Научная статья на тему 'Оценка эффективности центробежного помольного агрегата при мокром способе измельчения'

Оценка эффективности центробежного помольного агрегата при мокром способе измельчения Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
90
22
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОТХОДЫ ГОРНОРУДНОГО ПРОИЗВОДСТВА / ПЕРЕРАБОТКА / СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ / МЕХАНОАКТИВАЦИЯ / ЦЕНТРОБЕЖНЫЙ ПОМОЛЬНЫЙ АГРЕГАТ / СУХОЙ СПОСОБ / МОКРЫЙ СПОСОБ / УДЕЛЬНАЯ ПОВЕРХНОСТЬ

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — Уральский А. В., Уральский В. И., Севостьянов В. С., Загороднюк Л. Х., Юрченко В. В.

В настоящее время в связи с быстро развивающимися темпами строительства остро встала проблема недостатка природного сырья для производства строительных материалов. Исходя из этого, актуальной задачей строительной индустрии является сохранение естественных сырьевых ресурсов, энергосбережение и защита окружающей среды, переработка отходов производств с целью изготовления из них высококачественных продуктов и создание безотходных производств. Анализ сырьевых ресурсов Российской Федерации показал, что наиболее крупнотоннажным сырьем является отходы мокрой магнитной сепарации (ММС), образующиеся при обогащении руд. Выполненный комплекс исследований применения отходов ММС показал, что самое эффективное их использование заключается в механоактивации смеси отходов и цемента и приготовлении нового класса вяжущих тонкомолотых многокомпонентных цементов (ТМЦ) и вяжущих низкой водопотребности (ВНВ). Для проведения комплексных экспериментальных исследований, с учетом существующих требования, был выбран опытно-экспериментальный центробежный помольный агрегат (ЦПА) с заданными траекториями движения помольных камер. Разработанный измельчитель предназначен для механоактивации хрупких материалов с различными физико-механическими свойствами по комбинированному способу помола (сухому и мокрому), как в периодическом, так и в непрерывном режимах. Анализ результатов экспериментальных исследований свидетельствуют об эффективности использования центробежного помольного агрегата при мокром способе измельчения, а также позволяют сделать вывод о существенном превосходстве мокрого измельчения для по-лучения тонкомолотого сырья.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по энергетике и рациональному природопользованию , автор научной работы — Уральский А. В., Уральский В. И., Севостьянов В. С., Загороднюк Л. Х., Юрченко В. В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Оценка эффективности центробежного помольного агрегата при мокром способе измельчения»

МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ

DOI: 10.12737/article_5c1c9968dd21b8.61565433 1Уральский А.В., 1Уральский В.И., 1Севостьянов В.С., 1ЗагороднюкЛ.Х., 2Юрченко В.В.,

1 *Синица Е.В.

1 Белгородский государственный технологический университет им. В.Г. Шухова Россия, 308012, Белгород, ул. Костюкова, д. 46.

2Карагандинский государственный технический университет Республика Казахстан, 100027, Бульвар Мира 56 *E-mail: [email protected]

ОЦЕНКА ЭФФЕКТИВНОСТИ ЦЕНТРОБЕЖНОГО ПОМОЛЬНОГО АГРЕГАТА ПРИ МОКРОМ СПОСОБЕ ИЗМЕЛЬЧЕНИЯ

Аннотация. В настоящее время в связи с быстро развивающимися темпами строительства остро встала проблема недостатка природного сырья для производства строительных материалов. Исходя из этого, актуальной задачей строительной индустрии является сохранение естественных сырьевых ресурсов, энергосбережение и защита окружающей среды, переработка отходов производств с целью изготовления из них высококачественных продуктов и создание безотходных производств.

Анализ сырьевых ресурсов Российской Федерации показал, что наиболее крупнотоннажным сырьем является отходы мокрой магнитной сепарации (ММС), образующиеся при обогащении руд.

Выполненный комплекс исследований применения отходов ММС показал, что самое эффективное их использование заключается в механоактивации смеси отходов и цемента и приготовлении нового класса вяжущих - тонкомолотых многокомпонентных цементов (ТМЦ) и вяжущих низкой водопо-требности (ВНВ).

