В1СНИК ПРИАЗОВСЬКОГО ДЕРЖАВНОГО ТЕХН1ЧНОГО УН1ВЕРСИТЕТУ
2005 р.
Вип. №15
УДК 621.316.06.019.34.001.24
12 3
Ковалев А.П. , Чурсинов В.И. , Якимишина В.В. , Солодухиыа А.П.
1
ОЦЕНКА НАДЕЖНОСТИ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ С УЧЕТОМ ТРЕХ ВИДОВ ОТКАЗОВ ОБОРУДОВАНИЯ
электроэнергией. При оценке надежности учитываются три вида отказов элементов схемы: отказ типа короткое замыкание, отказ типа «обрыв цепи» и отказ в срабатывании. Представлены формулы для расчета параметров потока отказов и восстановления для сложных по структуре схем.
На современном этапе развития техники и технологии для оценки надежности схем систем электроснабжения (СЭС) широкое распространение получили элементные методы расчетов надежности. В этих методах предполагается, что СЭС состоит из отдельных самостоятельных (в смысле анализа надежности) элементов, исключаются из рассмотрения функциональные зависимости между параметрами отдельных элементов устройства [1-4].
Рассматриваемые СЭС состоят из элементов: линии электропередачи, трансформаторы, выключатели, отделители, разъединители, автоматические выключатели и т.д.
Под узлами схемы будем понимать физические пункты СЭС, которые непосредственно связаны не менее чем с тремя направлениями передачи энергии, т.е. обычно это сборные шины или секции распределительных устройств и т. д. [3].
Для СЭС в работе [4] введены понятия: отказ типа «обрыв цепи» и отказ типа «короткое замыкание» («КЗ»). В работе [3] кроме перечисленных видов отказов предлагается учитывать и переход аварии через коммутационный аппарат. Факторы, которые целесообразно было бы учесть при расчетах надежности СЭС, перечислены в [5]. В работе [6] обосновано, что нецелесообразно делить отказы, которым подвергается электрооборудование в процессе эксплуатации более чем на три вида. Поэтому разработка методики оценки надежности сложных по структуре схем с учетом трех видов отказов является весьма актуальной.
Целью настоящей работы является разработка методики расчета надежности системы электроснабжения промышленных предприятий с учетом трех видов отказов электрооборудования.
В данной работе рассматриваются следующие виды отказов элементов схемы: отказ типа «короткое замыкание», отказ типа «обрыв цепи» и отказ в срабатывании (скрытый отказ).
Все остальные отказы, которые встречались в СЭС промышленных предприятий Украины, появлялись на порядок реже отобранных и поэтому в расчетах не учитывались.
Перечисленные виды отказов следует относить к следующим типам электрооборудования [7]. 1. Отказ типа «короткое замыкание». Такой вид отказа может происходить во всех элементах схемы, через которые проходит ток нагрузки в нормальном режиме работы. Короткие замыкания (КЗ) в таких элементах отключаются основной релейной защитой, в зоне действия которой находится рассматриваемый элемент сети, либо резервной с выдержкой времени. Перекрытие изоляции в самом защитном коммутационном аппарате в этих расчетах не учитываем, так как такие повреждения встречаются на порядок реже, чем КЗ в защищаемых этими коммутационными аппаратами элементах сети.
1 ДонНТУ, д-р техн. наук, проф.
2
ДонНТУ, канд. техн. наук, доц.
3
ДонНТУ, аспирант
ДонНТУ, магистрант
Рассмотрены критерии оценки надежности
системы
снабжения
Результаты исследований
2. Для защитных коммутационных аппаратов будем учитывать два вида отказов:
а) отказ выключателя типа «обрыв цепи». Этаким отказам будем относить ложные и излишние отключения выключателей в результате действия релейной защиты, которые ликвидируются с помощью ручного переключения (т.е. без средств автоматики), а также автоматические отключения выключателей в результате повреждений во вторичных цепях релейной защиты;
б) отказ выключателя в срабатывании. Эти отказы выявляются в результате профилактических осмотров выключателей: привода, катушки отключения, дугогасительной камеры, контактной системы, оценивается возможность перекрытия изоляции при внешних и внутренних перенапряжениях, проверяются пути утечки тока. Производится осмотр релейных защит, контактов самих реле, проверяются уставки защит, оперативные цепи питания, работа устройства автоматического повторного включения (АПВ), устройства автоматического ввода резерва (АВР)ит.д.
