Научная статья на тему 'Основы обеспечения эффективного функционирования информационных подсистем автоматизированных систем управления сложными организационно-техническими объектами в условиях воздействий'

Основы обеспечения эффективного функционирования информационных подсистем автоматизированных систем управления сложными организационно-техническими объектами в условиях воздействий Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
145
35
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ИНФОРМАЦИОННАЯ ПОДСИСТЕМА / АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ / ЭФФЕКТИВНОЕ ФУНКЦИОНИРОВАНИЕ / СЛОЖНЫЕ ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИЕ ОБЪЕКТЫ / ДЕСТРУКТИВНЫЕ ВОЗДЕЙСТВИЯ

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Буренин Андрей Николаевич, Легков Константин Евгеньевич

Разнообразные сложные организационно-технические системы, в том числе специального назначения играют существенную роль при обеспечении обороноспособности страны, ее безопасности и поддержании в ней правопорядка. С целью гарантированного обеспечения их эффективного функционирования в различных условиях эксплуатации, организуется постоянное управление ими, которое реализуется посредством развертывания автоматизированных систем управления, в составе которых для обеспечения требуемого качества процессов управления, создаются информационные подсистемы, обеспечивающие как должностным лицам органов управления, так и комплексам средств автоматизации автоматизированной системы управления, предоставление всей номенклатуры требуемых информационных услуг. Как сложная система, функционирование которой осуществляется с требуемыми значениями показателей эффективности, информационная подсистема должна непрерывно управляться, особенно в чрезвычайных условиях. Для управления ею выделяются комплексы программно-технических средств, как из состава автоматизированной системы управления, так специально организованные для подсистемы. В любом случае комплексы средств образуют выделенную распределенную по компонентам подсистемы систему управления информационной подсистемой, на которую возлагается решение ряда задач управления, среди которых наиболее важной является задача обеспечения эффективного функционирования, путем организации результативного управления, особенно в условиях существенных деструктивных воздействий, когда важность этой задачи существенно возрастает. В работе рассматриваются вопросы обеспечения эффективного функционирования информационных подсистем, входящих в состав автоматизированных систем управления сложными организационно-техническими объектами, эксплуатация которых протекает в чрезвычайных условиях, характеризующихся возможностью существенных деструктивных воздействий Предложены методы управления, позволяющие повысить эффективность их функционирования.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Буренин Андрей Николаевич, Легков Константин Евгеньевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Основы обеспечения эффективного функционирования информационных подсистем автоматизированных систем управления сложными организационно-техническими объектами в условиях воздействий»

FRAMEWORK FOR ENSURING EFFECTIVE FUNCTIONING OF INFORMATION SUBSYSTEMS OF THE AUTOMATED CONTROL SYSTEMS FOR COMPLEX ORGANIZATIONAL AND TECHNICAL OBJECTS IN THE CONDITIONS OF ESSENTIAL IMPACTS

Andrey N. Burenin,

Ph.D., Docent, chief specialist of JSC «Research Institute «Rubin», Saint-Petersburg, Russia, [email protected]

Konstantin E. Legkov,

PhD, head of the Department of automated control system, Military space academy, Saint-Petersburg, Russia, [email protected]

ABSTRACT

A variety of complex organizational and technical systems, including systems for special purposes, play an essential role in country's defense capability ensuring, state security and the maintenance of law and order. In order to ensure their effective functioning under various operating conditions, permanent control of organizational and technical systems is organized, which is implemented through the deployment of automated control systems, in which, to ensure the required quality of management processes, information subsystems are created that provide required information services both to officials of control organs and to automation complexes of automated control systems. As a complex system, the functioning of which is carried out with the required values of performance indicators, the information subsystems of the automated control systems should be continuously managed, especially in emergency conditions. To manage it, there are complexes of software and hardware, both from the composition of the automated control systems of the complex organizational and technical systems for special purposes, so specially organized for the information subsystems. In any case, the complexes of funds form the allocated system of control of the information subsystems of the automated control systems for special purposes, distributed on the components of the subsystem. Control system of the information subsystems is entrusted with the solution of a number of management tasks. Among this tasks the most important is the task of ensuring the effective functioning of the information subsystems, by organizing effective management, especially in the context of significant destructive influences.

The work deals with the issues of effective functioning ensuring of information subsystems as a part of automated control systems for complex organizational and technical objects, the operation of which takes place in emergency conditions characterized by the possibility of significant destructive impacts. Management methods are proposed that improve the efficiency of their operation.

