg/t ore at an average irrigation rate of 10.58 dm3/(m2h) or 0.1058 dm/h per clear opening. Therefore, heap leaching of ores at a layer height of l ower than 1 m can be performed following the "leaching-extraction/re-extraction or sorption/desorption-electrolysis" scheme.
Keywords: leaching, column, ore, copper minerals, solution, extraction
For citation: Karimova L. M., Kairalapov Y. T. Percolation leaching of clay mixed copper ores. iPolytech Journal. 2022;26(1 ):142-153. https://doi.org/10.21285/1814-3520-2022-1-142-153.
УДК 669.334.3 Научная статья
Исследования по перколяционному выщелачиванию меди из глинистых смешанных медных руд
Люция Монировна Каримова10, Ерлан Токпаевич Кайралапов2
1,2ТОО «КазГидроМедь», г. Караганда, Республика Казахстан [email protected], https://orcid.org/0000-0001-6205-6585 2kairalapov. e@mail. ru
Резюме. Цель - повышение фильтрационных свойств штабеля кучного выщелачивания глинистых, шлами-стых окисленных и смешанных руд, которые склонны к кольматации и резко снижают просачивание раствора через слой руды. Для проведения лабораторных испытаний по перколяционному выщелачиванию использовалась колонна высотой 2 м и внутренним диаметром 190 мм, в которую была загружена руда массой 89,42 кг крупностью 55-0 мм. С целью устранения кольматации руду загружали слоем высотой 1 м, далее укладывали дренажный слой из пенополистирола и снова насыпали слой руды высотой 1 м. Объектом исследований является руда северного участка Нурказган (Карагандинская обл., Республика Казахстан), в которой медь практически поровну представлена сульфидными (53,48%) и окисленными (46,52%) минералами, из них хризоколла составляет 23,5%. В минеральном составе пробы, определенном с учетом данных оптических и электронномикроскопи-
© Karimova L. M., Kairalapov Y. T., 2022
142 -https://ipolytech.ru
МЕТАЛЛУРГИЯ И МАТЕРИАЛОВЕДЕНИЕ
ческих исследований, рентгеноструктурного, локального рентгеноспектрального, рентгенофлуоресцентного и масс-спектрометрии с индуктивно связанной плазмой, преобладают породообразующие минералы, составляющие 93,78%, из которых 53,23% приходится на слоистые силикаты - слюды, хлорит, каолинит. Рудная минерализация представлена как сульфидными фазами (сульфиды меди, пирит), так и оксидными - малахит, гидрокси-ды железа, оксиды марганца. Содержание легкошламующихся минералов составило 56,30%. Перед началом выщелачивания производили влагонасыщение руды в течение суток. Сверху руду орошали раствором серной кислоты с концентрацией 60 г/дм3. Переработку продуктивных растворов осуществляли по сорбционной схеме (сорбция/десорбция - электролиз). В результате проведения исследований извлечение меди в раствор составило 60,04% с расходом серной кислоты 50,0 кг/т руды при средней скорости орошения 10,58 дм 3/(м2-ч) или 0,1058 дм/ч на свободное сечение трубы. Таким образом, использование послойного штабельного выщелачивания руды с высотой слоя не более 1 м может быть реализовано по схеме «выщелачивание - экстракция/реэкстракция или сорбция/десорбция - электролиз».
Ключевые слова: выщелачивание, колонна, руда, медные минералы, раствор, извлечение
Для цитирования: Каримова Л. М., Кайралапов Е. Т. Исследования по перколяционному выщелачиванию меди из глинистых смешанных медных руд // iPolytech Journal. 2022. Т. 26. № 1. С. 142-153. https://doi.org/10.21285/1814-3520-2022-1-142-153.
INTRODUCTION
Improving the percolation properties of a leached mineral is essential for the efficient operation of heap leaching plants at deposits characterised by a high content of clay ores. The colmatation of clay and slime ores occurring during their leaching either impedes or reduces the solution percolation through the ore layer. In order to improve the percolation properties of a heap leaching pile, the pelletising of clay ores is widely used [1-18] in industrial mining of weathered gold-containing ores and alluvial and hard rock gold mining heaps having a high clay content.
In [2], various ores were pelletised at an average cement consumption of 5-6 kg per ton of ore and 3.5-4 kg of chlorinated lime. The strength of the as-pelletised ore amounts to 73.5-78.4 kPa. A further increase in the binder content reduces the percolation properties, prolongs the leaching process, as well as raises the cost of ore dressing. Moreover, when pelletising clay ore and tailings, an increase in cement consumption may lead to an opposite effect, namely, a decrease in the strength of pellets [10].
Ore material is pelletised using sulphuric acid as a binder [18]. Ore pellets and samples of various grades are loaded into percolation columns for leaching experiments. Due to the critical static pressure in the upper part of the pile (over 73.5 kPa with the strength of pelletised ore of 68.3 kPa), the leaching rate becomes low, followed by the formation of fine grains in the initial ore. As a result, the hydraulic conductivity of the pile is reduced.
The heap leaching of metals directly in the
ore pile can be intensified by mechanical loosening (in particular, blasting), which increases the porosity and ore jointing, thus facilitating the extraction of the target component to the pregnant solution [19-22]. However, during mechanical loosening by blasting, on the first day, the need for solution irrigation (leaching) increases by 5-8 times. The resulting ore repacking slows down the leaching process.