Все выявленные в результате профилактики отказы, которые могли бы привести к отказу в срабатывании выключателя при появлении КЗ в зоне действия его релейной защиты, заносятся в специальный журнал и эта информация используется для определения параметров потока отказов системы отключения выключателя.
В качестве критерия оценки надежности системы электроснабжения будем использовать вероятность бесперебойного электроснабжения R(l) потребителей, получающих электроэнергию от рассматриваемого учла нагрузки и среднее время восстановления электроснабжения узла Hai ручки ту, где у - номер узла нагрузки.
Пусть каждый элемент схемы характеризуется событиями: х/, х«<, .*»,. Событие xj означает, что в /'-том элементе сети произошло повреждение, которое привело к короткому замыканию в цепи (КЗ); хы - в /-том элементе произошел отказ типа «обрыв цепи»; х» - в /-том элементе произошел отказ в срабатывании.
Примем допущения, позволяющие реальный элемент системы электроснабжения представить его схемой замещения:
- элемент сети может находиться только в двух состояниях: 0 - работоспособное; 1 - отказавшее;
- защитные коммутационные аппараты могут отказывать двумя различными способами: отказ типа «обрыв цепи» и отказ в срабатывании;
- случайные интервалы времени между отказами элементов и длительности нахождения их в отказавшем состоянии не противоречат экспоненциальным функциям распределения вероятностей;
- интервалы времени между отказами (поток отказов) электрооборудования (средств защиты) и длительность их восстановлений (поток восстановлений) взаимно независимы;
- устройство автоматического ввода резерва (АВР) и системы релейной защиты могут выходить из строя только тогда, когда они находятся в режиме ожидания. В данном случае мы предполагаем, что надежность АВР и средств защиты являются функциями времени, а не числа произведенных ими переключений или отключений Г8. 9. НИ;
- отказы AB1J, средств защиты, систем отключения выключателей и самих выключателей обнаруживаются и устраняются только в результате профилактических проверок - 0, , i - 1 ,m;
- предполагается, что проверки 0, абсолютно надежные. 11осле каждого отказа электрооборудования или средств защиты его работоспособность полностью восстанавливается;
- восстановление электрооборудования неограниченное и полное, все работоспособное электрооборудование находится в работе, все отказавшее — в процессе восстановления;
Принятые выше допущения позволяют электрооборудование системы электроснабжения представить в виде элемента, который характеризуется параметром потока отказов и восстановлений: А,, ja.\ Яы, ры\ , //t., где Яу =1 jd, . /.t =1 jdj ; d, - средний интервал времени между появлениями КЗ в /-том элементе; d. - среднее время восстановления или замены оборудования после обнаружения повреждения (КЗ); km ~ \/d„, , /jni = \jdol ; d,„■ - средний интервал времени между отказами в /-том элементе (отказ типа «обрыв цепи»); dm - среднее время обнаружения и восстановления /-того поврежденного электрооборудования; Я((=1Д/«,
¿tKI - \!dy. ; dsi - средний интервал времени между отказами в срабатывании /-того защитного коммутационного аппарата; du - средний интервал времени между обнаружением отказавшего элемента, отсоединения его от сети и восстановления электроснабжения отключившихся и оставшихся неповрежденными потребителей электрической энергии.
Для элементов СЭС должны выполняться условия [1,3,4,1 1]:
Л,///,. <0,01; Л„/Ч, £0,01. (!)
Рассмотрим допущения и положения, позволяющие реальную схему СЭС при оценке ее надежности заменить на эквивалентную:
- выделяется вход и выход системы, т.е. точки, относительно которых определяется надежность электроснабжения. Все источники питания соединяются в одну точку, и эта точка принимается за абсолютно надежную;
- учитываются только те повреждения элементов сети (линии электропередачи, сборные шины, трансформаторы и т.д.), которые приводят к КЗ;
- при расчете надежности схем систем электроснабжения учитываются только аварийные длительные отключения элементов сети. Отключения потребителей на время действия АПВ и АВР не учитываются [4];
- целесообразно учитывать только двойные совпадающие в пространстве и времени отказы: КЗ в отходящей от узла нагрузки линии и отказ в срабатывании ближайшего защитного коммутационного аппарата [3,11].
