УДК 629+656.1:656.2
ASSESSMENT OF VEHICLE EFFECTIVE MODERNIZATION TAKING INTO ACCOUNT THE LIFE CYCLE COST, TECHNICAL AND ENVIRONMENTAL
PARAMETERS
M. Volodarets, Assoc. Prof., Ph. D. (Eng.), Ukrainian State University of Railway Transport, Kharkov
Abstract. The article deals with the features for determination of the efficiency of vehicle modernization compared to the base one. They propose the model for determining the efficiency of vehicle modernization compared with the base one. The model takes into account technical, economic and environmental parameters of the vehicle.
Key words: vehicle efficiency, life cycle, life cycle cost, technical level coefficient, environmental parameters.
ОЦ1НКА ЕФЕКТИВНОСТ1 МОДЕРНВАЦП ТРАНСПОРТНОГО ЗАСОБУ З УРАХУВАННЯМ ВАРТОСТ1 ЖИТТСВОГО ЦИКЛУ, ТЕХН1ЧНИХ I ЕКОЛОГ1ЧНИХ ПАРАМЕТР1В
М.В. Володарець, к.т.н., УкраТнський державний ушверситет залiзничного транспорту, м. Харкчв
Анотаця. Приведено модель з eidnoeidHUMU обмеженнями для визначення ефективностi eid модермзацп транспортного засобу порiвняно з базовим. Запропоновано вiдповiдний коефщ-ент ефективностi вiд модермзащ транспортного засобу, який враховуе його техтчт, еконо-мiчнi й екологiчнi показники.
Ключов1 слова: транспортний зааб, ефективтсть, життевий цикл, вартiсть життевого циклу, коефщент техтчного рiвня, екологiчнi показники.
ОЦЕНКА ЭФФЕКТИВНОСТИ МОДЕРНИЗАЦИИ ТРАНСПОРТНОГО СРЕДСТВА С УЧЕТОМ СТОИМОСТИ ЖИЗНЕННОГО ЦИКЛА, ТЕХНИЧЕСКИХ И ЭКОЛОГИЧЕСКИХ ПАРАМЕТРОВ
Н.В. Володарец, к.т.н., Украинский государственный университет железнодорожного транспорта, г. Харьков
Аннотация. Приведена модель с соответствующими ограничениями для определения эффективности от модернизации транспортного средства по сравнению с базовым. Предложен соответствующий коэффициент эффективности от модернизации транспортного средства, который учитывает его технические, экономические и экологические показатели.
Ключевые слова: транспортное средство, эффективность, жизненный цикл, стоимость жизненного цикла, коэффициент технического уровня, экологические показатели.
Introduction
Modernization is technical improvement of capital assets in order to eliminate moral depreciation and enhance the technical and economic parameters to the level of advanced equipment
[1]. Usually, determination of efficiency of modernization of the vehicle is viewed from an economic point of view. But this process will improve the technical, economic and environmental parameters of the vehicle.
Analysis of publications
Usually, various methods are used to determination of efficiency of the modernization of the vehicle [1-8]. But they have drawbacks. So [1, 4-7] takes into account only the economic performance of the vehicle. In [2, 3] are only technical and economic indicators. In [8] are considered the economic and environmental performance.
Purpose and problem statement
The aim of the article is in the calculation of efficiency of modernization of vehicle taking into account life cycle, technical and environmental parameters.
There is necessary to use the figure that would take into account all these parameters together in order to assess how much modernization is effective.
Estimation of modernization efficiency
It is proposed to measure the coefficient of efficiency from the modernization of the vehicle according to the procedure which is shown in Fig. 1.
1. Definition of modernization components of the vehicle
2. Determination of the technical level parameters of vehicles
3. Determination of the life cycle parameters of vehicles
4. Determination of the Environmental parameters of vehicles
5. Determination of the effectiveness of the vehicle modernization
Fig. 1. The procedure for efficiency estimation of vehicle modernization
It is proposed to use the coefficient of efficiency from the modernization of the vehicle Ke as an indicator by the following formula
k=3
IK ф(к )
Ke =
i =1
e k=3
(1)
!ф(к )
k=1
where K1 is the technical level coefficient of the modernized vehicle; K2 is the life cycle coefficient of the modernized vehicle; K3 is the environmental parameters coefficient of the modernized vehicle; q>(k) is the function which normalize parameters weight in the ranked sequence; k is the parameter number in the ranked sequence.
Calculate the coefficient K1 as a criterion the technical level using the method of weight coefficients. It describes the new design and engineering development on existing technical objects of the same production purposes. It is calculated using the following formula shown in [2, 3]
Ke =
Z кпФ(0
i=1_
i=s
(г)
i =1
where kn is the parameter, which is the ratio of the numerical parameters of the new development to the parameters of existing facilities for rational categories (growth of parameter corresponds to the technical progress) and irrational categories (growth of parameter doesn't correspond to the technical progress); 9(7) is the function which normalize the parameters weight in a ranked order, 7 = 1..s.