In [23], a cuvette-heap leaching of metals was carried out by leaching a mineral mass with a reagent solution, followed by metal extraction by sorption leaching in two steps: firstly, the mineral mass is placed in cuvettes having moisture-proof walls, initial reagent solution is introduced, further slime-clay and sand fractions are separated by hydrocyclone. The sand fraction is piled and subjected to heap leaching. Following the leaching of sand and clay-sand fractions, the remaining liquid phase is strengthened and fed to heap leaching.
MATERIALS AND METHODS
This research is aimed at improving the percolation properties of heap leaching piles of clay and slime oxidised and mixed ores, which are susceptible to colmatation. Colmatation is known to reduce the solution percolation through the ore layer. In order to solve this problem, leaching was carried out in layers having limited height. To this end, a porous material (polystyrene foam or inorganic-hydrophilic sorbent) was placed between the layers, or the ore was loaded into cuvettes by layers divided using a filtering material (polystyrene foam or inorganic-hydrophilic sorbent).
2022;26(1):142-153
The residues of the leaching (cakes) can be utilised as a backfill material in underground mining [24].
Ore material extracted at the northern Nur-
kazgan deposit (Karaganda region, Republic of Kazakhstan) was used as a research object. The results of chemical and phase analysis are presented in tab. 1 and 2.
Table 1. Chemical composition of copper ore Таблица 1. Химический состав руды
Component Cu Ag* Au* Fe S Zn Pb As
Weight percent, %, *g/t 0.417 1.79 0.33 10.37 0.94 0.052 0.001 0.0043
Component P SiO2 AI2O3 CaO MgO K2O Na2O Mo
Weight percent, %, *g/t 0.114 53.36 19.64 0.52 2.25 4.11 0.16 0.004
Table 2. Copper phase analysis in ore Таблица 2. Фазовый анализ меди в руде
Metal speciation Cu content, % (abs.) Cu distribution, % (rel.)
Cu in sulphide minerals 0.223 53.48
Cu in oxidised minerals, including chrysocolla 0.194 46.52
0.098 23.50
Total 0.417 100.0
Note / Примечание: abs. - absolute; rel. - relative / abs. - абсолютный; rel. - относительный.
Tab. 2 shows that copper is almost uniformly distributed between sulphide (53.48%) and oxidised (46.52%) minerals, including 23.5% of chrysocolla.
Ore mineralisation is dominated by secondary supergene phases, including iron hydroxides, hematite, manganese oxides, jarosite, as well as the rarely occurring malachite. In rare cases, sulphide minerals, such as chalcocite, chalcopyrite, covellite and pyrite, are observed. The investigated ore belongs to the oxidised type, having predominantly ingrained and collo-form textures.
The mineral composition of the test sample determined based on optical and electron microscopy, X-ray diffraction, atomic emission spectrometry, local X-ray spectral, X-ray fluorescence and chemical analyses, is characterised by 93.78% of rock-forming minerals, including 53.23% of layered silicates, namely, mica, chlorite, kaolinite. Ore mineralisation comprises sulphide phases (copper sulphides, pyrite) and oxide phases (malachite, iron hydroxides, manganese oxides). The content of easy-sliming minerals equals 56.30%, which can reduce the efficiency of dressing processes.
Microscopic studies revealed that ferrugi-nised clay-mica-quartz metasomatites are characterised by a relic porphyric structure, visible in cross-polarised light, and a solid, partly porous grain resulting from the destruction and leaching of primary sulphide and carbonate minerals. Iron hydroxides in the form of fine dust primarily impregnate mica-clay minerals. They occur as small clusters and films in interstices and over the grain interface of quartz in the binder mass and develop as sinter deposits on the walls of cavities and micropores (fig. 1 and 2).
Iron hydroxides and oxides are the principal ore minerals in the sample. They are represented by finely dispersed formations, evenly distributed over the host rock, resulting in a yellowish-brownish colour; linear aggregations of finely dispersed particles, developing along the cleavage of layered silicates; a non-uniformly distributed hematite impregnation (10-150 microns), pseudomorphically substituting pyrite; sinter, often zonal deposits (films, crusts) on the walls of pores and solution cavities; continuous solid isolations, infilling fragmenting cracks in deformation zones, associated with chlorite, kaolinite, and sericite (fig. 3).
Fig. 1. Clay-mica-quartz metasomatite, characterised by a relic porphyric structure: a - polarised-light transmission; b -cross-polarised light; c - in back-scattered electrons; d - combined in characteristic radiation of elements. Spectra in Fig. c: 1 - quartz; 2, 3, 7, 9 - chlorite; 4 - chlorite + sercite; 5 - apatite; 6 - rutile; 8 - covellite + chalcopyrite; 10, 12 - pyrite; 11 - barite Рис. 1. Гпинисто-слюдисто-кварцевый метасоматит, характеризующийся реликтовой порфировидной структурой: a - при одном николе; b - в скрещенных николях; c - в обратно рассеянных электронах; d -комбинированное в характеристическом излучении элементов. Спектры на рис. c: 1 - кварц; 2, 3, 7, 9 - хлорит; 4 -хлорит + серицит; 5 - апатит; 6 - рутил; 8 - ковеллин + халькопирит; 10, 12 - пирит; 11 - барит
Fig. 2. Ferruginised clay-mica- quartz metasomatites Рис. 2. Ожелезненные глинисто-слюдисто-кварцевые метасоматиты
2022;26(1):142-153
Fig. 3. Formation of iron oxides and hydroxides (reflection image): a - sinter deposits on the walls of solution cavities; b - impregnation of mica-clay minerals by finely dispersed formations; c - dissemination of hematite in pyrite; d - impregnation of rocks by finely dispersed formations and infilling of pores and voids
by hematite
Рис. 3. Форма выделения оксидов и гидроксидов железа (изображение в отраженном свете): а - натечные образования по стенкам пустот выщелачивания; b - пропитка тонкодисперсными образованиями слюдисто-глинистых минералов; c - вкрапленность гематита, образовавшегося по пириту; d - пропитка пород тонкодисперсными образованиями и выполнение пор и пустот гематитом
Copper constitutes an industrially valuable component, whose minerals-concentrators are represented by inherent phases, including sulphides (chalcopyrite, chalcocite, covellite) and carbonates (malachite), as well as iron hydroxides and mica-clay minerals, where copper is present as an isomorphic impurity.