- отказавший в срабатывании защитный коммутационный аппарат отходящей от узла нагрузки линии и поврежденный потребитель надежно с выдержкой времени отключится вводным коммутационным аппаратом;
- при КЗ в магистральной линии ближайший к месту повреждения защитный коммутационный аппарат, через который прошел сквозной аварийный ток, надежно отключает поврежденную линию;
- частоту появления КЗ на шинах в расчетах, как правило, не учитываем, так как КЗ на шинах появляется на порядок реже, чем на питающих либо отходящих от секции шин линиях.
Принятые выше допущения к элементу системы и самой системе позволяют схему замещения для расчета ее надежности заменить эквивалентной, которая совпадает с принципиальной. Элементы схемы замещения входят в нее своими параметрами потока отказов и восстановлений. Виду того, что учитываются два несовместных вида отказов выключателей (отказ типа «обрыв цепи» и отказ в срабатывании), которые вызывают различные по длительности перерывы в электроснабжении потребителей электроэнергии, отдельно составляются две схемы замещения: в первой учитываются отказы типа «обрыв цепи»; а во второй отказы в срабатывании выключателей.
Параметр потока отказов и восстановлений схемы определяется следующим образом:
А,х=Ла+Л„ (2) и = _Л"+Л'______(3)
Иех , ¡ i / '
где Лп - эквивалентный параметр потока аварийного отключения узла нагрузки при учете отказов выключателя типа «обрыв цепи», а для остальных элементов учитываются повреждения, приводящие к КЗ ; //„ - эквивалентный параметр потока восстановлений электроснабжения узла нагрузки из-за повреждений: выключателей типа «обрыв цепи» для остальных элементов - отказ типа КЗ; Лх - эквивалентный параметр потока аварийных отключений рассматриваемого узла нагрузки при учете отказов в срабатывании защитных коммутационных аппаратов в случае появления КЗ в зоне действия их релейной защиты; //v - эквивалентный параметр потока восстановления электроснабжения рассматриваемого узла нагрузки при отказе в срабатывании защитного коммутационного аппарата в случае появления КЗ в зоне действия его релейной защиты.
Вероятность бесперебойного электроснабжения R(t) узла нагрузки и наработка на отказ Т определяется следующим образом.
Л(0 = е"д»\ (4)
Г - 1/4, , (5)
^ = 1/4,. (6)
Рис. 1 - Варианты преобразования схем
Формулы (12) справедливы при выполнении условий: ¡лл ■ ¡¿с > ¡л) , + }ЛГ > ,
Мг + МГ >М11-
Используя формулы (7)-(12), учитывая условие (1), схему замещения, определяем: Л0 -параметр потока аварийных отключений узла нагрузки при учете отказа выключателя типа «обрыв цепи» и повреждений остальных элементов типа КЗ; /ли - параметр потока восстановлений электроснабжения узла нагрузки при учете отказов выключателя типа «обрыв цепи» и отказов типа КЗ остальных элементов, входящих в схему.
Для нахождения ЛЛ. и рассматриваются все возможные аварийные ситуации мри КЗ в защищаемом элементе сети и отказе в срабатывании ряда защитных коммутационных аппаратов, из-за отказа в срабатывании которых аварийно отключается рассматриваемый узел нагрузки. Строится «дерево» событий, объясняющее процесс аварийного отключения узла нагрузки и затем составляется схема минимальных сечений,
Формула для определения частоты аварийного отключения узла нагрузки при КЗ в защищаемом элементе и отказе в срабатывании ряда защитных коммутационных аппаратов, через которые прошел сквозной аварийный ток, имеет вид [13]:
1 II ш
где Я, у - параметр потока отказов в срабатывании /-того защитного коммутационного аппарата. Здесь индекс указывает на то, что учитывается поток отказов в срабатывании /-того защитного коммутационного аппарата; 0, - интервал времени между профилактическими осмотрами системы отключения /-того защитного коммутационного аппарата вместе с его релейной защитой или системы АВР; т - число защитных коммутационных аппаратов, через которые прошел сквозной аварийный ток. при этом действие их основной и резервной релейной защиты обязательно или число секционных коммутационных аппаратов с АВР, отказавших во включении; п - число единиц электрооборудования, получающих электроэнергию ог данного узла нагрузки, в которых возможны повреждения типа КЗ; к - номер минимального сечения.
