Научная статья на тему 'Особенности применения экспертных систем в интеллектуальных компьютерных обучающих системах'

Особенности применения экспертных систем в интеллектуальных компьютерных обучающих системах Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
824
237
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Особенности применения экспертных систем в интеллектуальных компьютерных обучающих системах»

УДК 368.3.068 Долотина Е.А.

ОСОБЕННОСТИ ПРИМЕНЕНИЯ ЭКСПЕРТНЫХ СИСТЕМ В ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ ОБУЧАЮЩИХ СИСТЕМАХ

Аннотация. В статье рассмотрены некоторые особенности применения экспертных систем в интеллектуальных компьютерных обучающих системах. Показаны их перспективы и ограничения, как при проведении формализации знаний, так и при передаче их обучаемому.

Ключевые слова: экспертная система, знания, адаптивная оценка, искусственный интеллект.

С самого начала развития область искусственного интеллекта рассматривала ряд весьма сложных задач, которые наряду с другими, до сих пор являются предметом исследований: автоматические

доказательства теорем, машинный перевод, распознавание изображений, планирование, алгоритмы и стратегии игр и т.д. Экспертные системы (ЭС) возникли как значительный практический результат в применении и развитии методов искусственного интеллекта - совокупности научных дисциплин, изучающих методы решения задач интеллектуального (творческого) характера с использованием ЭВМ.

В современном понимании, экспертная система - это набор программ, выполняющих функции эксперта при решении задач из некоторой предметной области[1-3]. Экспертные системы выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение экспертных систем на предприятиях способствует эффективности работы и повышению квалификации специалистов.

При создании экспертных систем возникает ряд затруднений. Это, прежде всего, связано с тем, что заказчик не всегда может точно сформулировать свои требования к разрабатываемой системе. Также возможно возникновение трудностей чисто психологического порядка: при создании базы знаний системы эксперт может препятствовать передаче своих знаний, опасаясь, что впоследствии его заменят «машиной». Но эти страхи не обоснованы, так как экспертные системы не способны обучаться, они не обладают здравым смыслом, интуицией. Но в настоящее время ведутся разработки экспертных систем, реализующих идею самообучения.

1. Отличие экспертных систем от традиционных программ

Основными отличиями ЭС от других программных продуктов являются использование не только данных, но и знаний, а также специального механизма вывода решений и новых знаний на основе имеющихся. Знания в ЭС представляются в такой форме, которая может быть легко обработана на ЭВМ. В ЭС известен алгоритм обработки знаний, а не алгоритм решения задачи. Поэтому применение алгоритма обработки знаний может привести к получению такого результата при решении конкретной задачи, который не был предусмотрен. Более того, алгоритм обработки знаний заранее неизвестен и строится по ходу решения задачи на основании эвристических правил. Решение задачи в ЭС сопровождается понятными пользователю объяснениями, качество получаемых решений обычно не хуже, а иногда и лучше достигаемого специалистами. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов, описывающих некоторую ситуацию, и система с помощью базы знаний пытается вывести заключение из этих фактов.

Качество ЭС определяется размером и качеством базы знаний (правил или эвристик) [4-7]. Система функционирует в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдения, интерпретация результатов, усвоение новой информации, выдвижении с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов. Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.

В любой момент времени в системе существуют три типа знаний:

- Структурированные знания- статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.

- Структурированные динамические знания- изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.

- Рабочие знания- знания, применяемые для решения конкретной задачи или проведения консультации.

Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.

Компетентность. Экспертная система должна демонстрировать компетентность, то есть достигать в конкретной предметной области того же уровня профессионализма, что и эксперты-люди. Но просто уметь находить хорошие решения ещё недостаточно. Настоящие эксперты не только находят хорошие решения, но часто находят их очень быстро, тогда как новичкам для нахождения тех же решений, как правило, требуется намного больше времени. Следовательно, экспертная система должна быть умелой - она должна применять знания для получения решений эффективно и быстро, используя приёмы и ухищрения, какие применяют эксперты-люди, чтобы избежать громоздких или ненужных вычислений. Для того чтобы по-настоящему подражать поведению эксперта-человека, экспертная система должна обладать робастностъю. Это подразумевает не только глубокое, но и достаточно широкое понимание предмета. А этого можно достичь, используя общие знания и методы нахождения решений проблем, чтобы уметь рассуждать исходя из фундаментальных принципов в случае некорректных данных или неполных наборов правил. Это один из наименее разработанных методов в современных экспертных системах, но именно им успешно пользуются эксперты-люди.

Символьные рассуждения. Эксперты, решая какие-то задачи (особенно такого типа, для решения которых применяются экспертные системы), обходятся без решения систем уравнений или других трудоёмких математических вычислений. Вместо этого они с помощью символов представляют понятия предметной области и применяют различные стратегии и эвристики в процессе манипулирования этими понятиями. В экспертной системе знания тоже представляются в символьном виде, то есть наборами символов, соответствующих понятиям предметной области. В искусственном интеллекте символ - это строка знаков, соответствующая содержанию некоторого понятия реального мира.