For percolation leaching, a 2 m column was used, loaded with 89.42 kg of the ore having a grain size of -55+0 mm. The ore was irrigated from the top with a sulphuric acid solution at a rate of 300 ml/h. However, following one day, the process was halted due to the high content of clay and slime components. It is well know that such components can cause colmatation, thus reducing drastically the solution percolation through the ore layer up to its complete halt.
The layer height was reduced to avoid col-matation during the leaching of oxidised ore from the Northern section of the Nurkazgan deposit. Leaching was carried out in a 1 m high column having a diameter of 140 mm. About 21.5 kg of the ore having a grain size of -55+0 mm were loaded into the column; leaching was carried out at the initial sulphuric acid concentration of 60 g/dm3. The pregnant leaching solutions were processed according to the "sorp-tion/desorption-electrolysis" scheme. The daily volume of pregnant solution from the column was forwarded to the sorption columns filled with Lewatit MonoPlus cation-exchange resin (LANXESS Deutschland GmbH (Germany)) [25-28]. Solutions obtained upon sorption extraction of copper, following strengthening to the
required concentration of sulphuric acid, were directed to feed the leaching process. The sorption scheme was selected based on a rather low copper content in pregnant leaching solutions (0.3-0.8 g/dm3).
The following parameters were controlled: copper mass, solution volume and process duration. According to the obtained data, the first four cycles ensure 84% of copper extraction with a maximum in the third cycle (fig. 4).
On completing the percolation leaching, the cake yield equalled 96.42%. The total leaching time amounted to 14 days. The chemical and phase compositions of the cake are presented in Tab. 3 and 4.
Thus, upon percolation leaching in a 1 m high column, the copper recovery into solution amounted to 56.06%. Further studies were carried out in a 2 m column.
The research was carried out on a setup comprising 2 m high plastic percolation columns ("Evonik Operations GmbH", Germany), having
an inner diameter of 190 mm. The ore was ground to the grain size of -55+0 mm; 89.42 kg of the ore were loaded into the column. It had been established earlier that, for an ore layer height of 2 m, the leaching process halted, while for a 1 m layer, no colmatation was observed. In order to address this limitation, 1 m layer of ore was first loaded, followed by a Styrofoam drainage layer, and one more 1 m layer of ore was added. Prior to leaching, the ore was moistened for a day. The ore was irrigated with sulphuric acid solution from the top at a rate of 300 ml/h or per specific flow rate in the column:
0.3-4 , ,
f.0 192 = 10.58dm3/(m2 ■ h).
This corresponds to a flow rate of 0.1058 dm/h in the column per clear opening (or 1.058 cm/h). Such a feed rate is used in conventional copper production with low permeability ores and is selected given the strong colmatation of
t, days
Fig. 4. Dependencies of copper and iron extraction into solution on duration of leaching Рис. 4. Зависимости извлечения меди и железа в раствор от продолжительности выщелачивания
Table 3. Chemical composition of the ore residue (cake) following percolation leaching in a 1m high column Таблица 3. Химический состав остатка руды (кека) после перколяционного выщелачивания в колонне высотой 1 м
Cu Fe Zn Pb Al S Mo, g/t
Q.19Q 9.67 Q.Q39 Q.QQ3 8.55 Q.84 3Q.3
P Au, g/t Ag, g/t As, g/t Si Mg Ca
Q.Q8Q Q.32 1.63 24.9 18.Q 1.636 Q.394
Table 4. Copper phase analysis in cake following percolation leaching of ore
Таблица 4. Фазовый анализ меди в кеке после перколяционного выщелачивания руды
Copper components Abs. % Rel. %
Oxides, including chrysocolla Q.Q91 47.89
Q.Q62 -
Sulphides Q.Q99 52.11
Total Q.19Q 1QQ.Q
Note/Примечание: abs. - absolute; rel. - relative / abs. - абсолютный; rel. - относительный.
2022;26(1):142-153
the column material. The initial solution was fed from a reservoir by a Qudos 60 Watson Marlow peristaltic pump to a distribution device installed at the top of the column, which distributed the solution evenly over the column section. The solution passing through the ore mass was collected in a storage tank. Upon reaching a specific copper concentration in the solution, the latter was fed for copper sorption. Solutions, fully or partially strengthened with acid and refilled with water to the required volume, were recycled for irrigation. Acidity was adjusted using a pH meter and chemical analysis for the residual acidity of the solution. Leaching was carried out up to the trace level of oxidised copper in ore.
The grain size distribution of the initial ore intended for percolation leaching was studied. The grain size distribution and chemical composition of the initial ore are shown in tab. 5.
