Научная статья на тему 'ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДОВ ПРОГНОЗИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ В СИСТЕМАХ СУДОВОГО ВАЛОПРОВОДА'

ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДОВ ПРОГНОЗИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ В СИСТЕМАХ СУДОВОГО ВАЛОПРОВОДА Текст научной статьи по специальности «Механика и машиностроение»

CC BY
72
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СУДОВОЙ ВАЛОПРОВОД / ПРОГНОЗИРОВАНИЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ / ОТКАЗ ВАЛОПРОВОДА / МЕТОДЫ ПРОГНОЗИРОВАНИЯ ОТКАЗА / НАГРУЗКА

Аннотация научной статьи по механике и машиностроению, автор научной работы — Кушнер Гурий Алексеевич, Мамонтов Виктор Андреевич

Предложен подход к оценке эффективности наиболее распространенных методов прогнозирования технического состояния и отказа применимо к судовому валопроводу. Приведены основные факторы в эксплуатации судового валопровода, влияющие на изменение технического состояния. Отмечено, что особенностью некоторых действующих на гребной вал нагрузок является их стохастический или изменяющийся с течением времени характер, что приводит к усложнению прогнозирования технического состояния валопровода и его узлов. Проведен анализ особенностей стохастических и экстраполяционных методов прогнозирования. Оценена возможность применения статистических методов в условиях массового типового производства узлов валопровода с относительно небольшим регламентированным сроком службы. Предложен вариант применения экстраполяционного метода для прогнозирования предельно допустимого зазора дейдвудных подшипников. Рассмотрен случай накопления выборки результатов измерений просадки гребного вала в заданные временные интервалы, построены аппроксимирующие функции. Определены критерии достоверности результатов экстраполяционных методов прогнозирования износа дейдвудных подшипников. Разработаны предложения по адаптации причинно-следственного метода как альтернативного экстраполяционному. Разработана принципиальная схема системы прогнозирования отказа судового валопровода на основе регистрации и анализа параметров колебаний, служащая основой для построения регрессионной модели накопления повреждений. Предложенная система прогнозирования позволяет изучать действительные условия работы валопровода, определять фактические внешние нагрузки и закономерности их появления, измерять деформации и напряжения и определять количественные показатели надежности валопровода при нормальной эксплуатации и специальных режимах работы, например при резонансе колебаний. Предложена теоретическая основа алгоритма подсчета и регистрации нагрузок, влияющих на срок эксплуатации валов.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Кушнер Гурий Алексеевич, Мамонтов Виктор Андреевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ESTIMATING EFFICIENCY OF FORECASTING TECHNICAL CONDITIONS OF SHIP PROPULSION SYSTEMS

The article considers an approach to assessing the effectiveness of the most common methods of predicting the technical conditions and failure with reference to the ship shafting. There have been analyzed the main factors in operation of the ship shaft line, which cause the change in its technical state. It has been found that a special feature of some loads acting on the propeller shaft is their stochastic or changing nature over time, which hampers predicting the technical state of the shafting and its units. The features of stochastic and extrapolation forecasting methods have been analyzed. The possibility of using statistical methods in conditions of mass standard production of shafting units with a relatively short regulated service life is estimated. An extrapolation method is proposed for predicting the maximum permissible clearance of stern tube bearings. The case of accumulating samples of measuring results of the propeller shaft sagging in the given time intervals is considered, the approximating functions are constructed. The criteria for the reliability of the results of extrapolation methods for predicting the wear of stern tube bearings are determined. There have been developed the proposals for adapting the causal method as an alternative to the extrapolation method. A schematic diagram of a system for the ship shafting failure predicting has been developed using the registration and analysis of vibration parameters, which serves as the basis for constructing a regression model of damage accumulation. The proposed forecasting system allows studying the actual operating conditions of the shafting, defining the actual external loads and the regularities of their occurrence, measuring deformations and stresses, and determining quantitative indicators of the reliability of the shafting during normal operation and special operating modes, for example, with vibration resonance. The theoretical basis of the algorithm for calculating and registering loads affecting the service life of shafts is proposed.

