УДК 621.3.019
Б. И. Филиппов
ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК НАДЁЖНОСТИ РАДИОЭЛЕКТРОННЫХ СИСТЕМ
Существуют два основных вида испытаний на надёжность. Один из них - определительные испытания, которым подвергаются крупносерийные изделия. Задача определительных испытаний - оценка показателей надёжности. Другой вид - контрольные испытания, в ходе которых осуществляется проверка соответствия техническим условиям показателя надёжности системы. Исследуется второй вид испытаний. Цель исследования - выяснить, соответствуют ли характеристики надёжности изделия (изготовленной радиоэлектронной системы) заданным требованиям, предусмотренным техническими условиями на изготовление изделия. Для решения задачи используется математический аппарат статистической теории гипотез. Рассматриваются две гипотезы: гипотеза Н 0 - среднее время наработки на отказ г * = Т0- задаётся требованиями технических условий (изделие хорошее); гипотеза Н1- среднее время наработки на отказ г * = Т < Т0 - альтернатива (изделие плохое). Отмечен недостаток процедуры проверки гипотез - качество решения определяется после проведения испытаний, т. е. такая процедура проверки гипотез не является оптимальной. Предложена последовательная процедура проверки гипотез (процедура Вальда), которая предполагает принятие решения после каждого отказа и остановку испытаний, если возможно принятие решения с заданным качеством. Показан алгоритм проверки соответствия закона распределения полученной выборки показательному или другому закону распределения по критерию %2.
Ключевые слова: радиоэлектронная система, процедура испытаний, длительность испытаний, правило Неймана - Пирсона, процедура Вальда, критерий % .
Введение
Развитие радиоэлектронной промышленности приводит к быстрому росту функциональности выпускаемых изделий и усложнению структуры радиоэлектронных систем при одновременном повышении требований к их надёжности. Используемые модели имеют ряд недостатков, главным из которых является то, что они позволяют получить точную оценку показателей безотказности только в отдельных (частных) случаях [1-5]. Такая оценка пригодна для подтверждения требований технического задания, но не даёт возможности провести анализ надёжности радиоэлектронной системы после изготовления опытной партии аппаратуры.
Именно поэтому определение характеристик надёжности изготовленных образцов радиоэлектронных систем является актуальной задачей.
I. Задачи апостериорного анализа
Апостериорный анализ надёжности выполняется после изготовления опытной партии аппаратуры с целью определения характеристик её надёжности. Для этого проводятся статистические испытания радиоэлектронных систем (РЭС) по одной из нижеперечисленных процедур [6]:
1. Процедура [п, Б, г] - в испытаниях участвует п РЭС до г отказов без замены отказавших систем.
2. Процедура [п, В, г] - в испытаниях участвует п РЭС до г отказов с заменой отказавших систем (восстановление).
3. Процедура [п, Б, Т] - в испытаниях участвует п РЭС в течение заданного времени Т (длительность испытаний) без замены отказавших систем.
4. Процедура [п, В, Т] - в испытаниях участвует п РЭС в течение заданного времени Т с заменой отказавших систем (восстановление).
5. Смешанные процедуры: [п, Б, г/Т] или [п, В, г/Т] - предполагается, что задана длительность испытаний и число отказов; испытания прекращаются, когда либо г, либо Т достигают заданного значения; при этом, если длительность испытаний до последнего отказа гг < Т, то обработка результатов выполняется по процедурам 1 или 2, если гг > Т , то обработка результатов выполняется по процедурам 3 или 4.
6. Процедура [ п, Б , п] - испытания проводятся до отказа всех п РЭС, участвующих в испытаниях; эта процедура используется редко, в основном в тех случаях, когда необходимо определить статистические характеристики последовательности отказов отдельных элементов РЭС.
Каждая из процедур испытаний имеет определённые достоинства и недостатки, некоторые из них будут показаны ниже.
Обработка результатов испытаний имеет целью решение одной из двух задач:
1-я задача. Определение характеристик надёжности изготовленных образцов РЭС.
2-я задача. Определение степени соответствия характеристик надёжности изготовленных образцов РЭС техническим условиям.
Первая задача рассмотрена в [7].