Для проведения комплексных экспериментальных исследований, с учетом существующих требования, был выбран опытно-экспериментальный центробежный помольный агрегат (ЦПА) с заданными траекториями движения помольных камер. Разработанный измельчитель предназначен для ме-ханоактивации хрупких материалов с различными физико-механическими свойствами по комбинированному способу помола (сухому и мокрому), как в периодическом, так и в непрерывном режимах.

Анализ результатов экспериментальных исследований свидетельствуют об эффективности использования центробежного помольного агрегата при мокром способе измельчения, а также позволяют сделать вывод о существенном превосходстве мокрого измельчения для получения тонкомолотого сырья.

Ключевые слова: отходы горнорудного производства, переработка, строительные материалы, механоактивация, центробежный помольный агрегат, сухой способ, мокрый способ, удельная поверхность.

В настоящее время в связи с быстро развивающимися темпами строительства остро встала проблема недостатка природного сырья для производства строительных материалов. Исходя из этого, актуальной задачей строительной индустрии является сохранение естественных сырьевых ресурсов, энергосбережение и защита окружающей среды, переработка отходов производств с целью изготовления из них высококачественных продуктов и создание безотходных производств [1].

Рудное сырьё в России добывается различными методами. Более дешевая добыча открытым способом позволяет уменьшить потери сырья, однако активное использование этого спо-

соба приводит к исключению из природопользования больших земельных площадей и образованию огромного объёма отходов пустой породы. Только в России накоплены свыше 45 млрд. т отходов различного класса опасности.

Что касается железной руды, при её добыче открытым способом извлекается почти 100 % руды, а подземным способом - 87 %. В то же время большую проблему представляют огромные объемы отходов горнорудного производства. В процессе добычи железных руд, как и руд других металлов - это, как правило, вскрышные и попутно-добываемые породы.

Анализ выявленных сырьевых ресурсов Российской Федерации показал, что наибольшие объемы приходятся на отходы мокрой магнитной

сепарации (ММС), образующиеся при обогащении руд.

Безусловно, возможность вторичного использования отходов горнорудного производства будет оказывать благоприятное воздействие не только на экологическую обстановку окружающей среды, но и позволит производить широкий спектр строительных материалов с высокими эксплуатационными свойствами. При этом обеспечивается существенный экономический эффект в связи с использованием дешевых сырьевых материалов.

Таким образом, наиболее перспективным направлением утилизации отходов обогащения горнорудного производства является их использование в строительном комплексе. Особенно актуальным этот вопрос становится сегодня, в условиях развития и роста числа горнорудных предприятий [2].

Существуют различные методы динамического воздействия на структуру твердого тела для активизации химических и физико-химических процессов.

При дроблении и помоле обеспечивается интенсивное воздействие на железистые кварциты, в результате чего изменяется структура породо-

образующих минералов. Теоретически возможность инициирования и ускорения химических реакций при механическом воздействии на кварц и другие минералы объясняется поглощением ими определенной доли механической энергии. При дальнейшем деформировании минералов (за пределом текучести) их структура разрушается и энергия расходуется на образование различных дефектов структуры.

Запасенная в хвостах в результате механоак-тивации энергия влияет на процессы структуро-образования в системе «отходы ММС - портландцемент» [3].

Вышеизложенное свидетельствует о том, что обогащение железистых кварцитов представляет собой систему механического воздействия на исходную полиминеральную породу, в результате которого происходит дезинтеграция материала и разделение на магнетитовый концентрат и нерудную составляющую - хвосты ММС.

Выполненный комплекс исследований применения отходов ММС показал, что самое эффективное их использование заключается в меха-ноактивации смеси отходов и цемента и приготовлении нового класса вяжущих - тонкомолотых многокомпонентных цементов (ТМЦ) и вяжущих низкой водопотребности (ВНВ) (рис. 1).

Рис. 1. Области использования ВНВ и ТМЦ

Для получения применяемых вяжущих необходим тонкий совместный помол отходов ММС и цемента. Так как имеющиеся сырье зачастую не соответствует требованиям, а исходные материалы имеют различную гранулометрию, то необходимо использовать различные технологии его обработки.

Тонкий помол осуществляет достаточно интенсивное воздействие на железистые кварциты, в результате чего происходят химические реакции и изменение структуры породообразующих минералов. При использовании тонкого цемента, рост твердой кристаллической части происходит быстрее.

