Научная статья на тему 'Определение коэффициента Пуассона грунта на основе численного моделирования лабораторных испытаний'

Определение коэффициента Пуассона грунта на основе численного моделирования лабораторных испытаний Текст научной статьи по специальности «Строительство и архитектура»

CC BY
2638
128
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОЭФФИЦИЕНТ ПУАССОНА / СТАБИЛОМЕТР / ДЕВИАТОР НАПРЯЖЕНИЙ / ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ / ПВК PLAXIS 2D / POISSON'S RATIO / TRIAXIAL TEST / DEVIATORIC STRESS / NUMERICAL SIMULATION / PLAXIS 2D

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Дорошенко С.П., Саенко Ю.В., Невзоров А.Л.

Согласно СП 22.13330.2011 «Основания зданий и сооружений» коэффициент Пуассона грунтов является постоянной величиной и зависит только от гранулометрического состава. Такое допущение делается ввиду сложности и дороговизны определения данной величины в лабораторных условиях. ГОСТ 12248-2010 «Грунты. Методы лабораторного определения характеристик прочности и деформируемости» позволяет вычислять коэффициент Пуассона только по результатам трехосных испытаний. В статье приведена методика определения коэффициента Пуассона с учетом влияния трения между торцами образца и штампами по двум программам испытаний. Для решения задачи авторы выполнили численное моделирование лабораторной установки в программно-вычислительном комплексе Plaxis 2D в осесимметричной постановке. На примере хвостовых отложений показаны результаты обработки данных для получения более достоверных значений коэффициента Пуассона, а также сделан вывод о зависимости этой величины от напряженно-деформированного состояния грунта. Приведена методика определения коэффициента Пуассона на стабилометре с использованием оптического оборудования путем регистрации фотоаппаратурой изменения геометрических параметров образца в ходе испытания через систему линз. Представлена модификация компрессионного прибора, в которой для измерения упругих характеристик грунта помещается вкладыш из эластичного материала с известными свойствами, что позволяет значительно удешевить испытания по определению коэффициента Пуассона. В настоящее время ведется разработка конструкторской документации по предложенным приборам. Упрощение методики определения коэффициента Пуассона и конструкций приборов позволит более подробно изучить данную величину и поведение грунтов, находящихся в сложном напряженно-деформируемом состоянии.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

DETERMINATION OF SOIL POISSON’S RATIO BASED ON NUMERICAL SIMULATION OF LABORATORY TEST

In accordance with SP 22.13330.2011 "Foundations of Buildings and Structures" the soil Poisson’s ratio is a constant and depends only on soil particle size distribution. This assumption is made taking into consideration the complexity and high cost of determining this value in laboratory conditions. GOST 12248-2010 "Soils. Laboratory methods for determining the strength and strain characteristics" allows to calculate the Poisson’s ratio only by results of triaxial tests. This article describes the method for determining Poisson’s ratio considering friction effect between the sample ends and stamps as per two test programs. For problem solving the authors carried out numerical simulation of the laboratory unit by means of programming and computing suite Plaxis 2D in axis-symmetric statement. The results of data processing are presented based on tail deposit example to obtain more reliable values of the Poisson’s ratio and a conclusion of this value dependence on soil mode of deformation was made. A method for determining the Poisson’s ratio with stabilometer using optical equipment by way of registering geometric parameter changes of a sample in the process of testing through a lens system is described. A consolidometer modification is given, in which an insert made of flexible material with known properties is placed to measure the soil elastic response that allows significantly to lower the cost of testing for finding the Poisson’s ratio. At present the design documentation for this equipment is being developed. Using simpler methods for determining the Poisson’s ratio and the simpler equipment design will permit to study this value in more details and to understand better the conduct of soils in the mode of combined stress and deformation state.