II. Проверка соответствия характеристик надёжности техническим условиям (2 задача)
Проверка соответствия характеристик надёжности РЭС заданным требованиям является второй задачей её испытаний на надёжность. Необходимо ответить на вопрос о том, соответствуют ли характеристики надёжности изделия (изготовленной РЭС) заданным требованиям, предусмотренным техническими условиями на изготовление изделия. Для решения этой задачи используется математический аппарат статистической теории гипотез [6, с. 203].
Постановка задачи
1. В результате испытаний по процедуре [ п , В, г ] с заменой (восстановлением) отказавших систем получена выборка моментов времени отказов ..., Тг), по которой определена выборка интервалов времени между отказами (у1,..., уг).
2. Рассматриваются две гипотезы:
- гипотеза Н0: среднее время наработки на отказ I* = Т0 - задано требованиями технических условий (ТУ); изделие хорошее;
- гипотеза Н1: t* = Т1 < Т0 - альтернатива; изделие плохое.
3. Известно, что плотность распределения интервалов между отказами соответствует показательному закону (если это не так, то производится проверка соответствия экспериментальных данных принятой теоретической модели).
4. Решение о справедливости той или иной гипотезы принимается по правилу Неймана -Пирсона.
По полученным результатам испытаний необходимо ответить на вопрос, какая из гипотез справедлива.
Решение задачи
1. Выборка - это точка в г-мерном пространстве У (рис. 1).
До начала испытаний пространство выборки надо разбить на два подпространства в соответствии с принятым правилом решения:
Если (у,,...,уг)е уГНо)——Н
1о ■
Если(у1,...,уг)е уН ——Н, (1)
где у0 - решение в пользу гипотезы Н0, а у1 - в пользу гипотезы Н1.
Рис. 1. Пространство выборки У
При этом возможны и ошибочные решения:
- ошибка первого рода: у0/ Н1 - риск заказчика;
- ошибка второго рода: у^Н0 - риск изготовителя.
Соответственно, правильные решения имеют вид у0/Н0 и у^Н1 .
2. Введём следующие понятия: риск заказчика - а, риск изготовителя - р. Тогда, согласно правилу Неймана - Пирсона:
- риск заказчика а = Р(у0/ Н1} (вероятность ошибок первого рода задаётся заказчиком);
- риск изготовителя в = Н 0}(вероятность ошибок второго рода минимизируется изготовителем).
Показатель качества решения: (1 — в) = Р{у1/Н1}- вероятность правильного решения о том, что изделие плохое.
3. Вычисляем отношение правдоподобия:
L(jj,у^,..., уг) =
wr(у„ к, yr /Я0) W(yj, к, yr /Hj)
Это даёт возможность преобразовать правило решения в г-мерном пространстве (1) в правило решения в одномерном пространстве, когда отношение правдоподобия сравнивается с некоторым порогом:
- решение у0: Н0, если Ь(ух, ..уг) > С ;
- решение у1: Н1, если Ь(у1, к, уг) < С .
4. Определяем порог С для правила Неймана - Пирсона. Порог С определяется через заданное а следующим образом:
а = Р{у„/Н1} = Р{Ь(У1, к, Уг) > СНХ}. (2)
Перепишем правило (2) в следующем виде:
Если 1пЬ(у1, к, уг) > 1пС , то решение у0, иначе у1. (3)
Тогда
1п ц У...... Уг) > 1п П = ± 'п^^)-
ы ^ (У;/Н1) ы У7Н1)
Если у{ независимы, то
r
(y„ к,Уг)/Но) = П Wj(yjH0).
I=1
При условии замены отказавших систем (процедура [п, В, г])
п
п У' У / Н0) = -ет , Т0
1 1 -где /,0 =--допустимая интенсивность отказов хороших изделий;
Т0
п
п —уУ< у / Н1) = те 1 , Т1
где = — > - интенсивность отказов изделий, не удовлетворяющих техническим условиям.
w
r
Тогда
у,-/но) = т епу, Т
^(ъ/Н) То и отношение правдоподобия принимает вид
г Т 11 Т 11 г Т 11
1пКУ1,..., уг) = —{1пТ- пу,(— --)} = г 1пТ + п[ — --]—у, = г 1пТ + (---)'— . (4)
,'=1 Т о Т 0 Т1 Т 0 Т1 Т 0 , 1 Т о Т1 Т о
Правило решения (3) с учётом (4) принимает следующий вид:
если > К, то решение у„, иначе у1,
где порог
Т
С - г 1п -1-
К = / (С) =—-(5)
Т- Т
5. Порог К может быть определён с помощью таблиц распределения %2. Для этого перепишем выражение (2) в виде
Р{г— > К/Н} = а (6)
и преобразуем переменную & так, чтобы новая переменная имела нормированное распределение %2.