Текст научной работы на тему «ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДОВ ПРОГНОЗИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ В СИСТЕМАХ СУДОВОГО ВАЛОПРОВОДА»

Научная статья

УДК 629.12.037.4.004.5/.6

doi: 10.24143/2073-1574-2021-4-27-33

Оценка эффективности методов прогнозирования технического состояния в системах судового валопровода

Гурий Алексеевич Кушнер1ш, Виктор Андреевич Мамонтов2

12Астраханский государственный технический университет, Астрахань, Россия, [email protected] н

Аннотация. Предложен подход к оценке эффективности наиболее распространенных методов прогнозирования технического состояния и отказа применимо к судовому валопроводу. Приведены основные факторы в эксплуатации судового валопровода, влияющие на изменение технического состояния. Отмечено, что особенностью некоторых действующих на гребной вал нагрузок является их стохастический или изменяющийся с течением времени характер, что приводит к усложнению прогнозирования технического состояния валопровода и его узлов. Проведен анализ особенностей стохастических и экстраполяционных методов прогнозирования. Оценена возможность применения статистических методов в условиях массового типового производства узлов валопровода с относительно небольшим регламентированным сроком службы. Предложен вариант применения экстраполяционного метода для прогнозирования предельно допустимого зазора дейдвудных подшипников. Рассмотрен случай накопления выборки результатов измерений просадки гребного вала в заданные временные интервалы, построены аппроксимирующие функции. Определены критерии достоверности результатов экстраполяционных методов прогнозирования износа дейдвудных подшипников. Разработаны предложения по адаптации причинно-следственного метода как альтернативного экстраполяционному. Разработана принципиальная схема системы прогнозирования отказа судового валопровода на основе регистрации и анализа параметров колебаний, служащая основой для построения регрессионной модели накопления повреждений. Предложенная система прогнозирования позволяет изучать действительные условия работы валопровода, определять фактические внешние нагрузки и закономерности их появления, измерять деформации и напряжения и определять количественные показатели надежности валопровода при нормальной эксплуатации и специальных режимах работы, например при резонансе колебаний. Предложена теоретическая основа алгоритма подсчета и регистрации нагрузок, влияющих на срок эксплуатации валов.

Ключевые слова: судовой валопровод, прогнозирование технического состояния, отказ валопровода, методы прогнозирования отказа, нагрузка

Для цитирования: Кушнер Г. А., Мамонтов В. А. Оценка эффективности методов прогнозирования технического состояния в системах судового валопровода // Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. 2021. № 4. С. 27-33. doi: 10.24143/2073-1574-2021-4-27-33.

Original article

Estimating efficiency of forecasting technical conditions of ship propulsion systems

Guriy A. Kushner 1H, Victor A. Mamontov 2

12 Astrakhan State Technical University, Astrakhan, Russia, [email protected]

Abstract. The article considers an approach to assessing the effectiveness of the most common methods of predicting the technical conditions and failure with reference to the ship shafting. There have been analyzed the main factors in operation of the ship shaft line, which cause the change in its technical state. It has been found that a special feature of some loads acting on the propeller shaft is their stochastic or changing nature over time, which hampers predicting the technical state of the shafting and its units. The features of stochastic and extrapolation forecasting methods have been analyzed. The possibility of using statistical methods in conditions of mass standard production of shafting units with a relatively short regulated service life is estimated. An extrapolation method is proposed for predicting the maximum permissible clearance of stern tube bearings. The

© Кушнер Г. А., Мамонтов В. А., 2021

27

case of accumulating samples of measuring results of the propeller shaft sagging in the given time intervals is considered, the approximating functions are constructed. The criteria for the reliability of the results of extrapolation methods for predicting the wear of stern tube bearings are determined. There have been developed the proposals for adapting the causal method as an alternative to the extrapolation method. A schematic diagram of a system for the ship shafting failure predicting has been developed using the registration and analysis of vibration parameters, which serves as the basis for constructing a regression model of damage accumulation. The proposed forecasting system allows studying the actual operating conditions of the shafting, defining the actual external loads and the regularities of their occurrence, measuring deformations and stresses, and determining quantitative indicators of the reliability of the shafting during normal operation and special operating modes, for example, with vibration resonance. The theoretical basis of the algorithm for calculating and registering loads affecting the service life of shafts is proposed.

Keywords: ship shafting, forecasting the technical conditions, shafting failure, methods of predicting failure, load

For citation: Kushner G. A., Mamontov V. A. Estimating efficiency of forecasting technical conditions of ship propulsion systems. Vestnik of Astrakhan State Technical University. Series: Marine Engineering and Technologies. 2021;4:27-33. (In Russ.) doi: 10.24143/2073-1574-2021-4-27-33.