Текст научной работы на тему «Определение коэффициента Пуассона грунта на основе численного моделирования лабораторных испытаний»

Дорошенко С.П., Саенко Ю.В., Невзоров А.Л. Определение коэффициента Пуассона грунта на основе численного моделирования лабораторных испытаний // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. - 2016. - Т. 7, № 2. - С. 60-68. DOI: 10.15593/2224-9826/2016.2.06

Doroshenko S.P., Saenko Y.V., Nevzorov A.L. Determination of soil Poisson's ratio based on numerical simulation of laboratory test. PNRPU Bulletin Construction and architecture. 2016. Vol. 7, No. 2. Pp. 60-68. DOI: 10.15593/2224-9826/2016.2.06

ВЕСТНИК ПНИПУ. СТРОИТЕЛЬСТВО И АРХИТЕКТУРА Т. 7, № 2, 2016 PNRPU BULLETIN CONSTRUCTION AND ARCHITECTURE http://vestnik.pstu.ru/arhit/about/inf/

Б01: 10.15593/2224-9826/2016.2.06 УДК 624.131.439

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА ГРУНТА НА ОСНОВЕ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ ЛАБОРАТОРНЫХ ИСПЫТАНИЙ

С.П. Дорошенко, Ю.В. Саенко, А.Л. Невзоров

Северный (Арктический) федеральный университет им. М.В. Ломоносова, Архангельск, Россия

О СТАТЬЕ

АННОТАЦИЯ

Получена: 11 февраля 2016 Принята: 24 февраля 2016 Опубликована: 30 июня 2016

Ключевые слова:

коэффициент Пуассона, стаби-лометр, девиатор напряжений, численное моделирование, ПВК Р!ах1в 2Р

Согласно СП 22.13330.2011 «Основания зданий и сооружений» коэффициент Пуассона грунтов является постоянной величиной и зависит только от гранулометрического состава. Такое допущение делается ввиду сложности и дороговизны определения данной величины в лабораторных условиях. ГОСТ 12248-2010 «Грунты. Методы лабораторного определения характеристик прочности и деформируемости» позволяет вычислять коэффициент Пуассона только по результатам трехосных испытаний. В статье приведена методика определения коэффициента Пуассона с учетом влияния трения между торцами образца и штампами по двум программам испытаний. Для решения задачи авторы выполнили численное моделирование лабораторной установки в программно-вычислительном комплексе Р!ах1в 2й в осесимметричной постановке. На примере хвостовых отложений показаны результаты обработки данных для получения более достоверных значений коэффициента Пуассона, а также сделан вывод о зависимости этой величины от напряженно-деформированного состояния грунта. Приведена методика определения коэффициента Пуассона на стабилометре с использованием оптического оборудования путем регистрации фотоаппаратурой изменения геометрических параметров образца в ходе испытания через систему линз. Представлена модификация компрессионного прибора, в которой для измерения упругих характеристик грунта помещается вкладыш из эластичного материала с известными свойствами, что позволяет значительно удешевить испытания по определению коэффициента Пуассона. В настоящее время ведется разработка конструкторской документации по предложенным приборам. Упрощение методики определения коэффициента Пуассона и конструкций приборов позволит более подробно изучить данную величину и поведение грунтов, находящихся в сложном напряженно-деформируемом состоянии.

©ПНИПУ

© Дорошенко Сергей Петрович - ассистент, e-mail: s_p_doroshenko@yahoo.com. Саенко Юрий Викторович - аспирант, e-mail: yuri_saenko@mail.ru.

Невзоров Александр Леонидович - доктор технических наук, профессор, заведующий кафедрой, e-mail: a.l.nevzorov@yandex.ru.

Sergei P. Doroshenko - Assistant, e-mail: s_p_doroshenko@yahoo.com. Iurii V. Saenko - Postgraduate Student, e-mail: yuri_saenko@mail.ru.

Aleksandr L. Nevzorov - Doctor of Technical Sciences, Professor, Head of Department, e-mail: a.l.nevzorov@yandex.ru.