Fig. 5 shows the scheme used for ore heap leaching. This method can be carried out as a cuvette ore loading with a layer height of less than 1 m. Drainage material is deposited on top of this layer, followed by the next ore layer of up to 1 m high. Thereby, the weight pressure of the ore layer is applied to the drainage material instead of the underlying layer. Therefore, the permissible accumulation of finer ore fractions occurs in individual layers, rather than in the bottom layer [29].
Table 5. Granulometric and chemical composition of the initial ore for percolation leaching
Таблица 5. Гранулометрический и химический состав исходной руды для перколяционного выщелачивания
Class, mm Yield, % Components, % Distribution, %
Cu Fe Al Ag, g/t Si Ca Cu Fe Ag, g/t
-55 + 45 6.68 0.459 10.46 10.13 1.86 25.04 0.378 7.36 6.73 7.01
-45 + 40 4.28 0.649 8.5 11.02 1.28 25.84 0.370 6.66 3.51 3.10
-40 + 31.5 8.88 0.738 10.91 10.05 3.91 24.54 0.258 15.73 9.32 18.42
-31.5 + 25 8.69 0.196 10.72 11.14 0.58 23.04 0.347 4.09 8.97 2.90
-25 + 20 6.45 0.502 10.18 10.14 1.36 25.54 0.319 7.76 6.33 4.96
-20 + 14 9.61 0.363 9.65 9.66 1.72 26.24 0.329 8.38 8.95 9.33
-14 + 10 8.16 0.325 9.72 10.11 1.42 26.04 0.369 6.36 7.65 6.56
-10 + 7 5.58 0.307 9.66 10.52 1.45 24.84 0.591 4.11 5.21 4.58
-7 + 5 7.42 0.334 9.95 10.18 1.54 24.94 0.385 5.95 7.13 6.46
-5 + 3.4 7.46 0.322 10.09 10.49 1.39 26.04 0.383 5.76 7.26 5.87
-3.4 + 2 5.58 0.359 10.22 10.68 1.54 24.64 0.371 4.80 5.50 4.86
-2 + 0 21.21 0.453 11.48 10.66 2.17 24.24 0.468 23.04 23.44 25.95
Ore/sum 100.0 0.417 10.37 10.40 1.79 24.95 0.390 100.0 100.0 100.0
Fig. 5. Chain of apparatuses of ore heap leaching: 1-5 - leach (ore pile), particle size - 55+0 mm; 6 - heap irrigation system; 7 - drainage layer of polystyrene foam or inorganic-hydrophilic sorbent; 8 - process solution collection header; 9 - solution ponds; 10 - pumps; 11 - settling tank; 12 - pipelines; 13 - sulphuric acid solution; 14 - freshwater tank; 15 - ore container Рис. 5. Схема цепи аппаратов послойного штабельного кучного выщелачивания руды: 1-5 - выщелачиваемый
материал (рудный штабель), крупностью -55+0 мм; 6 - система орошения кучи; 7 - дренажный слой из пенополистирола или минеральногидрофильного сорбента; 8 - коллектор сбора технологического раствора; 9 - прудки для сбора растворов; 10 - насосы; 11 - отстойник; 12 - трубопроводы; 13 - раствор серной кислоты;
14 - бак свежей воды; 15 - рудная кювета
The sorption process of ore leaching solutions was carried out in the following stages: sorption/desorption and sorbent scrubbing. The solution following the sorption process was recycled for leaching. The sorbent was subjected to a desorption process (with cycling), yielding an electrolyte containing > 40 g/dm3 of copper. The wash water following scrubbing of the sorbent was fed (strengthened) to the leaching process. Chemical and phase analysis of residue (cake), following percolation leaching of ore, as well as particle size distribution, are presented in tab. 6-8.
An analysis of cake grain size distribution following percolation leaching showed a minor redistribution of grain size grades. The copper
content in grades decreases from 0.6490.196% to 0.295-0.114%, indicating successful leaching. This is also confirmed by the residual distribution of components by grades in cake (see tab. 9). Here, the copper content decreases from 0.417% in the ore to 0.164% in a cake; its yield of 90.65% corresponds to the 60.04% extraction of copper into the solution.
Given that the ore contains a higher concentration of fine grades (see tab. 5), it can be assumed that sulphide minerals in them are released more fully, which indicates their higher activity in the leaching process.
Copper and iron extraction into solution (relative) depending on leaching duration is shown in fig. 6.
Table 6. Chemical composition of the residue after percolation leaching of ore
Таблица 6. Химический состав остатка (кека) после перколяционного выщелачивания руды
Cu Fe Zn Pb Al S Mo, g/t
0.164 9.52 0.0385 0.0006 9.46 0.848 48.02
P Au, g/t Ag, g/t As, g/t Si Mg Ca
0.0901 0.17 1.753 24.4 18.0 1.353 0.269
Table 7. Copper phase analysis in residue (cake) following percolation leaching of ore
Таблица 7. Фазовый анализ меди в остатке (кеке) после перколяционного выщелачивания руды
Copper components Abs. % Rel. %
Oxides 0.079 48.17
Sulphides 0.085 51.83
Total: 0.164 100.0
Note/Примечание: abs. - absolute; - relative / abs. - абсолютный; rel. - относительный.