Введение

Эксплуатация судового валопровода связана с различными нагрузками на его элементы. Часть из них достаточно хорошо изучена и рассматривается на этапе проектировочных расчетов (например, передаваемый крутящий момент, силы тяжести валов, гребного винта и закрепленных на валах деталей, сила упора гребного винта, гидродинамические моменты и др.). Другая часть нагрузок связана с работой гребного винта, создающего систему нагрузок относительно корпуса судна. К такого рода нагрузкам относятся инерционные силы от масс гребного винта и вала при качке судна при волнении, усилия на гребном винте при работе в изменяющемся потоке воды, усилия от механической и гидродинамической неуравновешенности, усилия от деформации корпуса судна и соответствующие деформациям смещения центровки валопровода.

Действующие на валопровод нагрузки являются факторами, непосредственно влияющими на его техническое состояние. Совокупность воздействия таких факторов с течением времени приводит к отказу судовой энергетической установки или пропульсивного комплекса. Одной из особенностей существенной части действующих на гребной вал нагрузок является их стохастический характер, что приводит к усложнению прогнозирования технического состояния вало-провода и его узлов. Статистические данные о поломках [1-3] не всегда обладают достаточной полнотой для использования моделей вероятностных методов и методов статистического анализа [4, 5]. В связи с этим разработка и совершенствование методов прогнозирования отказа валопровода в условиях малого количества входных статистических данных и изменяющихся режимов работы является актуальной задачей как для вновь проектируемых судов, так и для находящихся в эксплуатации. В работе [6] приведен сравнительный анализ возможностей и функциональных особенностей наиболее применимых методов прогнозирования технического состояния судового энергетического комплекса.

В настоящей работе проведена оценка эффективности существующих методов прогнозирования технического состояния и отказа для элементов судового валопровода, а также сформулированы предложения по их адаптации.

Статистические и экстраполяционные методы

Статистический метод прогнозирования применим в случае обобщения опыта эксплуатации путем составления представительной выборки статистических данных, характеризующих надежность оборудования, например наработки на отказ. Средняя наработка демпферов крутильных колебаний на отказ обычно составляет порядка 60 тыс. ч, но в практике эксплуатации также нередки случаи сохранения демпфирующих свойств до 90 тыс. ч.

Согласно имеющимся данным для судов типа «Альпинист», где с двигателем 8NVDA2U установлен силиконовый демпфер В-710 фирмы STE, только при наработке более 100 тыс. ч демпфер находится в зоне, в которой износ может иметь нелинейный характер [7]. Повышенная надежность демпфера в таком энергетическом комплексе обусловлена проектным уменьшением работы в резонансных режимах, в том числе и в режиме прогрева. Функции распределения вероятности отказаf1(t) иf2(t) имеют следующий вид (рис. 1).

Рис. 1. Зависимости вероятности отказа от времени наработки: /1(t) - усредненные значения наработки; f2(t) - для судов типа «Альпинист»

Fig. 1. Dependences of the probability of failure on the operating time: f1 (t) - average operating time;

/ (t) - for "Alpinist" type vessels

Построение функций распределения вероятности позволяет определить вероятность безотказной работы в заданный период времени, а также решать обратную задачу определения времени наработки на отказ при заданной вероятности безотказной работы. Следует отметить, что статистические методы эффективны только в условиях массового типового производства изделий или узлов с относительно небольшим регламентированным сроком службы. В частности, для валопроводов серийных речных судов широко распространены типовые шариковые и роликовые подшипники качения. Но для большинства элементов судового валопровода характерны мелкосерийные либо уникальные изделия. Выборка в этом случае не будет достаточно представительной, а с учетом дисперсии между усредненными данными и определенными по каждому проекту - расчет индивидуального ресурса существенно усложняется.

Рассмотренный в работах [6, 8] метод экстраполяционного прогнозирования может быть применим в случае устойчивого процесса изменения параметров работы валопровода. Основой метода является выбор параметра, который может наиболее точно охарактеризовать техническое состояние объекта. Для подшипников качения диагностическим параметром может считаться уровень вибрации в направлениях воспринимаемой нагрузки, а для подшипников скольжения - величина радиального зазора.

В случае принятия радиального зазора контролируемым параметром возможно снятие показаний с измерительного прибора в кормовой крышке сальника, где замеряемая величина является показанием зазора между подшипником и гребным валом. На рис. 2 приведен установленный в кормовой сальник измерительный инструмент.