2. Ограничения в применение экспертных систем

1

Даже лучшие из существующих ЭС, которые эффективно функционируют как на больших, так и на мини-ЭВМ, имеют определенные ограничения по сравнению с человеком-экспертом.

1. Большинство ЭС не вполне пригодны для применения конечным пользователем. Если вы не имеете некоторого опыта работы с такими системами, то у вас могут возникнуть серьезные трудности. Многие системы оказываются доступными только тем экспертам, которые создавали из базы знаний.

2. Вопросно-ответный режим, обычно принятый в таких системах, замедляет получение решений. Например, без системы MYCIN врач может (а часто и должен) принять решение значительно быстрее, чем с ее помощью.

3. Навыки системы не возрастают после сеанса экспертизы.

4. Все еще остается проблемой приведение знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию.

5. ЭС не способны обучаться, не обладают здравым смыслом. Домашние кошки способны обучаться даже без специальной дрессировки, ребенок в состоянии легко уяснить, что он станет мокрым, если опрокинет на себя стакан с водой, однако если начать выливать кофе на клавиатуру компьютера, у него не хватит "ума" отодвинуть ее.

6. ЭС неприменимы в больших предметных областях. Их использование ограничивается предметными областями, в которых эксперт может принять решение за время от нескольких минут до нескольких часов.

7. В тех областях, где отсутствуют эксперты (например, в астрологии), применение ЭС оказывается невозможным.

8. Имеет смысл привлекать ЭС только для решения когнитивных задач. Теннис, езда на велосипеде не могут являться предметной областью для ЭС, однако такие системы можно использовать при формировании футбольных команд.

9. Человек-эксперт при решении задач обычно обращается к своей интуиции или здравому смыслу, если отсутствуют формальные методы решения или аналоги таких задач.

Системы, основанные на знаниях, оказываются неэффективными при необходимости проведения скрупулезного анализа, когда число "решений" зависит от тысяч различных возможностей и многих переменных, которые изменяются во времени. В таких случаях лучше использовать базы данных с интерфейсом на естественном языке.

3. Преимущества ЭС перед человеком - экспертом

Системы, основанные на знаниях, имеют определенные преимущества перед человеком-экспертом.

1. У них нет предубеждений.

2. Они не делают поспешных выводов.

3. Эти системы работают систематизировано, рассматривая все детали, часто выбирая наилучшую альтернативу из всех возможных.

4. База знаний может быть очень и очень большой. Будучи введены в машину один раз, знания сохраняются навсегда. Человек же имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и навсегда теряются.

5. Системы, основанные на знаниях, устойчивы к "помехам". Эксперт пользуется побочными знаниями и легко поддается влиянию внешних факторов, которые непосредственно не связаны с решаемой задачей. ЭС, не обремененные знаниями из других областей, по своей природе менее подвержены "шумам". Со временем системы, основанные на знаниях, могут рассматриваться пользователями как разновидность тиражирования- новый способ записи и распространения знаний. Подобно другим видам компьютерных программ они не могут заменить человека в решении задач, а скорее напоминают орудия труда, которые дают ему возможность решат задачи быстрее и эффективнее.

6. Эти системы не заменяют специалиста, а являются инструментом в его руках.

4. Проблемы, возникающие при создании ЭС. Перспективы разработки

При их разработке ЭС нашли применение методы искусственного интеллекта, разработанные ранее: методы представления знаний, логического вывода, эвристического поиска, распознавания

предложений на естественном языке и др. Можно утверждать, что именно ЭС позволили получить очень большой коммерческий эффект от применения таких мощных методов.

Однако уже на начальных этапах выявились серьезные принципиальные трудности, препятствующие более широкому распространению ЭС и серьезно замедляющие и осложняющие их разработку. Они вполне естественных и вытекают из самих принципов разработки ЭС.

Первая трудность возникает в связи с постановкой задач. Большинство заказчиков, планируя разработку ЭС, в следствие недостаточной компетентности в вопросах применения методов ИИ, склонна значительно преувеличивать ожидаемые возможности системы. Заказчик желает увидеть в ней самостоятельно мыслящего эксперта в исследуемой области, способного решать широкий круг задач. Отсюда и типичные первоначальные постановки задачи по созданию ЭС: "Разработать ЭС по

обработке изображения"; "Создать медицинские ЭС по лечению заболеваний опорно-двигательного аппарата у детей".

Однако, как уже отмечалось, мощность эвристических методов решения задач при увеличении общности их постановки резко уменьшается. Поэтому наиболее целесообразно (особенно при попытке создания ЭС в области, для которой у разработчиков еще нет опыта создания подобных систем) ограничиться для начала не слишком сложной обозримой задачей в рассматриваемой области, для решения которой нет простого алгоритмического способа (то есть неочевидно, как написать программу для решения этой задачи, не используя методы обработки знаний). Кроме того, важно, чтобы уже существовала сложившаяся методика решения этой задачи "вручную" или какими-либо расчетными методами. Для успешной разработки ЭС необходимы не только четкая и конкретная постановка задач, но и разработка подробного (хотя бы словесного) описания "ручного" (или расчетного) метода ее решения. Если это сделать затруднительно, дальнейшая работа по построению ЭС теряет смысл.