г
Известно, что = п— у1 - это сумма экспоненциально распределённых случайных вели-
,=1
чин у,. Следовательно, ^ имеет ненормированное распределение %2. Для его нормирования,
( 2г— Л
как и в [7], надо ввести новую переменную: т = —— .
V г )
Тогда, с учётом того, что гипотеза Н1 соответствует среднему времени наработки на отказ г* = Т1, вероятность (6) принимает вид
_Г 2г 2К X Г 2 К X Р 1—— >-> = а или Р 1т >-> = а,
1 г * Т ] [ Т ]
где т имеет %2 (2г)-распределение с 2г степенями свободы.
2К
На этом распределении (рис. 2) -= %2(2г), что соответствует а % - точке распределе-
Т1
ния % 2(2г).
и<т)
%2-в (2г) %2(2г) т
Рис. 2. а % и (1- р) % точки %2(2г) -распределения
Следовательно, порог (5) равен
К = |[% а (2г)]. (7)
6. Для порога решения (7) найдём риск изготовителя в, значение которого для правила Неймана - Пирсона будет минимальным.
Согласно правилу Неймана - Пирсона и уравнению (6),
в = Р{Ъ/Н0} или в = Р{гъ < К/Н0} .
Переходим к нормированному распределению %2 (2г):
\ 2^ 2К ] \ 2К ]
в=Р К < Т1 ■ или в=Р |т < ТI ■
2К 2 2
где -= х(1—р) (2г), что соответствует (1 — в) % - точке распределения % (2г) (рис. 2).
Т0
Учитывая, что Т0 и К известны, можно определить (1 — в) - показатель качества решения.
Следует обратить внимание на то, что
х 21—р )(2г) = Т %2(2г), Т0
% 21—в)(2г) = т
%2(2г) Т '
т. е. а % и (1- в) % - точки % 2(2г) распределения отличаются во столько же раз, во сколько полученное в результате испытаний среднее время наработки на отказ Т меньше заданного Т0.
Т
Таким образом, необходимо знать четыре параметра: —,а, в, г (или Т15 Т0, г, а). Обычно
Т0
три из этих параметров задаются в начале испытаний, а четвёртый определяется.
В заключение следует заметить, что при использовании процедуры испытаний [ п, Б , г ] качество решения будет таким же, как и для процедуры [ п , В, г ], если обеспечивается такое же суммарное время испытаний .
III. Последовательная (пошаговая) процедура проверки гипотез
Рассмотренная в разделе II процедура проверки гипотез имеет тот недостаток, что качество решения определяется после проведения испытаний (вначале испытываем, а затем оцениваем качество результата). Такая процедура решения задачи проверки гипотез не является оптимальной и, следовательно, она неэкономична.
В то же время известна последовательная процедура проверки гипотез (процедура Валь-да), которая предполагает попытку принятия решения после каждого отказа и остановку испытаний, если возможно принятие решения с заданным качеством. При этом а, в - задаются и с помощью последовательной процедуры предпринимаются попытки найти статистику у1, у2, к уг, которая минимизирует среднее число отказов: ш{г/Н0} или т{г/Нх} , необходимое для принятия решения.
Точное решение задачи получить трудно. Практически используется приближённое правило решения, когда отношение правдоподобия сравнивается с двумя порогами:
- если < К1, то решение у1: Н (изделие не удовлетворяет ТУ);
- если К0 < ^ < Кх, то решение ук (испытания продолжать); (8)
- если > К0, то решение у0: Н0 (изделие удовлетворяет ТУ).