Рис. 2. Измерение параметра просадки гребного вала: 1 - стержень; 2 - шкала; 3 - контрольная риска; 4 - контакт с поверхностью вала; А - величина зазора

Fig. 2. Measuring the propeller shaft sagging parameter: 1 - rod; 2 - scale; 3 - control mark; 4 - contact with the shaft surface; А - clearance size

Организация экстраполяционного метода возможна в рамках деятельности судового механика, обязанного следить за величиной выработки кормового дейдвудного подшипника. Накопление выборки результатов измерений значений А происходит в заданные временные интервалы в процессе эксплуатации валопровода (рис. 3).

Рис. 3. Построение аппроксимирующих функций для прогноза наступления предельного состояния дейдвудных подшипников

Fig. 3. Building approximating functions for predicting the limiting state of stern tube bearings

Предложен вариант применения метода для прогнозирования износа резинометалличе-ских подшипников гребного вала. Опыт эксплуатации таких подшипников свидетельствует о том, что предельно допустимый износ в эксплуатации в море наступает в среднем через 15 тыс. ч, в речных бассейнах - через 4 тыс. ч, а в водоемах, загрязненных абразивными частицами, - через 2 тыс. ч. На рис. 3 представлены временные ряды при регистрации замеров радиального зазора каждые 200 ч. Построенные линии тренда на основе эмпирических данных позволяют получить сглаженную последовательность результатов измерений без влияния случайных отклонений измеряемого параметра, а формирование аналитического описания с функцией от времени позволяет рассчитать остаточный ресурс дейдвудных подшипников.

Аппроксимирующие функции износа резинометаллических дейдвудных подшипников для валов диаметром до 400 мм при эксплуатации в речных и загрязненных абразивными частицами бассейнах, соответственно, имеют вид:

Д1 = 5 -10-712 + 4 -10-41 +1,984;

Д2 =-4-10-1012 + 8-10-41 +1,851.

Последующая экстраполяция аппроксимирующей функции на предстоящий период эксплуатации позволяет прогнозировать наступление предельного состояния. При предельно допустимом зазоре Amax = 5 мм наработка на отказ составит 2 160 ч - для функции A1(t) и 4 150 ч -для функции A2(t).

Следует также отметить, что результат данного метода прогноза будет достоверным только при сохранении режима эксплуатации объекта. Соответственно, если исключить случаи под-плавления неметаллических дейдвудных подшипников, ударной нагрузки на гребной вал или продолжительной работы на мелководье, то данный метод может быть применим к системе судового валопровода.

Предложения по адаптации причинно-следственного метода

Альтернативой экстраполяционным методам, основанным на гипотезе о постоянстве действия нагрузок и накопления повреждений, является причинно-следственный метод [6, 9]. Основой метода является индивидуальная регистрация нагружений, позволяющая применять

гипотезу линейного суммирования повреждений. В рамках этой гипотезы накопление эксплуатационных повреждений подчиняется принципу суперпозиции, а расчет расхода ресурса можно производить в процессе работы механизма. Реализация алгоритма подсчета и суммирования нагружений различна для механизмов и зависит от величины контролируемых параметров, характеристик долговечности и полноты получаемого массива данных.

Предложена принципиальная схема системы прогнозирования отказа судового валопро-вода на основе регистрации и анализа параметров колебаний (рис. 4). Внедрение такой системы на судне позволит реализовать причинно-следственный метод. Система состоит из аппаратной части и информационной системы для интерпретации получаемых данных.

1 2 3 4

Рис. 4. Основные компоненты системы прогнозирования отказа судового валопровода: 1 - первичные преобразователи; 2 - блок обработки и передачи данных; 3 - блок питания;

4 - датчик износа подшипника; 5 - стационарный приемный блок

Fig. 4. Main components of the system for predicting the ship shafting failure: 1 - primary converters;

2 - data processing and transmission unit; 3 - power supply unit; 4 - bearing wear sensor; 5 - stationary receiving unit

В качестве первичных преобразователей в системе используются одноэлементные фольговые тензорезисторы, позволяющие выполнять измерения методом динамического тензомет-рирования, а также трехосевые датчики вибрации. Данный метод позволяет изучать действительные условия работы валопровода, определять фактические внешние нагрузки и закономерности их появления, измерять деформации, напряжения, параметры вибрации и определять количественные показатели надежности валопровода при нормальной эксплуатации и специальных режимах работы, например при резонансе колебаний.