Best of comparable vehicle fits the greater value of coefficient K
It was on improved method for determining the technical level of the vehicle by the next. Function 9(7) was introduced in part of determining the parameters weight in a ranged sequence instead of using the expert method. According to it, this figure determined by the following formula
=i ^ 2
(З)
where i is a number of technical parameter in a ranged sequence (and, by definition 9 (1) = 2 is a singular point).
The coefficient K2 is determined as the ratio of the life cycle cost of the basic vehicle LLCVb and the modernized one LLCVm using the following formula
K = LLCvb
LLC
(4)
Vm
Determining the value of the vehicle life cycle is forecasting costs on stages of its life cycle. The life cycle cost concept (Product Life Cycle Cost - LCC) is widely used abroad to assess the efficacy of investment projects [4, 5].
Today LCC analysis is widely used as a tool in the decision making process when considering plans for the implementation of new investment projects, tendering for rendering the services, manufacture and delivery of technical objects mainly with the high initial cost and the long time of lifestyle. The use of LCC analysis is fixed legislatively in some countries. [6]
The life cycle cost of vehicle LCCV, which is purchased or upgraded again, is the sum of all costs (non-recurring and current) at all stages and is determined taking into account the discount factor at using the following formula [4]
tin +T
lccv =Z( Kt •at + it'at - Lt ■at ) (5)
where Kt is capital investments in the year t of the life cycle, UAH; It is current expenses in the year t of the life cycle, UAH; Lt is the residual value of fixed assets, which drop out in the year t of the life cycle, UAH; T is the duration of the life cycle of a vehicle, years; tin is the initial year of the vehicle life cycle; ta is the year of acquisition of the vehicle; at is a discount factor.
Discount factor at is calculated using the following formula
ing the price, or by adjusting the discount rate. In this case, instead of the value of r (in the formula (6)) is used the modified discount rate d [7], which is calculated using the following formula
d =
1 + r
P 100
-1,
(7)
wherep is the projected annual inflation rate, %.
Coefficient K3 is calculated as the ratio estimates of damage from environmental pollution in year t during the operation accordingly of the base vehicle to the modernized one.
K3 = lb-
3 Ymt
(8)
where Ybt is an assessment damage from the environmental pollution in year t during operation the base vehicle, UAH [8]; Ymt is an assessment damage from the environmental pollution in year t during operation the modernized vehicle, UAH.
The value Ybt determined by the formula, UAH,
Ybt =Щ^КтЬг:
(9)
where y' is the unit costs standard, UAH / e.c.; S is is an indicator of the relative danger of air pollution on the different types territories; /is a coefficient that takes into account the nature of the scattering of impurities in the atmosphere; Az is an indicator of the relative activity of z-type impurities; mb z is average annual mass of of z-type pollutant that enter into the atmosphere in year t during operation the base vehicle, kg/h.
Value Ymt determined by the formula, UAH
Ymt =y'5/£4mmZ, (10)
a,
= (1 + r ?
(6)
where где r is the discount rate; tc is calculated year of the life cycle; t is the life cycle year, which costs are reduction to calculated year.
If it is impossible to predict the dynamics of prices (inflation) for the entire life cycle, defining of the life cycle cost should be carried in constant (unchanging, basic) prices. Thus, inflation accounting can be achieved either by index-
where mm z is average annual mass of of z-type pollutant that enter into the atmosphere in year t during operation the modernized vehicle, kg / h.
Given the formulas (9) and (10) we have
n
ZAZ mb2
K3 =
z=1
I A'z1
(11)
z=1
1
The model of determine the effectiveness of the modernized vehicle
If we assume that parameters Kk affect the coefficient of efficiency Ke equally and take into account mentioned above dependence, then the model of determine the effectiveness of the modernized vehicle compared to the base one will be in general form as follows
Tkn ф(0 ГГГ mbz
i=1__LLC Th + _z=1_
!ф(0
~"Tm
Ke =-
3
. (12)
The model limitations form can be represented in general as the following system
0 <kn <3,5, 0,02 < ф(?) < 2, LLCvh / LLCVm > 0,
4 > 0,mhz > 0,mmZ > 0, (13)
5 = 1...3,
1 = 1... s, z = 1...П.
The foregoing dependence can be used when designing new vehicles and modernization of existing ones. There were calculated parameters modernization of Lanos car with a hybrid transmission by applying the methodology that was described above. Ke ratio was equal to 1,4, which fully confirms the efficiency of such modernization.
Conclusions
The analysis of existing methods of estimation of vehicle efficiency was performed.