DETERMINATION OF SOIL POISSON'S RATIO BASED ON NUMERICAL SIMULATION OF LABORATORY TEST

S.P. Doroshenko, Iu.V. Saenko, A.L. Nevzorov

Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation

ARTICLE INFO ABSTRACT

In accordance with SP 22.13330.2011 "Foundations of Buildings and Structures" the soil Poisson's ratio is a constant and depends only on soil particle size distribution. This assumption is made taking into consideration the complexity and high cost of determining this value in laboratory conditions. GOST 12248-2010 "Soils. Laboratory methods for determining the strength and strain characteristics" allows to calculate the Poisson's ratio only by results of triaxial tests. This article describes the method for determining Poisson's ratio considering friction effect between the sample ends and stamps as per two test programs. For problem solving the authors carried out numerical simulation of the laboratory unit by means of programming and computing suite Plaxis 2D in axis-symmetric statement. The results of data processing are presented based on tail deposit example to obtain more reliable values of the Poisson's ratio and a conclusion of this value dependence on soil mode of deformation was made. A method for determining the Poisson's ratio with stabilometer using optical equipment by way of registering geometric parameter changes of a sample in the process of testing through a lens system is described. A consolidometer modification is given, in which an insert made of flexible material with known properties is placed to measure the soil elastic response that allows significantly to lower the cost of testing for finding the Poisson's ratio. At present the design documentation for this equipment is being developed. Using simpler methods for determining the Poisson's ratio and the simpler equipment design will permit to study this value in more details and to understand better the conduct of soils in the mode of combined stress and deformation state.

__© PNRPU

Введение

В практике геотехнического проектирования при численном моделировании оснований помимо модуля деформации значительное влияние на результаты вычислений деформаций оказывает величина коэффициента Пуассона. При этом если первая характеристика определяется в ходе изысканий, то вторая принимается, как правило, по нормативным документам.

Анализ литературы показывает, что приводимые различными авторами значения коэффициента Пуассона изменяются в довольно широком интервале, часто отличаются от рекомендованных нормативными документами [1—5]. Можно согласиться с мнением Л.А. Строковой о целесообразности включения коэффициента Пуассона в перечень характеристик грунтов, определяемых в ходе изысканий, из-за его существенного влияния на поведение грунта [6]. Это подтверждают, в частности, данные Н.Н. Щетининой о влиянии коэффициента Пуассона грунта основания на осадки водопропускных труб [7]. Изучением вопроса о влиянии коэффициента Пуассона на результаты испытаний занимались и зарубежные исследователи [8—11].

Наиболее достоверные результаты при определении этой характеристики дают ста-билометрические испытания, так как напряженно-деформированное состояние грунта в них приближено к основаниям сооружений. Недостатком, выявленным при обработке данных таких испытаний, является неравномерное распределение горизонтальных деформаций по высоте образца из-за наличия трения на его торцах.

Received: 11 February 2016 Accepted: 24 February 2016 Published: 30 June 2016

Keywords:

Poisson's ratio, triaxial test, devia-toric stress, numerical simulation, Plaxis 2D

1. Методика и результаты определения коэффициента Пуассона в стабилометре

Испытания проводились в приборах трехосного сжатия фирмы Geocomp (рис. 1, а). Исследовался песок средней крупности, отобранный из пляжной зоны хвостохранилища Ломоносовского ГОКа. Содержание глинистых частиц составило 3-5 %, среднее значение

з 3

влажности (0,25±0,03), плотности (1,81±0,04) г/см , плотности частиц (2,73±0,02) г/см .