В результате многочисленных исследований установлено, что вторичное использование хвостов обогащения железных руд позволяет получить силикатные бетоны марок 400-700, обладающие следующими свойствами:

- высокая морозостойкость;

- стойкость к воздействию агрессивных

сред;

- повышенное сопротивление истиранию (выше аналогичного показателя для бетонов на традиционных заполнителях в 1,5 раза);

- повышенная прочность на изгиб.

Повышенное сопротивление истиранию и

повышенная прочность на изгиб обуславливают широкие возможности использования подобных бетонов в дорожном строительстве [4].

Известны положительные результаты лабо-раторно-технологических и промышленных испытаний отходов обогащения ММС железистых кварцитов КМА в составе шихты при производстве керамического кирпича [5].

Для проведения комплексных экспериментальных исследований, с учетом существующих требования, был выбран опытно-экспериментальный центробежный помольный агрегат (ЦПА) с заданными траекториями движения помольных камер (рис. 2) [6-12]. Разработанный центробежный помольный агрегат предназначен для измельчения материалов с различными физико-механическими свойствами по комбинированному способу помола (сухому и мокрому), как в периодическом, так и в непрерывном режимах.

При исследовании процессов измельчения в ЦПА использовались доступные сырьевые материалы с необходимыми технологическими и экономическими параметрами, благоприятно влияющими на качество и себестоимость готовой продукции. В работе использовались:

- портландцемент марки ЦЕМ I 42,5 Н (ГОСТ 31108-2003), ОАО «Белгородский цементный завод»;

- отходы мокрой магнитной сепарации Михайловского горно-обогатительного комбината (МГОК).

27

Рис. 2. Центробежный помольный агрегат комбинированного способа измельчения 1 - станина; 2 - вертикальная направляющая; 3 - опорная стойка; 4 - эксцентриковый вал; 5 - рама; 6 - ползун; 7 - ползун; 8 - верхняя помольная камера (сухого измельчения); 9 - средняя помольная камера; 10 - нижняя помольная камера (мокрого измельчения); 11 - классификационная решетка; 12 - загрузочная переходная камера; 13 - разгрузочная переходная камера; 14 - бункер; 15 - гибкий патрубок; 16 - ограничительная решетка; 17 - ограничительная решетка; 18 - загрузочная переходная камера; 19 - разгрузочная переходная камера; 20 - ограничительная решетка; 21 - загрузочная переходная камера; 22 - разгрузочная переходная камера; 23 - жесткий вертикальный патрубок; 24 - жесткий вертикальный патрубок; 25-штуцер; 26 - трубопровод;

27 - резервуар; 28 - объемным дозатор

Вода для исследований бралась питьевая с рН = 7,12, показатели которой удовлетворяют требования ГОСТ 23732-85.

В работе использовалась представительная проба отходов ММС МГОКа. Проба отходов была отобрана по методике согласно ГОСТ 15054-80.

Минералогический состав усредненной пробы отходов мокрой магнитной сепарации характеризуется наличием следующих соединений: минералов кварца, гематита, силикатов железа, рудных карбонатов железа, гидрооксидов железа, магнетита, нерудных карбонатов. Преобладающая фракция железа - гематитовая.

Отходы ММС представляют собой сыпучий достаточно дисперстный материал. Показатели удельной поверхности и плотности были определены экпериментально. Удельная поверхность

отходов составляет 250 м2/кг, насыпная плотность - 1460 кг/м3, истинная плотность -2530 кг/м3 .

Анализ химического состава материала показал, что содержание оксида кремния в средних пробах составляет свыше 60 %, что предопределяет возможность их использования в вяжущих композициях в качестве минерального наполнителя.

Исследование гранулометрического состава отходов ММС и применяемого портландцемента методом лазерной гранулометрии с помощью установки Мюго812ег 201 показало, что области распределения частиц отходов ММС и портландцемента достаточно сближаются, при этом отмечается, что дисперсность отходов ММС достаточно высока. Результаты исследований представлены на рис. 3.

Рис. 3. График распределения частиц отходов ММС и портландцемента по размерам

Для оценки возможностей по измельчению отходов ММС были проведены предварительные исследования по их помолу в ЦПА сухим и мокрым способом. Эксперимент был проведен следующим образом: помольные камеры были загружены на 30 % соответствующими мелющими телами. Помол проходил при частоте вращения эксцентрикового вала агрегата - 480 об/мин. При мокром способе во вторую помольную камеру при каждом эксперименте подавалась вода (50 % от общего объема материла). После каждых 15 мин работы снимали пробы и делали выводы по результатам процесса измельчения.