Class, mm Exit, % Components, % Distribution, %
Cu Fe Al Ag, g/t Si Ca Cu Fe Ag, g/t
-55+45 б.79 0.295 10.78 9.80 1.971 18.7 0.358 10.36 6.41 6.51
-45+40 4.35 0.257 10.62 10.22 1.351 17.1 0.259 6.79 4.82 3.35
-40+31.5 8.98 0.212 10.84 10.05 1.441 18.4 0.233 11.56 9.48 7.38
-31.5+25 8.81 0.221 8.97 8.45 1.574 17.6 0.235 11.82 9.05 7.91
-25+20 6.53 0.179 8.54 11.20 1.662 19.0 0.214 7.10 5.69 6.19
-20+14 9.41 0.141 8.37 10.21 7.729 18.9 0.235 8.05 9.19 9.28
-14+10 9.13 0.131 8.42 10.09 1.571 18.7 0.289 7.26 8.85 8.18
-10+7 5.88 0.120 8.52 12.20 1.342 20.1 0.243 4.28 5.86 4.50
-7+5 7.33 0.118 8.77 8.73 1.435 19.1 0.211 5.25 6.39 6.00
-5+3.4 8.79 0.117 9.54 9.97 1.663 18.8 0.200 6.24 8.04 8.34
-3.4+2 4.98 0.114 9.86 8.641 1.944 18.2 0.231 3.44 4.33 5.52
-2+0 20.02 0.147 10.98 9.45 2.351 18.8 0.324 17.85 21.89 26.84
Cake/Sum 1QQ.QQ Q.164 9.52 9.46 1.753 1S.Q Q.269 100 100 100
Table 8. Granulometric and chemical composition of the residue by size classes after percolation leaching of ore (italics - weighted average content in the residue after leaching, cake)
Таблица 8. Гранулометрический и химический составы кека по классам крупности после перколяционного выщелачивания (курсив - средневзвешенное содержание в остатке после выщелачивания (кеке))
2022;26(1):142-153
Fig. 6. Dependencies of copper and iron extraction into solution on duration of leaching Рис. 6. Зависимости извлечения меди и железа в раствор от продолжительности выщелачивания
Acid consumption increases sharply at a copper recovery of approximately 40%. At the initial stage, along with the dissolution of copper, the readily soluble waste rock compounds (oxides, iron hydroxides, calcium and magnesium carbonates, etc.) are intensively leached. By reducing their content in the ore, the efficiency of the process improves. In the latter case, however, the dissolution rate of copper and its concentration in the solution decreases.
CONCLUSION
In the conducted study, copper extraction into the solution amounted to 60.04% with a sulphuric
acid consumption of 50.0 kg/t ore or 21 kg per kilogram of extracted copper at an average irrigation rate of 10.58 dm3/(m2h) = 0.1058 dm/h.
The obtained results show that:
- between 1 and 10 days of leaching, most of the copper (30%) is extracted into the solution;
- low copper concentration solutions obtained in the final stages of leaching should be recycled.
Heap leaching of ore piles having a height of lower than 1 m can be performed via the following stages: "leaching-extraction/re-extraction or sorption/desorption-electrolysis".
References
1. Fazlullin M. I. Underground and heap leaching of uranium, gold and other metals. In 2 vol., vol. 2: Zoloto. Moscow: Ruda i metally; 2005, 328 p. (In Russ.).
2. Druzhinina G. Ya., Stroganov G. A., Zyryanov M. N. Heap leaching of gold from pre-pelletized ores. Tsvetnye metally. 1997;9:17-19. (In Russ.).
3. Rashkin A. V., Avdeev I. A., Yashkin I. A. Classification of ore heap leaching control methods. Vestnik Mezhdu-narodnoj akademii nauk ekologii i bezopasnosti zhizned-eyatel'nosti (MANEB) = Vestnik IAELPS. 2006;11(5):166-169. (In Russ.).
4. Rashkin A. V., Avdeev P. B., Yashkin I. A. Rational formation of ore piles during heap leaching of ores. Gornyj informacionno-analiticheskij byulleten' = Mining informational and analytical bulletin. 2005;11:252-254. (In Russ.).
5. Voloschuk S. N. Heap and underground leaching of metals. Moscow: Nedra; 1982, 113 p. (In Russ.).
6. Vodolazov L. I., Drobadenko V. P., Lobanov D. P., Ma-luhin N. G. Geotechnology. Heap leaching of lean mineral raw materials. Moscow: Moscow State Geological Explo-
ration Institute; 2000, 300 p. (In Russ.).
7. Rashkin A. V., Avdeev P. B., Reznik Yu. N., Shumilova L. V., Yashkin I. A. Method for heap leaching of ores. Patent RF, no. 2283879; 2006. (In Russ.).
8. Shumilova L. V., Reznik Yu. N., Rubcov Yu. I. Method of industrial waste ore preparation for heap leaching of gold. Patent RF, no. 2283883; 2006. (In Russ.).
9. Sekisov A. G., Reznik Yu. N., Shumilova L. V., Zykov N. V., Lavrov A. Yu., Korolev V. S., Konareva T. G. Preparation method of refractory sulfide ores and concentrates forleaching. Patent RF, no. 2361937, 2009. (In Russ.).
10. Fazlullin M. I. Heap leaching of precious metals: monograph. Moscow: Academy of Mining Sciences; 2001, 647 p. (In Russ.).
11. Lewandowski K. A., Kawatra S. K. Binders for heap leaching agglomeration. Mining, Metallurgy & Exploration. 2009;26(1-24):489-492.
https://doi.org/10.1007/BF03403413.
12. Nab B. M. Exploring HPGR technology for heap leaching of fresh rock gold ores. In: IIR Crushing &
Grinding Conference. 29-30 March 2006, T ownsville. Townsville; 2006. Available from: https://orway.com.au/wp-content/uploads/2015/10/T echnical-ExploringHPGRTechnology.pdf [Accessed 30th August 2021].