Keywords: information subsystem; automated control system; effective functioning; complex organizational and technical objects; destructive impacts.

For citation: Burenin A. N., Legkov K. E., Framework for ensuring effective functioning of information subsystems of the automated control systems for complex organizational And technical objects in the conditions of essential impacts. H&ES Research. 2017. Vol. 9. No. 4. Pp. 79-86.

INTRODUCTION

The management of the information subsystems (IS) of the automated control systems (ACS) systems for special purposes (SPS), as a complex system, is carried out under various conditions of operation (including in emergency conditions) and involves the development of processes for organizing a complex of control actions on it and its components, as a result of which the subsystem itself (or the required component) goes into the required (planned) state [1-2].

The main tasks that need to be addressed in IS management can be reduced to five main ones: IS structure management, fault management, IS functioning management, resource management and safety management [1-2]. Among all five tasks of managing of the IS of the ACS SPS, the task of functioning managing is the most important and difficult to implement, since it is necessary to take into account many factors, characteristics and parameters of complex processes occurring in the subsystem. This task is solved on the basis that the IS of the ACS SPS is considered as multinetwork service system [2], which is characterized by the main features of queuing systems [3-4, 8-15].

FORMULATION OF THE PROBLEM OF THE

FUNCTIONING MANAGEMENT

OF THE IS OF THE ACS SPS

The task of functioning control is a complex task and presupposes the use of a set of methods used in certain conditions of the situation (Fig. 1). In shown in fig. 1 variants of the organization of functional control processes, each of which to some extent determines the effectiveness of the operation of the IS of the ACS SPS, only management processes, organized on the basis of the methods of the first group (Fig. 1), directly affect provision procedures of IS services, and others, belonging to the second group, affect the parameters that directly or indirectly affect the functioning of the IS.

When solving the tasks of managing the operation of the IS, the ACS SPS should have a number of management objectives Q.JP = {raIPl,..., wIPp). The fulfillment of the goals QJP

will ensure the effective functioning of the IS and its individual components in various conditions, including conditions of influence of a complex of natural and deliberate disturbances and interference on the IS and the control system of the IS [4].

The effectiveness of the operation of the IS of the ACS SPS can be characterized by the value of the functional Q(i, B/P, ¥IPSr., U/P), depending on the vector of fixed, unperturbed parameters and IS characteristics of the ACS SPS B7 ^(dimension and connectivity of the IS of the ACS SPS structure, the performance of the IS servers, the capacity of the virtual circuits, the functioning algorithms of the IS and the requirements maintenance in IS), a vector of disturbing external parameters (the effects of electronic warfare (EW) means, the effects of natural interference and surround, failures of IS technical means, destructive effects, cyberattacks on IS hardware and software), as well as on the applied control strategies of the subsystem, expressed in the control vector U/p (determines control actions on the components of the IS produced by the control system ofthe IS ofthe ACS SPS).

If it is possible to organize the control of the IS of the ACS SPS that the required value of the IS Q[t, BIP, YIPSr, Up (t)] > (<)QTP performance indicator is provided for a given time T with the probability not less than required, in spite of the whole spectrum of impacts on it, then the functioning of the IS of the ACS SPS should be considered as stable, and management can be considered effective.

Considering Q(...) as a functional from the management, it can be argued that the choice of a specific vector UIP = Up (t) will provide a very specific value of the efficiency index of the IS functioning of the ACS SPS, i.e. Q[t, BIP, YPSr, Up (t)] = Qp [Up (t)]. Therefore, the solution of the problem of the functioning control of the IS of the ACS SPS is reduced to the choice of one UIP = Up (t) that will either provide an extremum to the indicator or provide its value no more (less) than admissible, i. e. reduces to the solution of some extremal problem (1 a), or to the problem described by the quintile (lb):

Fig. 1. A set offunctioning control tasks

Q[t, Bp, ¥pSr, Up0 (t)] ^ extr a)

U(t)S Uf

P{Q[t, BP, ¥ipsr, UfC- (t)] > (<)QTP } > P&® b) (1)

Up- (t)S Uf

R[UIP-0 (t )], R[Up- (t )] < RuIP

The solution of the extremum problem (1 a) is a definite (best) control Up0 (t), which is the optimal control for the functioning of the IS of the ACS SPS. The solution of the problem given in the form of quantile (1 b) is some control that ensures the value of the IS performance indicator is not worse than the required level with a given probability. In these solutions, the IS of the ACS SPS (B.„, ¥.„„ ) model was used and the resource

v IP IPSr 7

allocated for management was taken into account RUip.

