Научная статья на тему 'Optical properties of biaxial van der Waals crystals for photonic applications'

Optical properties of biaxial van der Waals crystals for photonic applications Текст научной статьи по специальности «Медицинские технологии»

CC BY
39
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Optical properties of biaxial van der Waals crystals for photonic applications»

Optical properties of biaxial van der Waals crystals for photonic applications

A. Slavich1, G. Ermolaev1, I. Zavidovsky1, D. Grudinin1, M. Tatmyshevskiy1, K. Kravtsov1, A. Toksumakov1, O. Matveeva1, A. Syuy1, A. Vyshnevyy1, I. Kruglov1, D. Yakubovsky1, S. Novikov1, D. Ghazaryan1, A. Arsenin1, V. Volkov2

1- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia 2- Emerging Technologies Research Center, XPANCEO, Dubai Investment Park First, Dubai, United Arab

Emirates

Advancements in nanophotonic devices rely on materials with high refractive indices and optical anisotropy [1]. Van der Waals (vdW) crystals have garnered considerable interest due to their high refractive indices and intrinsic anisotropic properties arising from their complex layered structures [2-4]. In this study, we introduce a novel method for the identification and characterization of anisotropic materials. Using a combination of spectroscopic ellipsometry, polarized micro-transmittance, and Raman spectroscopy, we determine the optical constants of vdW microcrystals. Our experimental results reveal exceptional optical properties in the visible and near-ultraviolet ranges, characterized by strong optical anisotropy and high refractive indices. These findings suggest that such materials can significantly enhance the functionality of nanophotonic devices, enabling applications such as smart lenses, ultrathin wave plates and polarization-sensitive flexible photodetectors. This work also presents the theoretical and experimental data on the application of these results in next-generation optical devices.

The authors gratefully acknowledge the financial support provided by the Russian Science Foundation (Grant No. 22-19-00558).

[1] J.B. Khurgin, Expanding the Photonic Palette: Exploring High Index Materials, ACS Photonics, 9, pp. 743-751, (2022).

[2] G.A. Ermolaev, D.V. Grudinin, Y.V. Stebunov, K.V. Voronin, V.G. Kravets, J. Duan, A.B. Mazitov, G.I. Tselikov, A. Bylinkin, D.I. Yakubovsky, S.M. Novikov, D.G. Baranov, A.Y. Nikitin, I.A. Kruglov, T. Shegai, P. Alonso-González, A.N. Grigorenko, A.V. Arsenin, K.S. Novoselov, V.S. Volkov, Giant Optical Anisotropy in Transition Metal Dichalcogenides for Next-Generation Photonics, Nature Communications, 12, pp. 1-8, (2021).

[3] A.S. Slavich, G.A. Ermolaev, et al, Exploring van der Waals Materials with High Anisotropy: Geometrical and Optical Approaches, Light: Science & Applications, 13, p. 68, (2024).

[4] K.V. Voronin, A.N. Toksumakov, G.A. Ermolaev, et al, Chiral Photonic Super-Crystals Based on Helical van der Waals Homostructures, Laser Photonics Reviews, p. 2301113, (2024).

i Надоели баннеры? Вы всегда можете отключить рекламу.