а б в

Рис. 1. Образец грунта в приборе трехосного сжатия: а - стабилометр фирмы Geocomp; б - идеальная форма образца после испытаний; в - приведенный цилиндр Fig. 1. Soil sample in the stabilometer: a - triaxial soil test equipment Geocomp; b - the ideal form of the sample after the test; c - equivalent cylinder

Грунт загружали в ячейку цилиндрической формы высотой h = 15,7 см, диаметром d = 7,3 см и насыщали водой. Согласно первой программе испытаний после всестороннего обжатия образца при о1 = о3 = 100 кПа ступенями по 20 кПа вертикальные напряжения увеличивались до 300 кПа. Согласно второй программе испытаний после всестороннего обжатия насыщенного водой образца при о1 = о3 = 200 кПа вертикальные напряжения наращивались до 400 кПа также ступенями по 20 кПа.

Относительные вертикальные деформации sz и объемные деформации образца sV определяются прибором в автоматическом режиме. Исходя из предположения, что образец после испытания имеет форму, показанную на рис. 1, б, через объемные деформации SV вычисляются горизонтальные деформации, которые равномерно распределяются по боковой поверхности образца (рис. 1, в).

Полученные значения откладывались на графиках (рис. 2, 3), затем строилась аппроксимирующая кривая и находился коэффициент Пуассона: v = s х/ s z.

Из представленных результатов видно, что зависимость sx = f (sz) не является линейной, а значение коэффициента Пуассона возрастает с увеличением девиатора напряжений [12]. Кроме того, опыты показали, что форма «бочонка» не свойственна поведению образца грунта при испытаниях на трехосное сжатие. Более характерная форма показана на рис. 4, а, б. Приращение объема происходит на расстоянии h" от граней, а высота приведенного цилиндра уменьшается до величины h', что является результатом трения образца о поверхность штампов. Для того чтобы учесть отсутствие горизонтальных деформаций на верхнем и нижнем торцах образца, авторы использовали численное моделирование в ПВК Plaxis 2D в осесимметричной постановке.

1 <

2

О 0,02 0,04 0,06

Рис. 2. Зависимость относительных горизонтальных деформаций ех

от относительных вертикальных деформаций ег: 1 - первая программа испытаний; 2 - вторая программа испытаний Fig. 2. Graph of relative horizontal strain ex versus relative vertical strain ez: 1 - first test program; 2 - second test program

v

0,30 0,25 0,20 0,15

0 50 100 150 (üj - a3), кПа

Рис. 3. Зависимость коэффициента Пуассона от девиатора напряжений (ai - a3): 1 - первая программа испытаний; 2 - вторая программа испытаний Fig. 3. Graph of Poisson's ratio versus deviator stress tensor (a1 - a3): 1 - first test program; 2 - second test program

Нагрузка на нижнюю и верхнюю грань прикладывалась ступенями через металлические штампы. По боковой грани действовала распределенная нагрузка, равная 100 и 200 кПа. Коэффициент трения между пористыми штампами и грунтом принимался 0,5.

На рис. 4, г представлена сетка конечных элементов модели и изополя поперечных деформаций при анизотропном загружении. По результатам численного моделирования были найдены области, где горизонтальные деформации образца практически отсутствовали.

Величина Н" по результатам численного моделирования оказалась равной примерно 1 см. Также было определено, что при различном девиаторе напряжений значение Н" оставалось постоянным. Уменьшение высоты образца при обработке экспериментальных данных при тех же значениях 0У привело к увеличению sx, а значит, и коэффициента Пуассона.

Рис. 4. Деформации образца: а - образец после испытания; б - форма образца после испытаний; в - приведенный цилиндр; г - изополя поперечных деформаций в ПВК Plaxis2 D Fig. 4. Soil deformation: a - sample after the test; b - form of the sample after the test; c - equivalent cylinder; d - total displacement ux Plaxis 2D

Рис. 5. Зависимость коэффициента Пуассона от девиатора напряжений Gi - G3 после корректировки (пунктиром показаны зависимости до корректировки): 1 - первая программа испытаний; 2 - вторая программа испытаний Fig. 5. Graph of Poisson's ratio versus deviator stress tensor (g1 - g3) after correction (dashed line - graph before correction): 1 - first test program; 2 - second test program

На рис. 5 представлены зависимости коэффициента Пуассона от девиатора напряжений с учетом корректировки высоты образца. Коэффициент возрос на 15 % при девиаторе напряжений, равном 20 кПа, и на 10 % при девиаторе, равном 200 кПа.