Результаты анализа изменения характеристик материала, измельченного сухим способом, приведены на рисунках 4-6, мокрым способом -на рисунках 7-9.

Анализ величины удельной поверхности (см2/см3) показывает, что интенсивность ее увеличения при сухом способе измельчения выше, чем при мокром. Через 45 минут помола удельная поверхность при сухом способе увеличилась в 2,1 раза по сравнению с величиной, определенной через 15 минут. При мокром способе удельная поверхность увеличилась в 1,05 раза. В то же время абсолютная величина удельной поверхности при измельчении мокрым способом существенно выше, полученной при сухом способе. Уже через 15 минут помола ее величина возросла в 2,7 раза. Полученные результаты свидетельствуют об эффективности использования центробежного помольного агрегата при мокром способе измельчения.

Модальный диан. 87г93 |_т Размах (гшо-пи^'см) 2,26 С[4,Э] ^т

Уд. поверхность 5472 сиг/см! Плотность {1 Уд. пое, по массе 0 сиг/г

Рис. 4. Гистограмма помола отходов ММС по сухому способу через 15 мин

Рис. 5. Гистограмма помола отходов ММС по сухому способу через 30 мин

Рис. 6. Гистограмма помола отходов ММС по сухому способу через 45 мин

Рис. 7. Гистограмма помола отходов ММС по мокрому способу через 15 мин

Рис. 8. Гистограмма помола отходов ММС по мокрому способу через 30 мин

Рис. 9. Гистограмма помола отходов ММС по мокрому способу через 45 мин

При измельчении материала в воде, помимо потока, в котором возникают упругие механиче-

механических, наблюдаются гидродинамические ские колебания под действием мелющей за-воздействия мелющей среды. Помол суспензии грузки. осуществляется в виде мощного турбулентного

Проведенные экспериментальные исследования по измельчению материалов в центробежном помольном агрегате разными способами позволяют сделать вывод о существенном превосходстве мокрого измельчения для получения тонкомолотого сырья.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Рахимов Р.З., Магдеев У.Х., Ярмаковский В.Н. Экология, научные достижения и инновации в производстве строительных материалов на основе и с применением техногенного сырья // Строительные материалы. 2009. №12. С. 8-11.

2. Чайников В.В., Крючкова Л.А. Практика использования техногенных ресурсов чёрной и цветной металлургии в России и за рубежом. М. 1994. 30 с.

3. Аввакумов Е.Г. Механические методы активации химических процессов. Новосибирск: Наука, 1986. 304 с.

4. Лесовик В.С., Шейченко М.С., Алфимова Н.И. Композиционные вяжущие с использованием высокомагнезиальных отходов Ковдор-ского месторождения // Вестник БГТУ им. В.Г. Шухова. 2011. №1. С. 10-14.

5. Лесовик В.С., Загороднюк Л.Х., Шахова Л.Д. Техногенные продукты в производстве сухих строительных смесей. Белгород: Изд-во БГТУ им. В.Г. Шухова. 2011. 196 с.

6. Уральский В.И., Уральский А.В., Сажнева Е.А., Фарафонов А.А. Перспективные направления применения высокодисперсных порошков //

[Электронный ресурс] VII Международный молодежный форум «Образование, наука, производство». Белгород, 2015.

7. Уральский В.И., Фарафонов А.А., Сажнева Е.А., Тюрин В.С. Технология получения высокодисперсных компонентов // Энерго- и ре-сурсо-сберегающие экологически чистые химико-технологические процессы защиты окружающей среды: сб. докл. Междунар. научно-тех-нич. конф. Белгород: Изд-во БГТУ 2015. Ч. 3. 405-409 С.

8. Пат. 2277973 Российская Федерация В 02С 17/18. Помольно-смесительный агрегат / Гридчин А.М., Севостьянов В.С., Лесовик В.С., Уральский В.И., Синица Е.В.; заявитель и патентообладатель БГТУ им. В.Г. Шухова. № 2005118705/03, заявл. 24.06.05 опубл. 20.06.06, Бюл. №17.

