Научная статья на тему 'Отравление животных этиленгликолем. Диагностика и методы идентификации'

Отравление животных этиленгликолем. Диагностика и методы идентификации Текст научной статьи по специальности «Ветеринарные науки»

CC BY
1372
208
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ИССЛЕДОВАНИЕ / ОТРАВЛЕНИЕ / ЭТИЛЕНГЛИКОЛЬ / МЕТОД / КАЧЕСТВЕННОЕ И КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ / РЕАКЦИИ / RESEARCH / POISONING / ETHYLENE GLYCOL / TECHNIQUE / QUALITATIVE AND QUANTITATIVE DEFINITION / REACTIONS

Аннотация научной статьи по ветеринарным наукам, автор научной работы — Дроздова Т. С., Кашин А. С.

В статье представлен редкий случай отравления собаки этиленгликолем главным компонентом антифризов, антиобледенителей, гидравлических жидкостей. Разработаны комплексные методы идентификации при отравлении собак этиленгликолем. Методы исследования проводили в два этапа: первый скрининговый (качественные реакции и тонкослойная хроматография), второй арбитражный (использование метода газожидкостной хроматографии).

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по ветеринарным наукам , автор научной работы — Дроздова Т. С., Кашин А. С.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ANIMAL ETHYLENE GLYCOL POISONING. DIAGNOSTICS AND IDENTIFICATION METHODS

Rare occurrence of dog poisoning by ethylene glycol which is the main component of antifreezes, anti-icers, hydraulic liquids is given in the article. Complex techniques for identification in case dog ethylene glycol poisoning are developed. The research techniques have been conducted in two stages: the first is screening (qualitative reactions and thin-layer chromatography); the second is arbitration (use of the gas-liquid chromatography technique).

Текст научной работы на тему «Отравление животных этиленгликолем. Диагностика и методы идентификации»

6. Чумаков В.Ю., Красовская Р.Э. Лимфангионы кишечника домашних животных // Вестн. КрасГАУ. -2008. - Вып. 3. - С. 233-236.

7. Морфологические особенности лимфангионов некоторых домашних млекопитающих / В.Ю. Чумаков, Е.Ю. Складнева, Р.Э. Красовская [и др.] // Современные наукоемкие технологии: мат-лы междунар. науч. конф. - 2007. - № 12. - С. 89-90.

8. Чумаков В.Ю., Новицкий М.В. Отток лимфы от органов ротоглотки овцы // Проблемы морфологии (теоретические и клинические аспекты): мат-лы общерос. конф. - Сочи, 2002. - С. 84.

9. Чумаков В.Ю., Новицкий М.В. Пути оттока лимфы от языка и глотки овцы // Достижения ветеринарной медицины - XXI веку: сб. науч. тр. Ч. 2. - Барнаул, 2002. - С. 144-145.

10. Строение стенки лимфангионов некоторых органов млекопитающих / В.Ю. Чумаков, В.В. Чумаков, Е.Ю. Складнева [и др.] // Успехи современного естествознания: мат-лы междунар. науч. конф. «Фундаментальные исследования» (Италия, 11-18 октября 2008 г.). - 2008. - № 8. - С. 143-145.

УДК 619:615.9 (075.8) Т.С. Дроздова, А.С. Кашин

ОТРАВЛЕНИЕ ЖИВОТНЫХ ЭТИЛЕНГЛИКОЛЕМ. ДИАГНОСТИКА И МЕТОДЫ ИДЕНТИФИКАЦИИ

В статье представлен редкий случай отравления собаки этиленгликолем - главным компонентом антифризов, антиобледенителей, гидравлических жидкостей.

Разработаны комплексные методы идентификации при отравлении собак этиленгликолем. Методы исследования проводили в два этапа: первый - скрининговый (качественные реакции и тонкослойная хроматография), второй - арбитражный (использование метода газожидкостной хроматографии).

Ключевые слова: исследование, отравление, этиленгликоль, метод, качественное и количественное определение, реакции.

T.S. Drozdova, A.S. Kashin ANIMAL ETHYLENE GLYCOL POISONING. DIAGNOSTICS AND IDENTIFICATION METHODS

Rare occurrence of dog poisoning by ethylene glycol which is the main component of antifreezes, anti-icers, hydraulic liquids is given in the article.