It was developed dependences which allow to determine the effectiveness of the modernization of the vehicle.
It was shown general appearance of the model of determining the effectiveness of the modernized vehicle compared with the base one.
References
1. Сергеев И.В. Экономика организации (предприятия): учеб. пособие для бака-
лавров / И.В. Сергеев, И.И. Веретен-никова; под ред. И.В. Сергеева. - 5-е изд., испр. и доп. - М.: Юрайт, 2013. -671 с.
2. Фалендыш А.П. Оценка технического
уровня маневровых тепловозов для железных дорог Украины: дис... канд. техн. наук: спец. 05.22.07 / А.П. Фалендыш. -Х., 1997. - 186 с.
3. Фалендыш А.П. Использование гибридных
передач на маневровых тепловозах / А.П. Фалендыш, Н.В. Володарец // Ло-комотив-информ. - 2010. - Декабрь. -С.4-7.
4. Тартаковский, Э.Д. Методы оценки жиз-
ненного цикла тягового подвижного состава железных дорог: монография / Э.Д. Тартаковский, С.Г. Грищенко, Ю.Е. Калабухин, А.П. Фалендыш. - Луганск: Ноулидж, 2011. - 174 с.
5. Павлов Л.Н. Использование и оптимизация
показателя стоимости жизненного цикла изделия / Л.Н. Павлов // Железнодорожный транспорт. - 2007. - № 7. - С. 74-77.
6. Бабел М. Анализ стоимости жизненного
цикла (LCC) при оценке эффективности подвижного состава / М. Бабел, М. Шкода, Е.Е. Коссов // Вестник Научно-исследовательского института железнодорожного транспорта. - 2013. -№ 6. - С. 55-60.
7. Власова, В. М. Основы предприниматель-
ской деятельности: Маркетинг: учебное пособие для вузов / В.М. Власова, Д.Л. Волков, С.Н. Кулаков и др.; под ред. В.М. Власовой. - М.: Финансы и статистика, 1999. - 240 с.
8. Методические рекомендации по определе-
нию экономической эффективности мероприятий научно-технического прогресса на железнодорожном транспорте/ ВНИИЖТ МПС. - М.: Транспорт, 1991. - 240 с.
References
1. Sergeev I.V., Veretennikova I.I. Ekonomika
organizatsii (predpriyatiya) [Economics of Organization (enterprises)]. Moscow, Yur-ait Publ., 2013. 671 p.
2. Falendysh A.P. Otsenka tekhnicheskogo
urovnya manevrovykh teplovozov dlya zheleznykh dorog Ukrainy. Dys. kand. tekhn. nauk: spets. 05.22.07 [Evaluation of the technical level of shunting locomotives for the Ukraine railways]. Kharkov, 1997. 186 p.
3. Falendysh A.P., Volodarets N.V. Ispol'zo-
vanie gibridnykh peredach na manevro-vykh teplovozakh [Using the hybrid transmission to shunting locomotives]. Loko-motiv-inform, 2010, December, pp. 4-7.
4. Tartakovskii E.D., Grishchenko S.G., Kala-
bukhin Yu. E., Falendysh A. P. Metody otsenki zhiznennogo tsikla tyagovogo podvizhnogo sostava zheleznykh dorog [Methods for evaluation of traction rolling stock of the life cycle], Lugansk, Noulidzh Publ., 2011. 174 p.
5. Pavlov L.N. Ispol'zovanie i optimizatsiya
pokazatelya stoimosti zhiznennogo tsikla izdeliya [The use and optimization of the indicator of the life cycle cost products]. Zheleznodorozhnyi transport [Railway Transport], 2007, no. 7, pp. 74-77.
6. Babel M., Shkoda M., Kossov E.E. Analiz
stoimosti zhiznennogo tsikla (LCC) pri otsenke e//ektivnosti podvizhnogo sostava [Analysis of the life cycle cost (LCC) in
the evaluation of the efficiency of rolling stock]. Vestnik Nauchno-issledovatel'skogo instituta zheleznodorozhnogo transporta, 2013, no. 6, pp. 55-60.
7. Vlasova V.M., Volkov D.L., Kulakov S.N.
Osnovy predprinimatel'skoi deyatel'nosti: Marketing [Basics of entrepreneurial activity: Marketing]. Moscow, Finansy i statistika Publ., 1999. 240 p.
8. Metodicheskie rekomendatsii po opredeleniyu
ekonomicheskoy effektivnosti meropriyatiy nauchno-tekhnicheskogo progressa na zheleznodorozhnom transporte [Methodical recommendations to determine the economic efficiency of the activities of scientific and technical progress on railway transport]. Moscow, Transport Publ., 1991. 240 p. (Ih Russian)
Рецензент: М.А. Подригало, профессор, д.т.н., ХНАДУ.