2. Методика определения коэффициента Пуассона на стабилометре на основе параметрической фотометрии

Детальное изучение особенностей деформирования образца можно осуществить с использованием метода параметрической фотометрии, который основан на анализе цифрового изображения высокой четкости для получения векторов смещения точек [13]. Авторами получен патент на стабилометр с измерением деформаций по всему периметру и всей высоте образца (рис. 6) [14].

Рис. 6. Стабилометр: 1 - основание; 2 - прозрачные боковые стенки; 3 - крышка;

4 - нижний штамп; 5 - перфорированный вкладыш; 6 - шток; 7 - верхний штамп;

8 - перфорированный вкладыш; 9 - эластичная оболочка; 10, 11 - кольца; 12 - дренажная трубка; 13,14 - дренажные отверстия; 15 - штуцер; 16,17 - фотокамеры Fig. 6. Stabilometer: 1 - base; 2 - transparent lateral walls; 3 - cap; 4 - lower die;

5 - perforating insert; 6 - piston; 7 - upper die; 8 - perforating insert; 9 - elastic membrane;

10,11 - rings; 12 - drainage tube; 13,14 - draining tap; 15 - hole fitting; 16,17 - camera

Принцип работы прибора заключается в том, что при деформировании образца искажается разметка на поверхности эластичной оболочки, что и фиксируется с заданной частотой синхронно работающими фотокамерами, расположенными с четырех сторон. Для исключения искажения изображения, связанного с преломлением света, боковые стенки рабочей камеры собраны из плоско-вогнутых линз двойной кривизны (рис. 7). Радиус кривизны линз R на основе метода оптически малых углов определяется в зависимости от расстояния от объектива до линзы L, толщины линзы Si, толщины жидкости S2 и показателей преломления материала линзы n1 и жидкости n2.

Рис. 7. Поперечный разрез рабочей камеры стабилометра Fig. 7. Cross section of work chamber of stabilometer

Благодаря прозрачным стенкам, собранным из плоско-вогнутых линз двойной кривизны, на фотографиях отсутствует искажение, связанное с преломлением лучей при переходе из воздуха в материал линз и жидкость. По полученным изображениям сетки на оболочке определяют деформацию образца грунта и его объем в любой момент времени испытания. В настоящее время ведется разработка конструкторской документации на прибор.

3. Методика определения коэффициента Пуассона на компрессионном приборе с эластичным вкладышем

Другим техническим решением, использующим численное моделирование лабораторных испытаний и позволяющим определять коэффициент Пуассона, является модификация компрессионного прибора, в который между обоймой и образцом грунта помещается эластичный вкладыш (рис. 8) [15].

Под действием нагрузки, прикладываемой к поршню, образец грунта и эластичный вкладыш одновременно сжимаются, а датчики перемещения регистрируют их поперечные деформации. Испытания могут проводиться с вкладышами различной упругости. Модуль деформации и коэффициент Пуассона грунта определяют по результатам численного моделирования.

На рис. 9 представлен пример моделирования предлагаемого прибора с сеткой конечных элементов образца грунта и эластичного вкладыша после приложения нагрузки. Задача решалась в осесимметричной постановке с помощью ПВК Plaxis.

Прибор предлагаемой конструкции отличается простотой и низкой стоимостью испытаний по сравнению со стабилометрами. В настоящее время также ведется разработка конструкторской документации.