Complex techniques for identification in case dog ethylene glycol poisoning are developed. The research techniques have been conducted in two stages: the first is screening (qualitative reactions and thin-layer chromatography); the second is arbitration (use of the gas-liquid chromatography technique).

Key words: research, poisoning, ethylene glycol, technique, qualitative and quantitative definition, reactions.

Введение. Этиленгликоль - бесцветная сиропообразная жидкость, сладковатого вкуса, без запаха. Температура кипения 197,4 0С. Хорошо растворяется в спирте, воде, ацетоне, плохо - в эфире и жирах. Водные растворы этиленгликоля замерзают при температуре -65 0С [4].

Этиленгликоль применяют во многих отраслях промышленности: химической, фармацевтической, парфюмерной, автомобильной, авиационной, электротехнической, текстильной, нефтегазовой и других. В ограниченных масштабах этиленгликоль также применяют как растворитель печатных и некоторых других красок, в производстве чернил и паст для шариковых ручек, в органическом синтезе [3].

Одной из основных областей применения этиленгликоля и его производных (целлозольфы, карбитолы) является производство незамерзающих жидкостей в виде 35-40 %-го водного раствора, таких как антифризы, тормозные и технические жидкости [3,4].

Отравление этиленгликолем, как правило, происходит при пероральном приеме. Ингаляционные отравления этиленгликолем из-за малой летучести не встречаются [4,5].

Токсическое действие этиленгликоля и его эфиров во многом определяется процессами его биотрансформации и токсичностью метаболитов [7].

Если в первую фазу не удалось предотвратить интоксикацию, этиленгликоль метаболизируется в печени ферментом алкогольдегидрогеназой с образованием нескольких веществ, вызывающих развитие ацидоза и повреждающих почки. Метаболитами этиленгликоля являются гликолевый альдегид, гликолевая кислота, глиоксиловая кислота и щавелевая кислота. Гликолевый альдегид угнетает ЦНС, усиливает метаболический ацидоз и анионную разницу. Другие метаболиты ответственны за повреждение почек. Так, щавелевая кислота, взаимодействуя с ионами кальция, образует в почечных канальцах кристаллы оксалата кальция. И хотя повреждения, которые они вызывают, сравнительно невелики, без соответствующего лечения в течение 1-4 дней развивается анурическая форма острой почечной недостаточности [5, 9].

В механизме токсического действия этиленгликоля большую роль играют его гидрофильные свойства. Этиленгиколь и продукты его метаболизма являются осмотически активными веществами и вызывают гид-ропические изменения клеток. Проникая в клетку, молекула этиленгликоля увлекает за собой цитоплазматическую жидкость, нарушая клеточную структуру вплоть до ее гибели. Возникает резкая гидропическая дистрофия с образованием так называемых клеток-пузырей, что приводит к гибели клеток. Этот процесс наблюдается в эпителии проксимальных отделов почечных канальцев, где происходит реабсорбция жидкости, что является одной из причин развития почечной недостаточности [9, 10].

Отравление этиленгликолем характеризуется фазностью развития патологического процесса, в ней выделяют следующие периоды: начальный (опьянения с возбуждением); скрытый (мнимого благополучия); выраженных проявлений (а - преимущественно мозговых нарушений; б - преимущественно поражения внутренних органов: печени и почек); восстановления и последствий. Начальные проявления напоминают симптомы при алкогольной интоксикации: депрессия, атаксия, рвота. К сожалению, такая симптоматика появляется только через несколько часов после попадания этиленгликоля в организм и часто остается незамеченной владельцем животного. При достаточно большом количестве принятого внутрь яда в течение последующих 12 ч развиваются полиурия, полидипсия и дегидратация организма. Эти симптомы характерны для начинающейся олигурической острой почечной недостаточности. У кошек почечная недостаточность возникает в первые 12-24 ч. К неспецифическим проявлениям отравления относятся: изъязвление слизистой оболочки полости рта, гиперсаливация, рвота, олигурия с изостенурией и возникновение анурии в течение 4 дней. При поступлении большого количества этиленгликоля быстро развивается кома, животное погибает в течение нескольких часов, в первую очередь из-за угнетающего действия вещества на ЦНС [3, 11].