9. Пат. 2381837 Российская Федерация, В 02С 17/08. Помольно-смесительный агрегат / Гридчин А.М., Севостьянов В.С., Лесовик В.С., Уральский В.И., Уральский А.В., Синица Е.В.; заявитель и патентообладатель БГТУ им. В.Г. Шухова., ООО «ТК РЕЦИКЛ». № 2008109444/03, заявл. 11.03.08; опубл. 20.02.2010, Бюл. №5.

10. Пат. 2630451 Российская Федерация, В 02С 17/06. Центробежный агрегат комбинированного способа измельчения / Фарафонов А.А., Севостьянов В.С., Уральский В.И., Синица Е.В., Уральский А.В., Сажнева Е.А.; заявитель и патентообладатель Белгородский государственный технологический университет им. В.Г. Шухова. №2016149707, заявл. 16.12.16; опубл. 08.09.2017, Бюл. № 25.

Информация об авторах

Уральский Алексей Владимирович, кандидат технических наук, доцент кафедры технологических комплексов, машин и механизмов. E-mail: [email protected]. Белгородский государственный технологический университет им. В.Г. Шухова. Россия, 308012, Белгород, ул. Костюкова, д. 46.

Уральский Владимир Иванович, кандидат технических наук, доцент кафедры технологических комплексов, машин и механизмов. E-mail: [email protected]. Белгородский государственный технологический университет им. В.Г. Шухова. Россия, 308012, Белгород, ул. Костюкова, д. 46.

Севостьянов Владимир Семенович, доктор технических наук, профессор кафедры технологических комплексов, машин и механизмов. E-mail: [email protected]. Белгородский государственный технологический университет им. В.Г. Шухова. Россия, 308012, Белгород, ул. Костюкова, д. 46.

Загороднюк Лилия Хасановна, доктор технических наук, профессор кафедры строительного материаловедения, изделий и конструкций. Белгородский государственный технологический университет им. В.Г. Шухова. Россия, 308012, Белгород, ул. Костюкова, д. 46.

Юрченко Василий Викторович, PhD, заведующий кафедрой «Технологическое оборудование, машиностроение и стандартизация». E-mail: [email protected]. Карагандинский государственный технический университет. Республика Казахстан, 100027, Бульвар Мира 56.

Синица Елена Владимировна, кандидат технических наук, доцент кафедры технологических комплексов, машин и механизмов. E-mail: [email protected]. Белгородский государственный технологический университет им. В.Г. Шухова. Россия, 308012, Белгород, ул. Костюкова, д. 46.

Поступила в октябре 2018 г.

© Уральский А.В., Уральский В.И., Севостьянов В.С., Загороднюк Л.Х., Юрченко В.В., Синица E^., 2018

1Uralsky A.V., 1Uralsky V.I., 1Sevostyanov V.S., 1Zagorodnyuk L.H., 2Yurchenko V.V.,

1*Sinitsa E.V.

'Belgorod State Technological University named after V.G. Shukhov Russia, 308012, Belgorod, st. Kostyukova, 46 2Karaganda State Technical University Kazakhstan, 100027, Karaganda, BulvarMira, 56 *E-mail: [email protected]

EFFICIENCY EVALUATION OF CENTRIFUGAL GRINDER UNIT UNDER WET

GRINDING

Abstract. At present, due to the rapidly developing pace of construction, a lack of natural raw materials for the production of building materials is acute. Accordingly, the actual task of the construction industry is the preservation ofnatural raw materials, energy saving and environmental protection, processing production waste purposed to make high-quality products and creating waste-free production.

Analysis of Russian raw material resources shows the most large-tonnage raw material is the waste of wet magnetic separation formed during the enrichment of ores. A completed set of studies on the use of wet magnetic separation waste demonstrate the most effective use is to mechanically activate a mixture of waste and cement; preparation of a new class of binders - finely ground multicomponent cements and low water demand blinders. Taking into account the existing requirements, experimental centrifugal grinding unit with predetermined trajectories of the grinding chambers are chosen to conduct complex experimental studies. The developed centrifugal grinding unit is designedfor grinding materials with differentphysicomechanical characteristics by the combined grinding method (dry and wet), both in periodic and in continuous modes. Analysis of experimental studies outcomes indicates the efficiency of using centrifugal grinding unit in the wet grinding and allows justifying the significant superiority of wet grinding for the production offinely ground raw materials.