Рис. 8. Прибор для испытаний грунта на сжимаемость: 1 - корпус; 2 - углубление; 3 - дренажное отверстие; 4 - перфорированный поршень; 5 - пористое дно;

6 - датчики перемещения; 7 - грунт; 8 - эластичный вкладыш Fig. 8. Equipment for soil compression test: 1 - case; 2 - water; 3 - drainage tube; 4 - perforated plate; 5 - porous stone; 6 - displacement transducer; 7 - soil sample; 8 - elastic insert

Рис. 9. Результаты численного моделирования прибора в ПВК Plaxis 2D Fig. 9. Results of numerical simulation (Plaxis 2D)

Выводы

1. Для вычисления корректных значений коэффициента Пуассона при трехосных испытаниях необходимо учитывать трение между торцами образца грунта и штампами.

2. Для учета факторов, искажающих результаты лабораторных испытаний, можно использовать численное моделирование лабораторных установок и приборов, например в ПВК Plaxis.

3. Предлагаемые авторами и запатентованные конструкции приборов позволяют более детально изучить коэффициент Пуассона грунтов и упростить методику испытания и обработки данных.

Библиографический список

1. Цытович Н.А. Механика грунтов (краткий курс): учебник для строит. вузов. - 4-е изд., перераб и доп. - М.: Высшая школа, 1983. - 288 с.

2. Ishibashi I., Hazarika H. Soil mechanics fundamentals. - CRC Press Inc, 2010. - 324 p.

3. Беллендир Е.Н. Вероятностные методы оценки надежности грунтовых гидротехнических сооружений. - СПб.: Изд-во ОАО «ВНИИГ им. Б.Е. Веденеева», 2004.

4. Семашко С.В. Коэффициент Пуассона, пористость и раскрытие микротрещин в глубинных частях земной коры // Известия Тульского государственного университета. Науки о земле. - 2010. - № 2. - С. 35-37.

5. Сибиряков Е.Б. Зависимость между коэффициентом Пуассона и микроструктурой в микронеоднородной среде // Физическая мезомеханика. - 2004. - № 1. - С. 63-68.

6. Строкова Л.А. Анализ чувствительности параметров при численном моделировании поведения грунтов // Известия ТПУ. - 2008. - № 1. - С. 64-68.

7. Щетинина Н.Н. О влиянии коэффициента Пуассона грунта основания фундаментов водопропускных труб на их осадки // Вестник Сибирской государственной автомобильно-дорожной академии. - 2008. - Вып. 2 (8). - С. 31-36.

8. Suwal L.P., Kuwano R. Poisson's ratio evaluation on silty and clayey sands on laboratory speicmens by flat disk shaped piezo-ceramic transducer // Bulletin of ERS. - 2012. -№ 45. - С. 141-158.

9. Putri E.E., Rao N.S.V.K., Mannan M.A. Evaluation of modulus of elasticity and modulus of subgrade reaction of soils using CBR test // Journal of Civil Engineering Research. - 2012. -№ 2 (1). - С. 34-40. DOI: 10.5923/j.jce.20120201.05

10. Zhang J.J., Laurence R. Bentley Factors determining Poisson's ratio // CREWES Research Report. - 2005. - Vol. 17.

11. Briaud J.-L. Introduction to Soil Moduli // Geotechnical News. - Richmond, B.C., Canada: BiTech Publishers Ltd. - 2001.

12. Fredlund D.G., Rahardjo H., Fredlund M.D. Unsaturated soil mechanics engineering practice. - J. Willey and Sons, 2012. - 944 p.

13. White D.J., Take W.A., Bolton M.D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry // Geotechnique. - 2003. - № 7. - P. 619-631.

14. Пат. 2579538 Российская Федерация, МПК G01N3/10. Стабилометр / Невзоров А.Л., Саенко Ю.В., Ворожцова Л.А.; заявитель и патентообладатель ФГАОУ ВПО «Северный (Арктический) федеральный университет имени М.В. Ломоносова». -№ 2014152306; заявл. 23.12.14; не опубл.