Относительно смертельной дозы этиленгликоля в литературе нет единого мнения. Значительное влияние на выраженность токсического эффекта оказывают общее состояние организма и индивидуальные особенности животного. Большинство смертельных отравлений у собак вызывается приемом 4,4-4,6 г/кг этиленгликоля; кошки более чувствительны, и смертельная доза для них составляет только 2,0 г/кг; для кроликов - 5,0 г/кг; для морских свинок - 6,6 - 11,1 г/кг; для крыс, по данным разных авторов, - от 7,5 до 13,0 г/ кг, для мышей - 8,0 г/кг [6, 10].

Материалы и методы исследований. В химико-токсикологическом отделе Красноярской краевой ветеринарной лаборатории нами зарегистрирован (2011 г.) случай отравления собаки этиленгликолем.

Анамнез: кобель, возраст 3 года; спустя примерно 9 часов после кормления у собаки появились признаки болезни: рвота, миоклонус, атаксия, очаговые конвульсии, ступор, кома и смерть. Как пояснил владелец, вода для приготовления корма для собаки хранилась в канистрах из-под антифриза.

Владелец собаки обратился в ветеринарную клинику, где была проведена дезинтоксикационная и симптоматическая терапия (промывание желудка 2%-м раствором натрия гидрокарбоната, промывание кишечника, внутривенное введение 5%-го раствора этилового спирта, 10%-го раствора кальция хлорида). Однако проводимое симптоматическое лечение эффекта не дало, и смерть животного наступила в течение часа.

После смерти собака была доставлена в ветеринарную лабораторию для установления причин смерти.

При вскрытии наблюдали следующую патологоанатомическую картину: острый катаральногеморрагический энтерит кишечника. Печень кровенаполнена, увеличена, на разрезах имела «мускатный» вид, в ней были выражены признаки дистрофии. В почках наблюдается гидропическая дистрофия эпителия извитых канальцев, сильное кровенаполнение мозгового слоя (граница между слоями четко выражена). Паралич сердца. Множественные кровоизлияния в головном мозге, который приобрел синеватый цвет, кровенаполнение сосудов головного мозга.

Для исследования был отобран патологический материал: головной мозг, почка, печень, желудок с содержимым, моча.

Исследования проводились по общетоксикологическим показателям: реакция с групповым реактивом Драгендорфа при анализе на алкалоиды, реакция на количественное определение поваренной соли арген-тометрическим методом, исследование на определение нитратов и нитритов фотометрическим методом,

качественное и количественное определение этиленгликоля, гистологическое исследование срезов головного мозга, общий анализ мочи [8].

Выделение из биологического материала этиленгликоля для качественного определения основано на использовании бензола как селективного переносчика этиленгликоля из объектов в дистиллят. Бензол совместно с парами и небольшим количеством водяного пара переносится в дистиллят. Вода, которая перегоняется при этом, практически содержит весь этиленгликоль. На исследование был отобран желудок с содержимым, в котором после острого отравления содержится больше этиленгликоля, чем в других органах [7, 11].

К 10 г содержимого желудка прибавляли 5 г кристаллической щавелевой кислоты, смесь растирали в ступке до получения однородной кашицы. Полученную массу переносили в круглодонную колбу вместимостью 100 мл и прибавляли 50 мл бензола. Колбу закрывали вертикально поставленным холодильником, снабженным приспособлением для улавливания воды. Затем колбу устанавливали на водяную баню и нагревали. Пары и увлекаемые им вода и этиленгликоль конденсируются в холодильнике и попадают в специальное приспособление. Поскольку в этой насадке бензол (плотностью 0,879) находится сверху воды, он стекает в колбу. Вода и находящийся в ней этиленгликоль остаются в насадке. После окончания отгонки отбирали необходимое для анализа количество дистиллята [1, 11].

Для качественного обнаружения этиленгликоля применяли цветные и микрокристаллоскопические реакции, в частности реакцию окисления этиленгликоля перйодатом калия и обнаружение образующегося формальдегида. Эта реакция основана на окислении этиленгликоля перйодатом натрия или калия. В результате указанной реакции образуется формальдегид, который можно обнаружить при помощи фуксинсернистой кислоты [2].