This task is quite closely connected with the task of managing the resources of the IS of the ACS SPS. The organization of adaptive management of its functioning in difficult conditions of the environment, assumes that the procedures for the flexible operational distribution of real-time IMS will be implemented, ensuring the required values of the efficiency of the operation of the SPS itself, i. e. procedures will be implemented for managing the complex of IS, which is the basis of the task of resources control in the IS of the ACS SPS.

If the SPS is operating under conditions of acceptable (permissible) level of information impacts, when significant destructive changes in the IS of the ACS SPS are absent and it is possible to obtain complete reliable information about the state of the IPS, the task of managing the operation is reduced (see Fig. 1) to the problem 1 —management of the provision of information services (for example, by using of methods of quality reliefs in the control system). If the operation of the SPS occurs in emergency conditions, when there is the possibility of significant destructive changes in the IS of the ACS SPS (this fact may not allow the IS control system to obtain information about its state) other methods aimed at controlling the parameters characterizing the functioning of the subsystem.

At the same time, many parameters npp={p,} characterizing the functioning of the IS affect to the indicator of its effectiveness:

Qp = Q[t, Bp, ¥pSr, Up0 (t)] = XXrQ, ■

(4)

Qp(np) = f2 [Q1(p1),...,Q, (p,),...,Qn(Pn)]■

(2)

extr Q[t, Bip, ¥№Sr, Up;0 (t)] = extr f {Q, [t, BIp, ¥IPSr, Up-0 (t)]}; a)

Uf0 (t) Up-0 (t)

P{fz {Q, [t, b IP , ¥ IPSr , UiP (t)]}> (<) Qtp} „> PGr® ;

Up" (t)

R[UiPr° (t)],R[Up (0] < RuP

b>(3)

The second task, connected with the choice of the control providing the expression (3 b), becomes relevant when the optimization statement is unsolvable. In this case the IS control of the ACS SPS is selected, which guarantees the value of the performance index not worse than the specified value with a probability not lower than the permissible value.

Thus, the solution of the problem of controlling the functioning of the IS of the ACS SSN in complicated conditions (it is difficult or impossible to obtain operational reliable information about the state of the IS) begins by identifying a number of parameters that affect the performance indicators. Then a selection is made of a group of significant ones, which are then used to formulate a management strategy.

FORMALIZATION OF THE IS FUNCTIONING

PARAMETERS CONTROL

In a generalized form, the management of the parameters of the operation of the IS of the ACS SPS is based on the determination of the weights of all or the best ways of obtaining information services, including the latter as the first stage.

At the beginning of the second stage, a modernized matrix of the weights of the IS level network is compiled, the zero elements of the main diagonal of which are significant &>. Replacement of an element q from zero to &> means that the weight of the path to the IS service provisioning node is assumed to be infinitely large, which makes it possible not to consider in the procedure the paths passing through the outgoing service provision node, thereby excluding it.

The modernized matrix of weights Q = || q^- || obtained by this method is multiplied by the dispersion matrix D . As a result, a matrix A = O-D is obtained, the elements of which are used to obtain the remote matrices (i. e., the matrices of the operation control plan when controlling the parameters), each

element a.. of the matrix À =

being:

Taking into account (2), we can formulate the following multicriterial task for such management of parameters characterizing the functioning of the IS of the ACS SPS, which will provide an extremum (or quantile) to the value of the performance indicator of the subsystem:

= mink[( + dqu); (( + dq2j);...;

(( + dqt, j );...( n + dqN _ j )]

(5)

The problem (3 a) is solved by the methods of multicriteria optimization (Pareto or optimization by the integral criterion (convolution)) [5-13]:

In the expression mint means that the minimum can be taken from the best variant k= l,in the second variant k=2, etc.

Each of the members of expression (5) determines the weight from the service provision node Y. to the node Y., if the first intermediate service provision node is Y^ for all (Fig. 2).

If Y^ is not adjacent to Vp then the term is equal to &>.