Недостаток последовательной процедуры: заранее неизвестно число отказов г и длительность испытаний. Вследствие этого иногда используется комбинированный метод (смешанная процедура), когда дополнительно задается предельное число отказов г0 и к правилу решения (8) добавляются следующие условия:
- если г < г0, то применяется последовательная процедура;
- если г = г0, то применяется обычная процедура, например рассмотренная в разделе II. IV. Оценка закона распределения
Как уже отмечалось, прежде чем определять характеристики надежности по результатам испытаний, необходимо проверить соответствие закона распределения полученной выборки (у.) показательному закону распределения (например, м^(у.) = пке~пХу' или другому). Это
можно сделать по критерию %2. Алгоритм проверки
1. Выбор процедуры испытаний.
2. Испытания, получение выборки (г1, г2,..., гг), (у1, у2, к, у{).
3. Всё время испытаний делится на к равных интервалов.
4. Определение количества отказов в каждом интервале т{.
Л г -1
5. Находим точечную оценку X =-. Предположим, что закон распределения у. является экспоненциальным.
6. Вычисляем теоретическую вероятность числа отказов в каждом интервале:
- пХ— к
Р = 1 - е
и оценку вероятности отказов в каждом интервале:
Р = т..
' г
7. Результаты расчётов заносим в таблицу.
Результаты расчёта надёжности
Временной интервал Число отказов в интервале т1 Оценка вероятности отказов р Теоретическая вероятность р
1
2
3
4
к
8. Определяем:
.(Р - р. )
к
X2 = < Х> - 1 - 0)' (9)
2
где X (к - 1 - допустимое отклонение: а << 1; 0 - количество параметров оцениваемого закона распределения.
Если неравенство (9) справедливо, то полученные экспериментальные результаты не противоречат предполагаемому теоретическому закону распределения.
Выводы
Таким образом, в ходе исследований получены следующие результаты:
1. При использовании процедуры испытаний [п, Б, г] качество решения будет таким же, как и для процедуры [п, В, г], если обеспечивается такое же суммарное время испытаний
2. При последовательной процедуре, если заранее неизвестно число отказов г и длительность испытаний, используется комбинированный метод (смешанная процедура), когда дополнительно задается предельное число отказов г0 и к правилу решения добавляются следующие условия:
- если г < г0, то применяется последовательная процедура;
- если г = г0, то применяется обычная процедура, например рассмотренная в разделе 2.
3. Показан алгоритм проверки соответствия закона распределения полученной выборки w1 (у;) показательному или другому закону распределения по критерию %2.
СПИСОК ЛИТЕРАТУРЫ
1. Жаднов В. В. Проектная оценка надёжности радиотехнических систем / В. В. Жаднов, С. Н. Полесский // Надёжность и качество: Тр. Междунар. симпоз. в 2 т. Т. 1 / под ред. Н. К. Юркова. Пенза: Изд-во Пенз. гос. ун-та, 2006. С. 24-29.
2. Жаднов В. В. Управление качеством при проектировании теплонагруженных радиоэлектронных средств / В. В. Жаднов, А. В. Сарафанов. М.: Солон-Пресс, 2004. 464 с.
3. Артюхова М. А. Метод учёта влияния системы менеджмента надёжности предприятия при расчётной оценке показателей надёжности электронных средств / М. А. Артюхова, В. В. Жаднов, С. Н. Полесский // Радюелектрошка, шформатика, управлшня. 2013. № 2. С. 48-53.
4. Надёжность электрорадиоизделий: Справочник. М.: МО, 2006. 641 с.
5. Филиппов Б. И. Априорный анализ надёжности радиотехнических систем без восстановления / Б. И. Филиппов // Изв. Волгоград. гос. техн. ун-та. Сер.: Электроника, измерительная техника, радиотехника и связь. 2015. Т. 12, № 11 (176). С. 97-103.
6. Левин Б. Р. Теория надёжности радиотехнических систем / Б. Р. Левин. М.: Сов. радио, 1978. 264 с.
7. Филиппов Б. И. Апостериорный анализ надёжности радиоэлектронных систем / Б. И. Филиппов // Вестн. Астрахан. гос. техн. ун-та. Сер.: Управление, вычислительная техника и информатика. 2015. № 4. С. 81-91.