При выполнении этой реакции избыток ионов перйодата калия связывали раствором сернистой кислоты, а затем прибавляли фуксинсернистую кислоту. Реакцию формальдегида с фуксинсернистой кислотой осуществляли по схеме: к 3-5 мл дистиллята прибавляли 5 капель 12 %-го раствора серной кислоты, 5 капель 5 %-го раствора перйодата калия в 5 %-м растворе серной кислоты и взбалтывали. Через 5 мин прибавляли 3-5 капель раствора сернистой кислоты, а затем 4 капли раствора фуксинсернистой кислоты.

Появление красно-фиолетовой или розовой окраски через 3-20 мин свидетельствует о наличии этиленгликоля [11].

Окисление этиленгликоля азотной кислотой и обнаружение щавелевой кислоты проводили при многократном выпаривании этиленгликоля с азотной кислотой, в результате чего образуется щавелевая кислота, которая с солями кальция образует кристаллы оксалата кальция, имеющие характерную форму. Эти кристаллы в ряде случаев появляются через 2-3 суток [4].

Параллельно проводили реакцию с сульфатом меди: от прибавления сульфата меди и щелочи к этиленгликолю образуется соединение, имеющее синюю окраску. К 2-3 мл исследуемого раствора прибавляли 1-2 мл 10 %-го раствора гидроксида натрия и несколько капель 10 %-го раствора сульфата меди. Появление голубой окраски указывает на наличие этиленгликоля в растворе [6, 11].

Выделение из биологического материала этиленгликоля для полуколичественного определения: 20,0 г печени и почек настаивали в ацетоне дважды, объединяли извлечения, прибавляли 0,5 г активированного угля, фильтровали, затем упаривали при 60 0 С до 1-2 мл [8].

Полуколичественное определение проводили методом тонкослойной хроматографии (ТСХ): 0,2 мл извлечения наносили на хроматографическую пластину «Сорбфил» в виде точки, последующую каплю наносили после испарения предыдущей. На расстоянии 2 см от точки исследуемого извлечения наносили 0,02 мл раствора сравнения - этиленгликоля. Пластинку хроматографировали в системе растворителей: хлоро-форм-ацетон-этанол (4:4:1). Затем ее высушивали до удаления запаха растворителей и проявляли (последовательно): 0,1 %-м раствором перйодата калия, после высушивания - 0,1 %-м раствором бензидина. При наличии этиленгликоля наблюдали пятно белого цвета на серо-синем фоне в области стандарта и исследуемого извлечения (Rf 0,4) [8,11].

Количественное определение проводили методом газожидкостной хроматографии: 3 мкл извлечения (пробоподготовка, как для ТСХ) вводили в газожидкостный хроматограф «Кристалл-2000». Условия хроматографирования: колонка HP FFAP 50irr0,32iriiTr0/52iTikiTi, газ-носитель азот, детектор ионизационнопламенный, Тинжектора=210 0 С, Тдетектора=210 0 С, Тколонки изменяется от 100 до 2000С (5 мин - изотерма, затем -со скоростью 15 0 С/мин). Далее идентифицировали пик на хроматограмме.

Общий анализ мочи включает оценку физико-химических характеристик мочи и микроскопию осадка.

Оценка физико-химических характеристик мочи проводилась по общепринятой схеме.

Микроскопия осадка является неотъемлемой и важной частью общеклинических исследований при отравлении этиленгликолем. Принцип метода заключается в микроскопическом исследовании нативных препаратов мочевого осадка, полученного при центрифугировании мочи. Приготовление препарата: в центрифужную пробирку помещали мочу после тщательного ее перемешивания. Центрифугировали в течение 5 мин при скорости 2000 об/мин. Затем быстрым наклоном пробирки сливали прозрачный верхний слой, а оставшийся осадок переносили пипеткой с тонко оттянутым концом на середину предметного стекла и покрывали покровным, затем проводили микроскопию осадка [5].