Due to the fact that q.. = t», the term (q.. + dj) always has values t», although the element d.. is not necessarily equal &>. Thus, the number of terms in the expression that are not equal t» is equal to the number n of neighboring service provision nodes (Fig. 2), i.e., the number of directions originating from the service provision node Y..

r=1

Fig. 2. Creating ofthe parameters control plan

The value of the minimum term of expression (5), which determines the weight of the best path from the /'-th node of service provision to the'-th through ^-th:

j = mini [(,i + di,j) •••> (,n + dN,j )] = (q,5 + df,j) is entered as elements S]j in the matrix of the first choice

a1 HI«! j||-

The value of the second significant term of expression (5), which determines the weight of the second most important path after the best «2j = min2 [(4 + dt j);...; (q, n + dN, j)] is entered as elements S2. in the matrix of the first choice

a2 = ||s?j||. j

In the presence of n neighboring service provision nodes, it is obviously possible to obtain « matrices of the form: A1, A2,..., A".

From the matrices A1, A2,..., A" we go to the matrices of the control plans of the IPS of the ACS SPS. To do this for each Yj we seek the minimal term of expression (5) for to k = ^=1,2, ..., N, for example d^. Then the element m' of the control plane matrix for Y. is equal to the value of the index k, i.e. the plan itself is set.

... A

m\ =p,¿ [^ к]

(6)

In the same way, the control plan matrices are generated for each IS service delivery center of the IS of the ACS SPS, indicating the order of the choice of outgoing directions for receiving the information service {p^}.

METHODS OFPARAMETERS CONTROL

In accordance with (3) and the general scheme for parameters control outlined above, and also taking into account the fact that in emergency operation conditions it is difficult to obtain complete state information of the IS of the ACS SPS and the search should be conducted in a class of decentralized procedures, a number of methods for controlling the parameters characterizing the functioning of the IPS are proposed.

As one of the most easily implemented in practice methods for controlling parameters, the following can be proposed: the method of distributed program control (DPC) with local adaptation procedures (LAP) (the DPC LAP method). It provides for the establishment of a static (or unchanging in time) management plan for each IS service node in the form of a matrix nY¿ = {p íjk}, each element of which is equal to 1 if the path from the i-th IS service provision node to the k-th through the adjacent'-th is the path of the first choice (i.e., the best one), if p¡jk= 2, then by the second choice, etc. The DPC LAP method provides two levels of local adaptation, which does not require the transfer of information (Fig. 3).

The first level determines the expedient number of consecutive samples in each outgoing direction. If an unsuccessful attempt is made to obtain an appropriate quality control device along the path of the first choice, several more attempts should be made before proceeding to the selection of the next most important path. The required number of consecutive samples depends on many factors in the constituent transmission paths to the destination server.

If the average service time of the requirement is to , then the average time during which this virtual direction to the destination server will be in a busy state will be tz . Since the process of receiving new requirements or messages is independent

Fig. 3. Description ofthe method DPC LAP

of the processes of freeing the service servers, for a reasonable

number of consecutive samples one can take the value

]lï r

At

where A/ is the time interval between two consecutive samples with the establishment of a virtual connection to the server, y — coefficient characterizing the difference between the path of the first (second) and second (third) choice and the allowable fraction of the average service time requirements.

The second level of adaptation is associated with the use of local information based on a periodic analysis of the load of funds (virtual branch occupancy, queue size in the server) or the current estimate of the maintenance delay time for each outgoing direction.

The choice of the path is based on a set of rules, taking into account the given parameters of the local information available on each component of the control system of the IS associated with the service provision node. At the same time, the path that is less loaded on the first section (outgoing direction) is selected, is characterized by a smaller queue or less delay in servicing.

If the paths of first, second, etc. choices are different, the choice procedure is complicated by the introduction of restrictions. For example, a service request is sent to the outgoing direction of the second (third) choice, if the outgoing direction of the first (second) choice is loaded by a certain amount (the queue has reached the limit value, the expected service delays exceed the allowed ones, etc).

As another method of controlling the parameters of the IS of the ASU SPS in emergency situations, when the efficiency of the DPC LAP method is low, a method of distributed program control with global and local adaptation procedures (DPC GLAP) can be proposed which is the integration of the DPC LAP with probability-game (statistic) control procedures. The essence of the DPC GLAP is the formation of probabilistic automata at the distributed control centers of the IS, responding to the success of passing requirements to certain service provision nodes of IS of the ACS SPS. Based on these data, the current management plan for each type of service is being formed, stopping the probability adjustment procedures and managing the services in accordance with the current management plan generated on the basis of the DPC LAP method.