15. Пат. 2555981 Российская Федерация, МПК E02D1/00. Прибор для испытаний грунтов на сжимаемость / Невзоров А.Л., Дорошенко С.П.; заявитель и патентообладатель ФГАОУ ВПО «Северный (Арктический) федеральный университет имени М.В. Ломоносова». - № 2013153600; заявл. 03.12.13; Бюл. № 19. - 5 с.

References

1. Tsytovich N.A. Mekhanika gruntov (kratkii kurs) [Soil mechanics]. 4rd ed. Moscow: Vysshaia shkola, 1983. 288 p.

2. Ishibashi I., Hazarika H. Soil mechanics fundamentals. CRC Press Inc, 2010. 324 p.

3. Bellendir E.N. Veroiatnostnye metody otsenki nadezhnosti gruntovykh gidrotekhni-cheskikh sooruzhenii [Stochastics methods of reliability assessment of soil hydraulic structures]. Saint-Petersburg: OAO "VNIIG imeni B.E. Vedeneeva", 2004.

4. Semashko S. V. Koeffitsient Puassona, poristost' i raskrytie mikrotreshchin v glubinnykh chastiakh zemnoi kory [Poisson's ratio, porosity and the opening of microcracks in the deep parts of the earth's crust]. Izvestiia Tul'skogo gosudarstvennogo universiteta. Nauki o zemle, 2010, № 2, pp. 35-37.

5. Sibiriakov E.B. Zavisimost' mezhdu koeffitsientom Puassona i mikrostrukturoi v mikro-neodnorodnoi srede [The relationship between Poisson's ratio and microstructure in microinho-mogeneities environment]. Fizicheskaia mezomekhanika, 2004, no. 1, pp. 63-68.

6. Strokova L.A. Analiz chuvstvitel'nosti parametrov pri chislennom modelirovanii pove-deniia gruntov [A sensitivity analysis of the parameters for the numerical simulation of behavior of soils]. Izvestiia TPU, 2008, no. 1, pp. 64-68.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

7. Shchetinina N.N. O vliianii koeffitsienta Puassona grunta osnovaniia fundamentov vodo-propusknykh trub na ikh osadki [On the influence of Poisson's ratio of the soil base foundations of the culverts on their settlements]. Vestnik Sibirskoi gosudarstvennoi avtomobil'no-dorozhnoi akademii, 2008, iss. 2 (8), pp. 31-36.

8. Suwal L.P., Kuwano R. Poisson's ratio evaluation on silty and clayey sands on laboratory speicmens by flat disk shaped piezo-ceramic transducer. Bulletin of ERS, 2012, no. 45, pp. 141-158.

9. Putri E.E., Rao N.S.V K., Mannan M.A., Evaluation of modulus of elasticity and modulus of subgrade reaction of soils using CBR test. Journal of Civil Engineering Research, 2012, no. 2 (1), pp. 34-40. DOI: 10.5923/j.jce.20120201.05

10. Zhang J.J., Laurence R. Bentley Factors determining Poisson's ratio. CREWES Research Report, 20015, vol. 17.

11. Briaud J.-L. Introduction to Soil Moduli. Geotechnical News. Richmond, B.C., Canada: BiTech Publishers Ltd., June 2001.

12. Fredlund D.G., Rahardjo H., Fredlund M.D. Unsaturated soil mechanics engineering practice. J. Willey and Sons, 2012. 944 p.

13. White D.J., Take W.A., Bolton M.D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 2003, no. 7, pp. 619-631.

14. Nevzorov A.L., Saenko Iu.V., Vorozhtsova L.A. Stabilometr [Stabilometer]. Patent 2579538 Rossiiskaia Federatsiia.

15. Nevzorov A.L., Doroshenko S.P. Pribor dlia ispytanii gruntov na szhimaemost' [Device for testing of soils compressibility]. Patent 2555981 Rossiiskaia Federatsiia.

i Надоели баннеры? Вы всегда можете отключить рекламу.