Результаты и обсуждение. Реакция на алкалоиды оказалась отрицательная, содержание поваренной соли в содержимом желудка составило 0,1% (данная концентрация не является токсичной). В патологическом материале обнаружены нетоксичные количества азотистых соединений, в частности: нитраты менее

0,5 мг/кг, нитриты менее 0,05 мг/кг. При анализе мочи в осадке были выявлены кристаллы оксалата кальция в форме шестигранных призм моногидрата оксалата кальция (рис. 1), установлено развитие гипокаль-циемии, гематурии, протеинурии, уменьшение плотности мочи до 1,012, снижение pH мочи до 4,8.

Рис. 1. Кристаллы оксалата кальция в моче

При гистологическом исследовании головного мозга наблюдали следующее: венозное полнокровие (стаз эритроцитов в капиллярах), множественные диапедезные кровоизлияния и очаги некроза в нефроглии (рис. 2).

Рис. 2. Гистологический срез головного мозга собаки

При проведении качественной реакции с азотной кислотой микроскопически были обнаружены кристаллы оксалата кальция (рис. 3).

Рис. 3. Окисление этиленгликоля азотной кислотой и обнаружение щавелевой кислоты

При реакции с сульфатом меди появление голубой окраски также свидетельствовало о наличии этиленгликоля.

При тонкослойной хроматографии наблюдали пятно белого цвета на серо-синем фоне в области стандарта и исследуемого извлечения.

При газожидкостной хроматографии этиленгликоль был идентифицирован путем обнаружения пика на хроматограмме (время удержания этиленгликоля 8,68 мин), количество этиленгликоля составило 116 мг/кг (рис. 4).

Рис. 4. Хроматограмма выделения этиленгликоля из почек Для подтверждения была использована абсолютная градуировка (рис. 5).

Рис. 5. Абсолютная градуировка этиленгликоля в пробе

Совпадение формы пика и времени удержания при использовании абсолютной градуировки является подтверждением присутствия данного токсиканта в пробе.

Выводы

1. Выбор совокупности методов определения этиленгликоля должен являться алгоритмом проведения той или иной экспертизы и предполагать применение методов, основанных на разных физикохимических принципах.

2. Первым этапом химико-токсикологического анализа на определение этиленгликоля является анализ первичной информации (анамнеза) и результатов вскрытия.

3. Стратегия проведения химико-токсикологического анализа на определение этиленгликоля выстраивается в зависимости от особенностей направленного или ненаправленного исследования.

4. Для качественного определения этиленгликоля используют такие методы, как реакция образования формальдегида, цветные реакции с сульфатом меди, обнаружение кристаллов оксалата кальция. Эти методы позволяют очень грубо оценить градацию содержания этиленгликоля в пробе и могут дать недостоверный результат в зависимости от общего его содержания.

5. Тонкослойная хроматография является одним из основных методов определения этиленгликоля. Хроматографические зоны этиленгликоля легко извлекаются с пластин, что позволяет дополнять уже имеющуюся информацию о данном веществе результатами исследований другими методами. Заключение о присутствии этиленгликоля дается на основе значения Р! равном 0,4, а также при сравнении окрасок хроматографических зон исследуемого вещества и использованного аналитического образца сравнения (этиленгликоля).

6. Количественный анализ определения этиленгликоля позволяет с гарантированной требуемой точностью определить в образце количественное содержание этиленгликоля, которое составило 116 мг/кг.

7. Газовая хроматография - один из самых современных методов идентификации этиленгликоля. При использовании данного метода достигается экспрессность, точность, необходимый предел обнаружения, кроме того, метод значительно более удобен и эффективен. При количественной оценке результатов разделения методом газовой хроматографии большое значение имеет форма пика и время удержания.

Литература

1. Белова А.В. Руководство к практическим занятиям по токсикологической химии. - М.: Медицина, 1976.- 232 с.

2. Бок Р. Методы разложения в аналитической химии. - М.: Химия, 1984. - 432 с.

3. Гадаскина И.Д., Филов В.А. Превращение и определение промышленных органических ядов в организме. - М.: Медицина, 1971. -304 с.

4. Дымент О.Н., Казанский К.С., Мирошников A.M. Гликоли и другие производные окисей этилена и пропилена. - М., 1976. - 214 с.

5. Калетина Н.И. Токсикологическая химия // Метаболизм и анализ токсикантов. - М.: ГЭОТАР-Медиа, 2008. - С. 722-732.