Формула (13) справедлива при выполнении условия: интервалы времени между появлениями КЗ в элементе сети и интервалы времени между отказами в срабатывании защитных коммутационных аппаратов не противоречат экспоненциальным функциям распределения вероятностей с параметрами соответственно , : и, кроме этого, соблюдается условие
ЭА, <0,1- (14)
В том случае, если сроки профилактики систем отключения защитных коммутационных
аппаратов будут одинаковы (т.е. ©г = 0, / = \,т ). тогда формула (13) примет вид:
1 п т
(15)
£ ¡=1 i=i
Параметр потока отказов ks определится следующим образом:
К -¿Я,, (16)
где $ - число минимальных сечений. Параметр потока восстановлений:
М, = ,
где г, - среднее время обнаружения поврежденного элемента, отключения его от сети и восстановление электроснабжения отключившихся потребителей, получающих электроэнергию от рассматриваемого узла нагрузки.
Выводы
1. Предложена методика расчетов надежности структурно-сложных схем систем электроснабжения промышленных предприятий, отличающаяся от известных тем, что кроме отказов элементов типа «обрыв цепи» учитываются отказы типа КЗ и отказы в срабатывании защитных коммутационных аппаратов, что в значительной степени повышает точность расчетов.
2. В том случае, если условия (1) и (14) не выполняются, на кафедре электроснабжения промышленных предприятий и городов получены системы линейных дифференциальных уравнений, которые позволяют с помощью ЭВМ оценить надежность любой сложной по структуре схемы и выбрать оптимальные с точки зрения надежности и приведенных затрат сроки профилактики средств защиты.
Перечень ссылок
1. Рябинин НА. Основы теории и расчета надежности судовых электроэнергетических систем. -2-е ИЗД../И.А. Рябинин. - Л.: Судостроение, 1971.- 456 с.
2. Нечшоренко В.И. Структурный анализ систем (эффективность и надежность) / ВИ. Нечи-поренко. - М.: Сов. радио, 1977. - 216 с.
3. Фокин Ю.А. Расчет надежности систем электроснабжения / Ю.А. Фокин, A.M. Харченко II Электричество. - 1982,- №8,- С. 5-10.
4. Константинов Б.А. Логико-аналитический метод расчета надежности восстанавливаемых систем электроснабжения / Б.А. Константинов, Э.А. Лосев II Электричество. - 1971. -№ 12. - С. 21-25.
5. Синъчугов Ф.И. Основные положения расчета надежности электроэнергетических систем / Ф.И. Синъчугов II Электричество.- 1980.- №4.- С. 12-16.
6. Лосев Э.А. Отклик на статью Ф.И. Синьчугова/ Э.А. Лосев II Электричество. -1981. -№ 9. -С. 72-73.
7. О расчете надежности систем электроснабжения газовых промыслов / ИВ. Белоусенко, М.С Ершов, А.П. Ковалев, В.В, Якимишина, O.A. Шевченко 77 Электричество. - 2004. - №3. -С. 23-28.
8. Фабрикант В.И О применении теории надежности к оценке устройств релейной защиты /
B.П. Фабрикант II Электричество. - 1965. - №9. - С. 36-40.
9. Смирнов Э.П. Влияние профилактического контроля на результирующую надежность релейной защиты/ Э.П. Смирнов II Электричество. - 1965. - №4. - С. 11-15.
10. БарзамА.Б. Отклик на статью Э.П. Смирнова 1А.Б. Барзам II Электричество. - 1967. - №8. -
C. 83-87.
11. ЭндрениДж. Моделирование при расчетах надежности в электроэнергетических системах / Дж. Эндрени. - М.: Энергоатомиздат, 1983. - 336 с.
12. Ковалев А.П. Метод расчета надежности сложных схем систем электроснабжения с учетом восстановления элементов I А.П. Ковалев, ЛИ. Сердюк II Электричество. - 1985. - №10. -С. 52-53.
13. О надежности максимальных токовых защит, применяемых в сетях угольных шахт / АЛ. Ковалев, ИВ. Белоусенко, В.П. Муха, A.B. Шевченко II Электричество. -1995. - №2. - С.
17-20.
Статья поступила 17.03.2005