13. Thiel R., Smith M. E. State of the practice review of heap leach pad design issues. Geotextiles and Geomembranes. 2003;22(6):555-568. https://doi.org/10.1016/j.geotexmem.2004.05.002.
14. Bouffard S. C. Agglomeration for heap leaching: equipment design, agglomerate quality control, and impact on the heap leaching process. Minerals Engineering. 2008;21(15):1115-1125.
https://doi.org/10.1016/j.mineng.2008.02.010.
15. Rogozhnikov D. A., Rusalev R. E., Dizer O. A., Naboychenko S. S. Nitric acid loosening of rebellious sulphide concentrates containing precious metals. Tsvetnye Metally. 2018;12:38-44. (In Russ.). https://doi.org/10.17580/tsm.2018.12.05.
16. Velarde G. Agglomeration control for heap leaching processes. Mineral Processing and Extractive Metallurgy Review. 2005;26(3-4):219-231. https://doi.org/10.1080/08827500590943974.
17. Lowandowski K. A., Kawatra S. K. Development of experimental procedures to analyze copper agglomeration stability. Minerals and Metallurgical Processing. 2005;25(2): 110-116. https://doi.org/10.1007/BF03403395.
18. Koltsov V. Yu., Krinov D. I., Kuznetsov I. V. Use of sulfuric acid in the time of pelletization of uranium ores before their heap leaching. Gornyj zhurnal. 2014;7:90-93. (In Russ.).
19. Tyupin V. N., Zajcev R. V., Baryshnikov V. I., Truhin V. A. Use of explosion energy as an effective and environmentally safe intensification method of heap leaching of uranium and gold-bearing ores. Bezopasnost' truda v promyshlennosti = Occupational Safety in Industry. 1999;6:12-14. (In Russ.).
20. Sekisov A. G., Shevchenko Yu. S., Lavrov A. Yu. Explosive injection preparation of ores for leaching. In: Fun-damental'nye problemy formirovaniya tekhnogennoj ge-osredy: trudy Vserossijskoj konferencii s uchastiem in-ostrannyh uchenyh = Fundamental problems of techno-genic geoenvironment formation: proceedings of All-Russian conference with international participation. 9-12 October 2012, Novosibirsk. In 2 vol. Novosibirsk: Chinakal Institute of Mining of the Siberian Branch of the Russian Academy of Sciences; 2012, vol. 1, p. 283-287. (In Russ.).
21. Sekisov A. G., Shevchenko Yu. S., Lavrov A. Yu. Prospects for underground leaching in gold mines. Fiziko-tekhnicheskie problemy razrabotki poleznyh iskopaemyh = Journal of Mining Sciences. 2016;1:116-123. (In Russ.).
22. Ghorbani Y., Mainza A. N., Petersen J., Becker M., Franzidis J.-P., Kalala J. T. Investigation of particles with high crack density produced by HPGR and its effect on the redistribution of the particle size fraction in heaps. In: 8th International Comminution Symposium: Proceedings of Comminution 2012. 17-20 April 2012, Cape Town. Cape Town; 2012. Available from: http://toc.proceedings.com/15671webtoc.pdf [Accessed 30th August 2021].
23. Sekisov A. G., Reznik Yu. N., Zykov N. V., Shumilova L. V., Lavrov A. Yu, Manzyrev D. V., et al. Method for cuvette-heap leaching of metals from minerals. Patent RF, no. 2350665; 2009. (In Russ.).
24. Chen Qiusong, Zhang Qinli, Xiao Chongchun, Chen Xin. Backfilling behaviour of a mixed aggregate based on construction waste and ultrafine tailings. PloS one. 2017;12(6):e0179872.
https://doi.org/10.1371/journal.pone.0179872.
25. Rogozhnikov D. A., Tropnikov D. L., Mamyachenkov S. V., Dizer O. A. Perfection of sulphatization roasting process of refractory copper-zinc sulphide raw material. Metallurg. 2017;8:92-97. (In Russ.).
26. Zakharyan S. V., R.ogozhnikov D. A., Karimova L. M., Naboichenko S. S., Dizer O. A. Study of hydrometallurgi-cal processing of roasted copper concentrate leach solutions. Vestnik Irkutskogo gosudarstvennogo tehnich-eskogo universiteta = Proceedings of Irkutsk State Technical University. 2018;22(5):207-213. (In Russ.). https://doi.org/10.21285/1814-3520-2018-5-207-213.
27. Zaharyan S., Gedgagov E., Yun A. Increase in an ecological safety at the entities of non-ferrous metallurgy due to use of sorption processes. Ekologia i promyshlennost Rossii = Ecology and Industry of Russia. 2018;22(1):26-32. (In Russ.). https://doi.org/10.18412/1816-0395-2018-1 -26-32.
28. Yun A. B., Zahar'yan S. V., Karimova L. M., Ter-ent'eva I. V., Serikbaj A. U. Studies of nitric acid leaching of rough copper concentrate from Zhezkazgan deposit from the ores of current production of Kazakhmys Corporation LLP. In: Abishevskie chteniya-2016; Innovacii v kompleksnoj pererabotke mineral'nogo syr'ya: materialy nauchno-prakticheskoj konferencii = Abishevskie Readings - 2016; Innovations in complex processing of mineral raw materials: Proceedings of the scientific and practical conference. 21-22 January 2016, Almaty. Almaty: National center on complex processing of mineral raw materials of the Republic of Kazakhstan; 2016, p. 581-583.