Вторая и основная трудность - проблема приобретения (усвоения) знаний. Эта проблема возникает при "передаче" знаний, которыми обладают эксперты-люди, ЭС. Разумеется для того, чтобы "обучить" им компьютерную систему, прежде всего требуется сформулировать, систематизировать и формализовать эти знания "на бумаге". Это может показаться парадоксальным, но большинство экспертов (за исключением, может быть, математиков), успешно используя в повседневной деятельности свои обширные знания, испытывают большие затруднения при попытке сформулировать и представить в системном виде хотя бы основную часть этих знаний: иерархию используемых понятий, эвристики, алгоритмы, связи между ними. Оказывается, что для подобной формализации знаний необхо-

2

дим определенный систематический стиль мышления, более близкий математикам и программистам, чем, например, юристам и медикам [8,9]. Кроме того, необходимы, с одной стороны, знания в области математической логики и методов представления знаний, с другой - знания возможности ЭВМ, из программного обеспечения, в частности, языков и систем программирования.

Таким образом, выясняется, что для разработки ЭС необходимо участие в ней особого рода специалистов, обладающих указанной совокупностью знаний и выполняющих функции "посредников" между экспертами в предметной области и компьютерными (экспертными) системами. Они получили название инженеры знаний (в оригинале - knowledge engineers), а сам процесс разработки ЭС и других интеллектуальных программ, основанных на представлении и обработке знаний - инженерией знаний (knowledge engineering).

ЛИТЕРАТУРА

1. Новиков Д.А. Прикладные модели информационного управления /Новиков Д. А., Чхартишвили

А. Г. /. - М.: ИПУ РАН, 2004. - 130 с.

2. Дубровский Д.И. Сознание, мозг, искусственный интеллект. М., «Стратегия-Центр», 2007.272с.

3. Юрков Н.К. Машинный интеллект и обучение человека: монография / Н.К. Юрков. - Пенза: ИИЦ ПензГУ, 2008г. - 226с.

4. Затылкин А. В. Синтез системы управления интеллектуальной компьютерной обучающей системой / Затылкин А.В., Кемалов Б.К., Юрков Н.К. // Новые промышленные технологии. - 2011. № 2.

- С. 58-62.

5. Затылкин, А.В. Метод связанных систем в моделировании процесса обучения /

A. В. Затылкин, В. Б. Алмаметов, И. И. Кочегаров // Известия высших учебных заведений. Поволжский регион. Технические науки. - 2010. № 4 (9). - С. 56-61.

6. Горячев, Н.В. Структура и программно-информационное обеспечение информационноизмерительного лабораторного комплекса / Н.В. Горячев, А.В. Лысенко, Н.К. Юрков // Известия Южного федерального университета. Технические науки. 2012. Т. 130. № 5. С. 169-173.

7. Архитектура ИКОС с внешним объектом изучения / А.В. Затылкин, Н.К. Юрков, И.Д. Граб,

B. Б.Алмаметов, В.А.Трусов // Надежность и качество: Труды международного симпозиума. Том 1./

Под ред. Н.К. Юркова - Пенза: Изд-во Пенз. гос. ун-та, 2008, с. 211-213.

8. Затылкин, А.В. Инновации в образовательных учреждениях и интерактивные программы обучения / А.В. Затылкин // Надежность и качество: тр. Междунар. симп. Том 1 / под ред. Н. К. Юркова. - Пенза : Изд-во Пенз. гос. ун-та, 2011. - С. 340-344.

9. Горячев Н.В. Концепция создания автоматизированной системы выбора теплоотвода электрорадиоэлемента / Н.В. Горячев, Н.К. Юрков // Современные информационные технологии. 2010. № 11.

C. 171-176.

10. С.И.Торгашин, А.Г.Дмитриенко, И.И.Кочегаров «Информационная модель интеллектуального

датчика» Труды международной научно-технической конференции «Современные информационные технологии» Выпуск 14, Пенза, Изд. ПГТА, 2011 С.77-83

11. И. И. Кочегаров, В. В. Стюхин, Н. А. Сидорин «Использование метода перебора при расчете

показателей надежности систем» Цифровые модели в проектировании и производстве РЭС : межвуз.

сб. науч. тр.- Вып. 17., Пенза : Изд-во ПГУ, 2012 С.175-179

12. Затылкин, А.В. Система адаптивного тестирования на основе нечеткого логического вывода / А.В. Затылкин // Надежность и качество: тр. Междунар. симп. Том 2 / под ред. Н. К. Юркова.

- Пенза : Изд-во Пенз. гос. ун-та, 2012. - С. 133-135.

3

i Надоели баннеры? Вы всегда можете отключить рекламу.