In using the DPC GLAP method to form procedures and a management plan, the IS of the ASU SPS is considered as a random environment, and the management tools of the IS are represented as a collective of stochastic automata operating in this environment (playing with the environment).

The game procedures used in the management of IS parameters of ACS SPS are that in order to obtain the corresponding IS from the source node to the required service provision node, an outgoing direction is randomly selected at random. If the IS with the required quality is provided to the consumer, then this direction is encouraged, otherwise it is fined. This period of operating time statistics will be called the period of the adjustment of the DPC GLAP method. Therefore, as a gaming machine of the IS component of the IS at thej-th node of providing the services of the subsystem, a machine with a variable structure is adopted:

Aj = (P^ P j 2 , ••••, Pf^.^ Pjk ), (7)

where/)' > 0 — probability of occurrence of the state of the y-th

' k

output and ^Pjr= 1.

r=1

The change of elements/, occurs as follows: if the action of the y-th type was committed and the machine A. was fined, then

Pjy =■

PjYa

1 + (a- 1)Pjy

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

If for the same action the machine was encouraged, then

(8)

P*P

Pjy 1 + (P-l)p*

(9)

Where a < 1 and P > 1- parameters of the method; pjy - an estimate of the probability of the y-th output state from the results of servicing previous applications.

After changing the values p*y, all other elements P*f V f ^y are normalized:

Pjt

P*

Pjt

1+(a- Op; p'ik

1+(P-OP;

(10)

(11)

The implementation of game procedures in the process of controlling the parameters of the IS of the ACS SPS is as follows: on each component of the IS, the corresponding/'-node is

stored a stochastic matrix A =

A

with the number of lines

equal to the number of nodes in the subsystem and the number of columns equal to the number of outgoing nodes from the node directions. Eachj-th row of the matrix, corresponding to the j-th IS node, is an automaton A^ = (p^,pij1,....,Pj ,...,Pj), and the elementp is matched with the y-th outgoing direction. The elementsp j change according to(10)or(ll).

The main advantage of all gaming procedures in general, and when applying them for managing parameters in the IS of the ACS SPS in particular, is that when generating procedures and management plans, no transfer of any service information is required, since requirements are service information. At the same time, when creating a management plan for each new application, the results of their service are used in the previous time, and after the maintenance their plan is again adjusted.

However, despite such a remarkable property of game procedures as the lack of the necessity to transmit the service information, their exclusive application is possible only in the IS of the ACS SPS with stable slightly varying demand streams, characterized by long periods of stationarity (the intensities of which remain unchanged for a long time) and in condition of complete absence of structural changes. Only in this case, values/ can be used as an estimate of the probability of successfully obtaining an information services of the required quality. Otherwise, the error of the estimation bias p. will increase so

much that these estimates do not at all reflect the real situation in the IS of the ACS SPS. All this leads to the fact that gaming procedures have two main drawbacks: difficulties in taking into account changes in the load (the initial load fluctuations caused by the needs of users of the automated control systems of the SPS, and the fluctuations caused by the IS management procedures, which also lead to its change) and practical absence reactions to structural changes.

Even with insignificant changes in the load entering the IS of the ACS SPS from the consumers it is necessary to change the values of a and P in accordance with these changes. However, it is not possible to obtain analytical expressions for these quantities depending on the load. Usually, the values of the applied parameters a h and P are chosen as a result of simulation of the IS operation on the computer. After simulation basing on a given probability of either obtaining the information service of inadequate quality or failing to obtain the information service IS with probability P0TK, certain probabilities/^ andp2can be obtained that satisfy the condition px < P0TK < p2 by which you can define the parameters a h and P:

a = A; P=

Pi

q2

(12)

(14)

Game procedures can be substantially simplified if we take Py = 1 and take into account the validity of the following expression:

1+ K- 1)Pe

(15)

Then, in order to take into account the changes in the IS of the ACS of the SPS caused by the processes of subsystem control, one should choose Py = 1, and the parameter a^ at each step is determined from the expression:

ae =1 -

1

Я + p в

(16)

where q1 = 1 - p{, q2 = 1 - p2 .