29. Oleinikova T. O., Zelensky V. P., Terentyeva I. V., Karimova L. M., Malyshev V. P., Kajralapov E. T. Method of percolation leaching of copper from clayey oxidized and mixed copper ores. Patent RK, no. 6649; 2021. (In Russ.).
Список источников
1. Фазлуллин М. И. Подземное и кучное выщелачивание урана, золота и других металлов. В 2 т., т. 2: Золото. М.: ИД «Руда и металлы», 2005. 328 с.
2. Дружинина Г. Я., Строганов Г. А., Зырянов М. Н. Кучное выщелачивание золота из предварительно
окомкованных руд // Цветные металлы. 1997. № 9. С. 17-19.
3. Рашкин А. В., Авдеев П. Б., Яшкин И. А. Классификация способов управления процессами кучного выщелачивания руд // Вестник Международной академии
2022;26(1):142-153
наук экологии и безопасности жизнедеятельности (МАНЭБ). 2006. Т. 11. № 5. С. 166-169.
4. Рашкин А. В., Авдеев П. Б., Яшкин И. А. Рациональное формирование рудного штабеля при кучном выщелачивании руд // Горный информационно-аналитический бюллетень. 2005. № 11. С. 252-254.
5. Волощук С. Н. Кучное и подземное выщелачивание металлов. М.: Из-во «Недра», 1982. 113 с.
6. Водолазов Л. И., Дробаденко В. П., Лобанов Д. П., Малухин Н. Г. Геотехнология. Кучное выщелачивание бедного минерального сырья. М.: Из-во МГГРУ им. C. Орджоникидзе, 2000. 300 с.
7. Пат. № 2283879, Российская Федерация, C22B3/04 C22B11/00. Способ кучного выщелачивания руд / А. В. Рашкин, П. Б. Авдеев, Ю. Н. Резник, Л. В. Шумилова, И. А. Яшкин; заявитель и патентообладатель Читинский государственный университет. Заявл. 20.04.2006; опубл. 20.09.2006. Бюл. № 26.
8. Пат. № 2283883, Российская Федерация, С22В 11/00. Способ рудоподготовки техногенных отходов к кучному выщелачиванию золота / Л. В. Шумилова, Ю. Н. Резник, Ю. И. Рубцов; заявитель и патентообладатель Читинский государственный университет. Заявл. 03.03.2005; опубл. 20.09.2006. Бюл. № 26.
9. Пат. 2361937, Российская Федерация, C22B 11/00, C22B 3/04. Способ подготовки упорных сульфидных руд и концентратов к выщелачиванию / А. Г. Секисов, Ю. Н. Резник, Л. В. Шумилова, Н. В. Зыков, А. Ю. Лавров, В. С. Королев, Т. Г. Конарева; заявитель и патентообладатель Читинский государственный университет. Заявл. 06.12.2007; опубл. 20.07.2009. Бюл. № 28.
10. Фазлуллин М. И. Кучное выщелачивание благородных металлов: монография. М.: Из-во АГН, 2001. 647 с.
11. Lewandowski K. A., Kawatra S. K. Binders for heap leaching agglomeration // Mining, Metallurgy & Exploration. 2009. Vol. 26. No. 1-24. Р. 489-492. https://doi.org/10.1007/BF03403413.
12. Nab B. М. Exploring HPGR technology for heap leaching of fresh rock gold ores // IIR Crushing & Grinding Conference (Townsville, 29-30 March 2006). Townsville, 2006. [Электронный ресурс]. URL: https://orway.com.au/wp-content/uploads/2015/ 10/Technical-ExploringHPGRTechnology.pdf (30.08.2021).
13. Thiel R., Smith M. E. State of the practice review of heap leach pad design issues // Geotextiles and Ge-omembranes. 2003. Vol. 22. Iss. 6. P. 555-568. https://doi.org/10.1016/j.geotexmem.2004.05.002.
14. Bouffard S. C. Agglomeration for heap leaching: equipment design, agglomerate quality control, and impact on the heap leaching process // Minerals Engineering. 2008. Vol. 21. Iss. 15. Р. 1115-1125. https://doi.org/10.1016/j.mineng.2008.02.010.
15. Рогожников Д. А., Русалев Р. Э., Дизер О. А., Набойченко С. С. Азотнокислотное вскрытие упорных сульфидных концентратов, содержащих благородные металлы // Цветные металлы. 2018. No 12. С. 38-44. https://doi.org/10.17580/tsm.2018.12.05.
16. Velarde G. Agglomeration control for heap leaching
processes // Mineral Processing and Extractive Metallurgy Review. 2005. Vol. 26. Iss. 3-4 Р. 219-231. https://doi.org/10.1080/08827500590943974.
17. Lowandowski K. A., Kawatra S. K. Development of experimental procedures to analyze copper agglomeration stability // Minerals and Metallurgical Processing. 2005. Vol. 25. No. 2. Р. 110-116. https://doi.org/10.1007/BF03403395.
18. Кольцов В. Ю., Кринов Д. И., Кузнецов И. В. Использование серной кислоты при окомковании урановых руд перед их кучным выщелачиванием // Горный журнал. 2014. № 7. С. 90-93.
19. Тюпин В. Н., Зайцев Р. В., Барышников В. И., Тру-хин В. А. Использование энергии взрыва в качестве эффективного и экологически безопасного способа интенсификации кучного выщелачивания урановых и золотосодержащих руд // Безопасность труда в промышленности. 1999. № 6. С. 12-14.