6. Клисенко М.А., Лебедева Т.А., Юркова 3.Ф. Химический анализ микроколичеств ядохимикатов. - М.: Медицина, 1972. - 312 с.

7. Коренман И.М. Экстракция в анализе органических веществ. - М.: Химия, 1977. - С.200 .

8. Крешков А.П. Основы аналитической химии. - М.: Химия, 1976.- 472 с.

9. Лакин К.М., Крылов Ю.Ф. Биотрансформация лекарственных веществ. - М.: Медицина, 1981. - 344 с.

10. Лужников Е.А. Клиническая токсикология. - М.: Медицина, 1982. -368 с.

11. Швайкова М.Д. Токсикологическая химия. - М.: Медицина, 1975. -376 с.

УДК 619:616073.912 О.В. Радченко

МЕТОДИКА МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ ГОЛОВНОГО МОЗГА СОБАК

Исследованиями установлено, что значительное расширение диагностических возможностей, связанных с внедрением в ветеринарную клиническую практику магнитно-резонансной томографии, позволяет уточнить характер повреждений структур головного мозга животных.

Ключевые слова: магнитно-резонансная томография, собака, головной мозг, диагностические исследования.

O.V. Radchenko

TECHNIQUE FOR THE DOG BRAIN MAGNETIC AND RESONANCE TOMOGRAPHY

It is determined in the process of the research that considerable enhancement of the diagnostic possibilities, which are connected with magnetic-resonance tomography implementation in veterinary clinical practice, allows to specify damage nature of the animal brain structures.

Key words: magnetic-resonance tomography, dog, brain, diagnostic research.

Актуальность темы. Последнее десятилетие ознаменовалось широким внедрением в клиническую практику высокоинформативных методов лучевой диагностики. Успех в лечении большинства заболеваний связан с их ранней диагностикой и использованием современных методов визуализации [2]. Особое место в клинической радиологии занимает магнитно-резонансная томография (МРТ), которая, в отличие от обычной рентгенографии, позволяет получить снимок определенного поперечного слоя (среза) тела животного. А главное, с помощью МРТ можно увидеть структуры, которые не видны на обычных рентгенограммах. При помощи МРТ можно детально рассмотреть тонкие структуры головного мозга, оценить их форму, размеры, однородность, васкуляризацию. Возможно выявление новообразований, участков ишемии и кровоизлияний или воспалительных очагов. МРТ-диагностика применяется широко при исследованиях у человека, тогда как у домашних животных этот метод используется весьма ограниченно. Вместе с тем МРТ у домашних животных возможно неинвазивно исследовать на наличие компрессионных поражений головного мозга, опухолей, дегенеративных, воспалительных, некоторых метаболических нарушений структур мозга, не изменяющих их контуров и невидимых на обычных рентгенограммах. Можно сказать, что в диагностике большинства патологий головного мозга МРТ является экспертным методом, при этом с минимальным риском для здоровья пациента. Современный метод МРТ позволяет точно определить границы патологического очага и на основании этого ветеринарному врачу избрать адекватную тактику лечения, а также сделать прогноз [1].

Цель исследований. Определить методику и тактику исследования головного мозга собак в г. Красноярске с помощью магнитно-резонансной томографии.

Материалы и методы исследований. Магнитно-резонансную томографию выполняли на томографе "SIEMENS" под общей анестезией, в режиме Т1 и Т2 взвешенного изображения (ВИ). Животное помещалось в горизонтальном положении на подвижном столе томографа, дополнительно подключались радиочастотные приемные катушки, после чего стол с собакой вдвигался в туннель магнита. Во время исследования собака находилась неподвижно внутри аппарата (туннель магнита) в течение 15-25 минут под общей анестезией [3].

Для исследования головного мозга применяли поверхностную матричную радиочастотную катушку. Обследование на высокопольном МР-томографе начинают с применения быстрой поисковой программы (Localizer или Scout) с получением ориентировочных срезов головного мозга в сагиттальной, аксиальной и коронарной плоскостях. Параметры этой программы следующие: TR=2^, ТЕ=6мс, FOV-300 мм, матрица -

i Надоели баннеры? Вы всегда можете отключить рекламу.