As a rule, in IS of the ACS SPS the streams of requirements are unevenly distributed on the components of the subsystem and change in the course of the operation of SPS. In addition, the IS itself can undergo significant, including structural, changes. In these circumstances, direct monopoly use of game procedures can wholly disorient the work of the IPS of the ACS SPS. Therefore, the exclusive use of exclusively game procedures for managing IS parameters is inexpedient.

At the same time, changes in the IS of the ACS of the SPS caused by the functioning of the control system of the IS (i.e., influence on the fluctuation of the IS management processes themselves) can be taken into account in the control procedures. Since the choice of the outgoing direction is made by a probabilistic automaton, the changes in the IS (load fluctuations) caused by the operation of the control system of the IS are themselves random.

It is obvious that an automaton Aj(tc) = (pJl(tc), pft(tc), ■■■, pfl(t), ■ ■■, pit(tc)), functioning in a variable IS environment is characterized by the quantity:

P [Pi (( ) );-. Pp ((p (tc )),-. Pn (Pn (tc ))] , (13)

where P^(pjf) — probability of a fine.

In this case, the structure of each probabilistic automaton is changed at each x-th step by changing the parameters ^ and Then the mathematical expectation of the increment of the matrix element A. over the choice of the x-th action is:

The second disadvantage of gaming procedures when applying them in the process of controlling the IS parameters is the virtually absent reaction to the structural changes that occurred in the subsystem, which, of course, is unacceptable when applying the procedure in difficult operating conditions.

However, the structural changes in the IS are sufficiently efficiently processed by the previously discussed method of the DPC TAP. Therefore, it is natural to combine the stated game procedures with the DPC TAP method in a single integrated method for controlling the parameters of the IS of the ACS SPS, a distributed program control method with global and local adaptation procedures (DPC GTAP), in which, along with local adaptation elements, there are global adaptation elements inherent in game procedures.

The effectiveness of the application of the developed methods is confirmed by the results of simulation modeling (improvement of the quality of service indicator in comparison with the traditional methods of organizing the work of information subsystems based on rigidly fixed procedures for planning the work of the IS (Figure 4).This simulated flows of requirements that are a uniform mixture of primitive flow, Palma flow, second-order Erlang flow, and Erlang flow of the third order, as the most typical for IS of the ACS.

CONCLUSION

The complex organizational and technical systems for special purposes that are being created today are called upon to play an essential role in ensuring the defense capability, security of the Russian Federation and maintaining law and order in it. In order to ensure the guaranteed effective operation of the SPS in various operating conditions, it is required to organize continuous management of these systems by the creation of highly organized automated control systems for SPS. In order to ensure the required level of quality management processes, information subsystems are created in the ACS SPS to provide control organs and automation systems all required information service nomenclature.

The IS itself should be continuously controlled, especially in emergency operation conditions. For this purpose, the complexes of software and hardware are distinguished, which form an allocated distributed control system of the subsystem that

Fig. 4. Comparative evaluation ofcontrol methods forlS oftheACS SPS parameters

performs a number of control tasks, among which the most important is the task of functioning control. This task, with significant destructive changes in the IS, should include subtasks of managing the parameters characterizing its functioning.

Realization of effective control of the parameters of the IS of the ACS SPS is carried out on the basis of the proposed methods: DPC LAP and DPC GLAP.

References

1. BureninA.N., Kurnosov V I. Teoreticheskie osnovy upravleniya sovremennymi telekommunikachionnymi setyami [Theoretical bases of management of modern telecommunica-tionnetworks], Moscow: Nauka. 2011. 464 p. (InRussian)

2. BureninA.N., LegkovK.E. Sovremennye infokommu-nikatsionnye sistemy i seti spetsialnogo naznacheniya. Osnovy postroeniya i upravleniya: Monografiya. [Modern infocom-munication systems and special purpose networks. Basics of creation and control], Moscow: Media Publisher, 2015. 348 p. (In Russian)

3. VentcelE. S. Teoria vercya/HosteyfProbability theory], Moscow: Nauka. 1974. 542p. (InRussian)

4. Trener D. Veroyatnosf, statistika I issledovanie opera-chiy [Probability, statistics and research of operations], Moscow: Statistika. 1976. 387 p. (InRussian)

5. LanneA.A., UlakhovichD. A. Mnogokriterialnaya optimizatsiya [Multi-criteria optimization], Leningrad: VAS, 1984. 87 p. (In Russian)

6. Ralfa G. Analiz resheniy. Vvedenie v problemu vybora v usloviyah neopredelennosti [Analysis of decisions. Introduction in a choice problem in the conditions of uncertainty], Moscow: Nauka. 1977. 408 p. (in Russian)

7. BowerJ. L. The role of conflict in economic decision-making groups, some empirical result. The Quarterly Journal of Economics. 1965. 79. No. 2. Pp. 424-444.