Получаемый массив экспериментальных данных будет качественно схож с данными тор-сиографирования при испытаниях судовых энергоустановок на крутильные колебания, но подход к обработке данных предлагается дополнить. Регистрацию нагрузок на валопровод необходимо вести с начала его эксплуатации, а поскольку не для всех видов нагрузок доказана возможность линейного суммирования повреждений, построенная регрессионная модель может быть сравнима с базовой ^-^-диаграммой для материала вала. Работа алгоритма представлена на фрагменте тензограммы поперечных колебаний судна проекта ВКМ-3 (рис. 5).

Детерминированный характер прогноза обеспечивается регистрацией только тех уровней нормальных напряжений, которые приводят к разрушению вала от многоцикловой усталости. Для этого под каждый конкретный случай устанавливаются пороговые значения допускаемого одоп и максимального omax уровня напряжений, сигнализирующего от отказе системы или величине нагрузок уровня малоцикловой усталости (рис. 5, а). Таким образом, на всем протяжении межремонтного периода можно производить регистрацию областей значимых величин напряжений, превышающих одоп.

Использование предложенных теоретических положений позволит в каждой области значимых циклов нагружения (рис. 5, б) производить оценку темпа расходования ресурса путем непосредственного подсчета циклов. Накопление данных об эксплуатационных нагрузках позволяет сформировать регрессионную модель, на основе которой возможен прогноз изменения технического состояния системы.

а б

Рис. 5. Теоретическая основа алгоритма подсчета и регистрации нагрузок: а - расположение области действия подсчета циклов нагружения на тензограмме колебаний;

б - подсчет значимых циклов нагружения

Fig. 5. Theoretical basis of the algorithm for calculating and registering loads: a - location of the area of calculating loading cycles on vibration tensogram; б - calculating significant loading cycles

Заключение

Совершенствование и адаптация рассмотренных в настоящей работе методов позволяет решать задачу повышения надежности судового валопровода. Рассмотренные методы прогнозирования технического состояния могут быть применены для оценки остаточного ресурса элементов судового валопровода и снижения вероятности отказа. Дальнейшее проведение исследовательских работ по направлению прогнозирования отказа систем со стохастическими параметрами позволит повысить надежность эксплуатируемых и вновь проектируемых судовых энергетических комплексов.

СПИСОК ИСТО ЧНИКОВ

1. Чура М. Н., Файвисович А. В. Эксплуатационные повреждения гребных валов // Трансп. дело России. 2011. № 11. С. 110-112.

2. О предоставлении информации: письмо главного управления ФАУ «Российский речной регистр» № 23-02.2-1966 от 09.09.2020 / ФАУ «Российский речной регистр». 1 с.

3. Кушнер Г. А., Мамонтов В. А., Волков Д. А. Анализ причин повреждений и отказов судовых вало-проводов // Вестн. Астрахан. гос. техн. ун-та. Сер.: Морская техника и технология. 2021. № 3. С. 33-39.

4. Антонов А. В., Соколов С. В., Чепурко В. А. Вероятностные методы оценки остаточной наработки восстанавливаемых элементов ЯЭУ в условиях ограниченности исходных данных // Ядер. физика и инжиниринг. 2011. Т. 2. № 5. С. 421-424.

5. Перехвост В. С., Кривонос Е. А., Чебукина А. А. Прогнозирование параметрических отказов и особенность случайных процессов старения технических систем // Науч. тр. Кубан. гос. технолог. ун-та. 2014. № 3. С. 38-44.

6. Мясников Ю. Н., Никитин В. С., Равин А. А., Хруцкий О. В. Методы прогнозирования технического состояния судового энергетического оборудования // Тр. Крылов. гос. науч. центра. 2018. № 4 (386). С. 107-116.

7. Сергеев К. О., Жуков А. С. Анализ надежности демпферов главных двигателей СРСТ типа «Альпинист» по результатам торсиографирований // Вестн. Мурман. гос. техн. ун-та. 2011. Т. 14. № 3. С. 525-529.

8. Равин А. А., Хруцкий О. В., Максимова М. А. Сравнительный анализ двух методов прогнозирования технического состояния оборудования // Мор. вестн. 2013. № 1S (10). С. 34-37.

9. Равин А. А. Методы прогнозирования технического состояния судового энергомеханического оборудования // Тр. Центр. науч.-исслед. ин-та им. акад. А. Н. Крылова. 2000. № 9. С. 162-173.

REFERENCES

1. Chura M. N., Faivisovich A. V. Ekspluatatsionnye povrezhdeniia grebnykh valov [Operational damages of propeller shafts]. Transportnoe delo Rossii, 2011, no. 11, pp. 110-112.