Статья поступила в редакцию 4.02.2016
ИНФОРМАЦИЯ ОБ АВТОРЕ
Филиппов Борис Иванович - Россия, 630073, Новосибирск; Новосибирский государственный технический университет; канд. техн. наук, доцент; доцент кафедры «Защита информации»; [email protected].
B. I. Filippov
DEFINITION OF CHARACTERISTICS OF RELIABILITY OF RADIO-ELECTRONIC SYSTEMS
Abstract. There are two main kinds of tests for reliability. One of them is standard test, which is used for large-scale products. The aim of the standard tests is to evaluate the parameters of reliability. Other type of the tests is control tests, which check the compliance to specifications of an indicator of reliability of the system. The paper studies the second type of the tests. The aim of the study is to decide whether these the characteristics of reliability of a product (made by radio-electronic systems) correspond to the set requirements provided by specifications on production of a product. For the solution of this task the mathematical apparatus of the statistical theory of hy-
potheses is used. Two hypotheses are considered: the hypothesis H 0 - the average time of operation for failure t = T0 - is set by the requirements of specifications (a product is good); a hypothesis Hj- the average time of operation for failure t* = T < T0- alternative (a product is bad). The procedure of checking the hypotheses has a shortcoming, i. e. the quality of the solution is defined after carrying out the tests. Such procedure of checking the hypotheses is not optimum. The paper presents the consecutive procedure of checking the hypotheses (Wald's procedure), which assumes decision-making after each refusal and a stop of tests, if decision-making with the set quality is possible. The algorithm of checking the compliance of the law of distribution of the received selection to indicative or other law of distribution by criterion x2 is shown.
Key words: radio-electronic system, procedures of tests, duration of tests, Neumann - Pearson's rule, Wald's procedure, criterion x2.
REFERENCES
1. Zhadnov V. V., Polesskii S. N. Proektnaia otsenka nadezhnosti radiotekhnicheskikh sistem [Design assessment of reliability of radio engineering systems]. Nadezhnost' i kachestvo: Trudy Mezhdunarodnogo simpoziuma. V2 t. T. 1. Pod redaktsiei N. K. Iurkova. Penza: Izd-vo Penzenskogo gosudarstvennogo universiteta, 2006. P. 24-29.
2. Zhadnov V. V., Sarafanov A. V. Upravlenie kachestvom pri proektirovanii teplonagruzhennykh radio-elektronnykh sredstv [Quality management at design of the heatloaded radio-electronic means]. Moscow, Solon-Press, 2004. 464 p.
3. Artiukhova M. A., Zhadnov V. V., Polesskii S. N. Metod ucheta vliianiia sistemy menedzhmenta nadezhnosti predpriiatiia pri raschetnoi otsenke pokazatelei nadezhnosti elektronnykh sredstv [A method of consideration of the influence of the system of management of reliability of an enterprise at a calculation assessment of reliability indicators of electronic means]. Radioelektronika, informatika, upravlinnia, 2013, no. 2, pp. 48-53.
4. Nadezhnost' elektroradioizdelii: Spravochnik [Reliability of electro-radio units: Reference book]. Moscow, MO, 2006. 641 p.
5. Filippov B. I. Apriornyi analiz nadezhnosti radiotekhnicheskikh sistem bez vosstanovleniia [The aprior-istic analysis of reliability of radio engineering systems without restoration]. Izvestiia Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Elektronika, izmeritel'naia tekhnika, radio-tekhnika i sviaz, 2015, vol. 12, no. 11 (176), pp. 97-103.
6. Levin B. R. Teoriia nadezhnosti radiotekhnicheskikh sistem [Theory of reliability of radio engineering systems]. Moscow, Sovetskoe radio Publ., 1978. 264 p.
7. Filippov B. I. Aposteriornyi analiz nadezhnosti radioelektronnykh sistem [Posteriori analysis of reliability of radio-electronic systems]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Upravlenie, vychislitel'naia tekhnika i informatika, 2015, no. 4, pp. 81-91.
The article submitted to the editors 4.02.2016
INFORMATION ABOUT THE AUTHOR
Filippov Boris Ivanovich - Russia, 630073, Novosibirsk; Novosibirsk State Technical University; Candidate of Technical Sciences, Assistant Professor; Assistant Professor of the Department "Information Protection"; [email protected].