20. Секисов А. Г., Шевченко Ю. С., Лавров А. Ю. Взры-воинъекционная подготовка руд к выщелачиванию // Фундаментальные проблемы формирования техногенной геосреды: тр. Всерос. конф. с участием иностранных ученых (г. Новосибирск, 9-12 октября 2012 г.). В 2 т. Новосибирск: Изд-во ИГД им. Н.А. Чинакала СО РАН, 2012. Т. 1. С. 283-287.
21. Секисов А. Г., Шевченко Ю. С., Лавров А. Ю. Перспективы использования шахтного выщелачивания при разработке золоторудных месторождений // Физико-технические проблемы разработки полезных ископаемых. 2016. № 1. С. 116-123.
22. Ghorbani Y., Mainza A. N., Petersen J., Becker M., Franzidis J.-P., Kalala J. T. Investigation of particles with high crack density produced by HPGR and its effect on the redistribution of the particle size fraction in heaps // 8th International Comminution Symposium: Proceedings of Comminution 2012. (Cape Town, 17-20 April 2012). Cape Town, 2012. [Электронный ресурс]. URL: http://toc.proceedings.com/15671webtoc.pdf (30.08.2021).
23. Пат. 2350665, Российская Федерация, C22B 3/18, C22B 11/08. Способ кюветно-кучного выщелачивания металлов из минеральной массы / А. Г. Секисов, Ю. Н. Резник, Н. В. Зыков, Л. В. Шумилова, А. Ю. Лавров, Д.
B. Манзырев [и др.].; заявитель и патентообладатель Забайкальский государственный колледж. Заявл. 05.16.2007; опубл. 27.03.2009. Бюл. № 9.
24. Chen Qiusong, Zhang Qinli, Xiao Chongchun, Chen Xin. Backfilling behaviour of a mixed aggregate based on construction waste and ultrafine tailings // PloS one. 2017. Vol. 12. No. 6. Р. e0179872. https://doi.org/10.1371/journal.pone.0179872.
25. Рогожников Д. А., Тропников Д. Л., Мамяченков
C. В., Дизер О. А. Совершенствование процесса сульфатизирующего обжига трудновскрываемого медно-цинкового сульфидного сырья // Металлург. 2017. № 8. С. 92-97.
26. Захарьян С. В., Рогожников Д. А., Каримова Л. М., Набойченко С. С., Дизер О. А. Исследование гидрометаллургической переработки растворов выщелачивания обожженного медного концентрата // Вестник Иркутского государственного технического
университета. 2018. Т. 22. № 5. С. 207-213. https://doi.org/10.21285/1814-3520-2018-5-207-213.
27. Захарьян С. В., Гедгагов Э. И., Юн А. Б. Повышение экологической безопасности на предприятиях цветной металлургии // Экология и промышленность России. 2018. Т. 22. № 1. С. 26-32. https://doi.org/10.18412/1816-0395-2018-1-26-32.
28. Юн А. Б., Захарьян С. В., Каримова Л. М., Те-рентьева И. В., Серикбай А. У. Исследования по азотнокислому выщелачиванию чернового медного концентрата ЖОФ из руд текущей добычи ТОО «Корпорация Казахмыс» // Абишевские чтения-2016; Ин-
INFORMATION ABOUT AUTHORS
Lyutsiya M. Karimova,
Lyutsiya M. Karimova, Dr. Sci. (Eng.), Associate Professor, Head of the Metallurgy Laboratory, KazHydroMed LLP,
4, Moskovskaya St., Karaganda 100000, Kazakhstan
Yerlan T. Kairalapov,
Cand. Sci. (Eng.),
Senior Researcher of the Research Laboratory, KazHydroMed LLP,
48, Bukhar-Zhyrau St., Karaganda 100000, Kazakhstan
Contribution of the authors
The authors contributed equally to this article.
Conflict of interests
The authors declare no conflicts of interests.
The final manuscript has been read and approved by all the co-authors.
Information about the article
The article was submitted 18.01.2022; approved after reviewing 07.02.2022; accepted for publication 28.02.2022.
новации в комплексной переработке минерального сырья: материалы науч.-практ. конф. (г. Алматы, 2122 января 2016 г.). Алматы: Национальный центр по комплексной переработке минерального сырья Республики Казахстан, 2016. С. 581-583. 29. Пат. 6649, Республика Казахстан. Способ перколяционного выщелачивания меди из глинистых окисленных и смешанных медных руд / Т. О. Олейникова, В. П. Зеленский, И. В. Терентьева, Л. М. Каримова, В. П. Малышев, Е. Т. Кайралапов; заявитель и патентообладатель РГП «Национальный институт интеллектуальной собственности». Опубл. 08.07.2021.
ИНФОРМАЦИЯ ОБ АВТОРАХ
Каримова Люция Монировна,
доктор технических наук, доцент, ведущий научный сотрудник Научно-исследовательской лаборатории, ТОО «КазГидроМедь»,
100000, г. Караганда, ул. Бухар-Жырау, 48, Казахстан
Кайралапов Ерлан Токпаевич,
кандидат технических наук, старший научный сотрудник Научно-исследовательской лаборатории, ТОО «КазГидроМедь»,
100000, г. Караганда, ул. Бухар-Жырау, 48, Казахстан
Вклад авторов
Все авторы сделали эквивалентный вклад в подготовку публикации.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Все авторы прочитали и одобрили окончательный вариант рукописи.
Информация о статье
Статья поступила в редакцию 18.01.2022; одобрена после рецензирования 07.02.2022; принята к публикации 28.02.2022.