Keywords: mining waste, recycling, construction materials, mechanical activation, centrifugal grinding unit, dry method, wet method, specific surface area.

REFERENCES

1. Rakhimov R.Z., Magdeev U.Kh., Yarmakov-skiy V.N. Ecology, scientific achievements and innovations in the production of building materials on the basis of and with the use of technogenic raw materials. Construction materials, 2009, no 12. pp. 811.

2. Chaynikov V.V., Kryuchkov L.A. The practice of using technogenic resources of ferrous and non-ferrous metallurgy in Russia and abroad. M, 1994, 30 p.

3. Avvakumov E.G. Mechanical methods of activation of chemical processes. Novosibirsk: Science, 1986, 304 p.

4. Lesovik V.S., Sheychenko M.S., Alfimova N.I. Composite binders using high-magnesia wastes from the Kovdorsky deposit. Bulletin of BSTU named after V.G. Shukhov, 2011, no 1, pp. 1-14.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

5. Lesovik V.S., Zagorodniuk L.Kh., Shakhova LDD. Man-made products in the production of dry building mixes. Belgorod: BSTU, 2011, 196 p.

6. Uralsky V.I., Uralsky A.V., Sazhneva E.A., Farafonov A.A. Perspective directions for the use of highly dispersed powders. VII International Youth Forum "Education, Science, Production". Belgorod, 2015.

7. Uralskiy V.I., Farafonov A.A., Sazhneva E.A., Tyurin V.S. Technology for producing highly dispersed components. Energy and resource saving environmentally friendly chemical-technological processes of environmental protection: Sat. report International scientific and technical conf. Belgo-rod:BSTU, 2015, Part 3, pp. 405-409.

8. Gridchin A.M., Sevostyanov V.S., Lesovik V.S., Uralskiy V.I., Sinitsa E.V. Grinding-mixing unit. Patent RF, no. 2005118705/03, 2006.

9. Gridchin A.M., Sevostyanov V.S., Lesovik V.S., Uralskiy V.I., Sinitsa E.V. Grinding-mixing unit. Patent RF, no. 2008109444/03, 2010.

10. Farafonov A.A., Sevostyanov V.S., Uralskiy V.I., Sinitsa E.V., Uralskiy A.V., Sazhneva E.A. Centrifugal unit combined grinding method. Patent RF, no. 2016149707, 2017.

Information about the author

Uralskiy, Alexey V. PhD, Assistant professor. E-mail: [email protected]. Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, st. Kostyukova, 46.

Uralskiy, Vladimir I. PhD, Assistant professor. E-mail: [email protected]. Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, st. Kostyukova, 46.

Sevostyanov, Vladimir S. DSc, Professor. E-mail: [email protected]. Belgorod State Technological University named after V.G.Shukhov. Russia, 308012, Belgorod, st. Kostyukova, 46.

Zagorodnyuk, Liliya K. PhD, Professor. Belgorod State Technological University named after V.G.Shukhov. Russia, 308012, Belgorod, st. Kostyukova, 46.

Yurchenko, Vasily V. Ph.D. E-mail: [email protected]. Karaganda State Technical University. 56 Bulvar Mira, Karaganda, 100027, Kazakhstan.

Sinitsa, Elena V. PhD, Assistant professor. E-mail: [email protected]; [email protected]. Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, st. Kostyukova, 46.

Received in October 2018 Для цитирования:

Уральский А.В., Уральский В.И., Севостьянов В.С., Загороднюк Л.Х., Юрченко В.В., Синица Е.В. Оценка эффективности центробежного помольного агрегата при мокром способе измельчения // Вестник БГТУ им. В.Г. Шухова. 2018. №12. С. 114-123. DOI: 10.12737/article_5c1c9968dd21b8.61565433

For citation:

Uralsky A.V., Uralsky V.I., Sevostyanov V.S., Zagorodnyuk L.H., Yurchenko V.V., Sinitsa E.V. Efficiency evaluation of centrifugal grinder unit under wet grinding. Bulletin of BSTU named after V.G. Shukhov, 2018, no. 12, pp. 114-123. DOI: 10.12737/article_5c1c9968dd21b8.61565433

i Надоели баннеры? Вы всегда можете отключить рекламу.