8. Zaharov G. P. The methods of observation of the data transmition networks. Moscow: Radio and communication. 1982. 208 p. (InRussian)

9. SatovskyB.L. Upravlenie kahestvom obsluzhivaniya v multiservisnych setyakh obshchego pol'zovaniya [Quality of service management in multiservice networks of general use] Vesnik svyazi [Messenger of communication], 1999. No. 4. (InRussian)

10. NovikovS. N.Classification of routing methods in multiservice communication networks. VestnikSibGUTI. 2013. No. 1. Pp. 57-67. (InRussian)

11. AvanesovM.Y, Prisyazhnyuk S. P. Operativnoe upravlenie potokami dannih v multiservisnih setyah svyazi [Data flow operational control in multiservice communication networks], Saint-Petersburg. Baltic State Tech. University., 2007. 81 p. (InRussian)

12. LazarevVG., SawinN. G. Seti svyazi, upravlenie, kommutaciya [Communication networks, control, switching], Moscow: Svyaz\ 1973. 264p. (InRussian)

13. Bellmanl.R. E., Glicksbergl., GrossO.A. Some aspects of the mathematical theory of control processes. Santa Monika: Rand corporation, 1958. 310p.

ОСНОВЫ ОБЕСПЕЧЕНИЯ ЭФФЕКТИВНОГО ФУНКЦИОНИРОВАНИЯ ИНФОРМАЦИОННЫХ ПОДСИСТЕМ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ СЛОЖНЫМИ ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИМИ ОБЪЕКТАМИ В УСЛОВИЯХ ВОЗДЕЙСТВИЙ

Буренин Андрей Николаевич,

д.т.н., доцент, главный специалист АО "Научно-исследовательский институт «Рубин», г. Санкт-Петербург, Россия, [email protected]

Легков Константин Евгеньевич,

к.т.н., начальник кафедры автоматизированных систем управления Военно-космической академии имени А. Ф. Можайского, г. Санкт-Петербург, Россия, [email protected]

АННОТАЦИЯ

Разнообразные сложные организационно-технические системы, в том числе специального назначения играют существенную роль при обеспечении обороноспособности страны, ее безопасности и поддержании в ней правопорядка. С целью гарантированного обеспечения их эффективного функционирования в различных условиях эксплуатации, организуется постоянное управление ими, которое реализуется посредством развертывания автоматизированных систем управления, в составе которых для обеспечения требуемого качества процессов управления, создаются информационные подсистемы, обеспечивающие как должностным лицам органов управления, так и комплексам средств автоматизации автоматизированной системы управления, предоставление всей номенклатуры требуемых информационных услуг.

Как сложная система, функционирование которой осуществляется с требуемыми значениями показателей эффективности, информационная подсистема должна непрерывно управляться, особенно в чрезвычайных условиях. Для управления ею выделяются комплексы программно-технических средств, как из состава автоматизированной системы управления, так и специально организованные. В любом случае комплексы средств образуют выделенную распределенную систему управления, на которую возлагается решение ряда задач управления, среди которых наиболее важной является задача обеспечения эффективного функционирования, путем организации результативного управления, особенно в условиях деструктивных воздействий, когда важность этой задачи существенно возрастает. В работе рассматриваются вопросы обеспечения эффективного функционирования информационных подсистем, входящих в состав автоматизированных систем управления сложными организационно-техническими объектами, эксплуатация которых протекает в чрезвычайных условиях, характеризующихся возможностью существенных деструктивных воздействий. Предложены методы управления, позволяющие повысить эффективность их функционирования.

Ключевые слова: информационная подсистема; автоматизированная система управления; эффективное функционирование; сложные организационно-технические объекты; деструктивные воздействия.

Для цитирования: Буренин А. Н., Легков К. Е. Основы обеспечения эффективного функционирования информационных подсистем автоматизированных систем управления сложными организационно-техническими объектами в условиях воздействий // Наукоемкие технологии в космических исследованиях Земли. 2017. Т. 9. № 4. С. 79-86.

i Надоели баннеры? Вы всегда можете отключить рекламу.