2. O predostavlenii informatsii: pis'mo glavnogo upravleniia FAU «Rossiiskii rechnoi registr» № 23-02.2-1966 ot 09.09.2020 [On providing information: a letter from the main department of the federal institution Russian River Register No. 23-02.2-1966 dated 09.09.2020]. FAU «Rossiiskii rechnoi registr». 1 p.

3. Kushner G. A., Mamontov V. A., Volkov D. A. Analiz prichin povrezhdenii i otkazov sudovykh valo-provodov [Analyzing causes of damage and failure of ship shaft lines]. Vestnik Astrakhanskogo gosudarstven-nogo tekhnicheskogo universiteta. Seriia: Morskaia tekhnika i tekhnologiia, 2021, no. 3, pp. 33-39.

4. Antonov A. V., Sokolov S. V., Chepurko V. A. Veroiatnostnye metody otsenki ostatochnoi narabotki vosstanavlivaemykh elementov IaEU v usloviiakh ogranichennosti iskhodnykh dannykh [Probabilistic methods for assessing residual operating time of recoverable elements of nuclear power plant in conditions of limited initial data]. Iadernaia fizika i inzhiniring, 2011, vol. 2, no. 5, pp. 421-424.

5. Perekhvost V. S., Krivonos E. A., Chebukina A. A. Prognozirovanie parametricheskikh otkazov i oso-bennost' sluchainykh protsessov stareniia tekhnicheskikh sistem [Predicting parametric failures and peculiarity of random aging processes in technical systems]. Nauchnye trudy Kubanskogo gosudarstvennogo tekhnolog-icheskogo universiteta, 2014, no. 3, pp. 38-44.

6. Miasnikov Iu. N., Nikitin V. S., Ravin A. A., Khrutskii O. V. Metody prognozirovaniia tekhnicheskogo sostoianiia sudovogo energeticheskogo oborudovaniia [Methods for predicting technical state of ship power equipment]. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra, 2018, no. 4 (386), pp. 107-116.

7. Sergeev K. O., Zhukov A. S. Analiz nadezhnosti dempferov glavnykh dvigatelei SRST tipa «Al'pinist» po rezul'tatam torsiografirovanii [Analyzing reliability of dampers of main engines SRST "Alpinist" type by results of tonography]. VestnikMurmanskogo gosudarstvennogo tekhnicheskogo universiteta, 2011, vol. 14, no. 3, pp. 525-529.

8. Ravin A. A., Khrutskii O. V., Maksimova M. A. Sravnitel'nyi analiz dvukh metodov prognozirovaniia tekhnicheskogo sostoianiia oborudovaniia [Comparative analysis of two methods for predicting technical condition of equipment]. Morskoi vestnik, 2013, no. 1S (10), pp. 34-37.

9. Ravin A. A. Metody prognozirovaniia tekhnicheskogo sostoianiia sudovogo energomekhanicheskogo oborudovaniia [Methods for predicting technical condition of ship power-mechanical equipment]. Trudy Tsen-tral'nogo nauchno-issledovatel'skogo instituta imeni akademika A. N. Krylova, 2000, no. 9, pp. 162-173.

Статья поступила в редакцию 15.10.2021; одобрена после рецензирования 29.10.2021; принята к публикации 08.11.2021. The article was submitted 15.10.2021; approved after reviewing 29.10.2021; accepted for publication 08.11.2021.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Гурий Алексеевич Кушнер - кандидат технических наук; доцент кафедры судостроения и энергетических комплексов морской техники; Астраханский государственный технический университет; 414056, Астрахань, ул. Татищева, 16; [email protected]

Виктор Андреевич Мамонтов - доктор технических наук, доцент; профессор кафедры судостроения и энергетических комплексов морской техники; Астраханский государственный технический университет; 414056, Астрахань, ул. Татищева, 16; so-promatl [email protected]

INFORMATION ABOUT THE AUTHORS

Guriy A. Kushner - Candidate of Technical Sciences; Assistant Professor of the Department of Shipbuilding and Marine Engineering Complexes; Astrakhan State Technical University; 414056, Astrakhan, Tatishcheva St., 16; [email protected]

Victor A. Mamontov - Doctor of Technical Sciences, Assistant Professor; Professor of the Department of Shipbuilding and Marine Engineering Complexes; Astrakhan State Technical University; 414056, Astrakhan, Tatishcheva St., 16; [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.