FeAsS арсенопирит 112,9 15 8,3 8,6
30 7,7 8,4
45 7,5 9,3
1 2 3 4 5
Мышьяк металлический 20,1 15 20,9 8,8
30 19,8 8,2
45 15,5 8,5
Сульфидный мышьяковистый возгон плавл. 11,8 15 7,5 9,3
30 8,3 8,4
45 9,0 9,3
Согласно классификации опасности мышьяксодержащих промышленных отходов согласно, принятой в [9], плавленые
сульфидные возгоны относятся к безопасной категории, однако вопрос консервации сульфидных возгонов для каждого предприятия должен определяться индивидуально с учетом эксплуатационных затрат.
Литература
1. Копылов Н.И., Каминский Ю.Д. Мышьяк. Новосибирск: Сиб. универ. изд-во, 2004. 387 с.
2. Riveros P.A., Dutrizac J.E.,Spencer P. // Canadian Metallurgical Quarterly. - 2001. - V. 40. - P. 395-420.
3. Шнеерсон Я.М., Набойченко С.С. // Цветные металлы. - 2011. - № 3. - С. 15-20.
4. Копылов Н.И. Проблемы мышьяксодержащих отвалов. Новосибирск: Академическое изд-во «ГЕО», 2012. 182 с. 5.SmedleyP.L., Kinniburgh D.C. // J. of the International Association of Geochemistry and Cosmochemistry. - 2002. - V .17. - N 5. -
P. 519.
6. Неизвестнова Е.М., Давыдова В.И., Блохин В.А., Смирнова О.М. Токсикологические аспекты проблемы мышьяка в производстве цветных металлов. Москва, 1985. С. 28.
7. О.М. Смирнова, Н.В. Сигова, Ю.А. Ремизов, Н.М.Гридин. К обоснованию предельно-допустимой концентрации арсенопирита в воздухе рабочей зоны / Труды московского НИИ гигиены им. Ф.Ф.Эрисмана. - 1984. - С. 74 -76.
8. Набойченко С.С., Мамяченков С.В., С.В. Карелов. Мышьяк в цветной металлургии. Екатеринбург: УрО РАН, 2004. 240 с.
9. Антипов Н.И., Васильева Л.Н. О классах токсичности и степени опасности мышьяксодержащих промышленных отходов // Цветные металлы. - 1992. - № 3. - С. 9-11.
Исабаев С.М.1, Кузгибекова Х.М.2, Жинова Е.В.3
'Доктор технических наук, профессор; 2Кандидат технических наук, доцент; 3Соискатель, Химико-металлургический институт
им. Ж. Абишева
ОПРЕДЕЛЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ СЕЛЕКЦИИ УГЛИСТЫХ ВЕЩЕСТВ ПРИ
ПЕРЕРАБОТКЕ АРСЕНОПИРИТНОГО КОНЦЕНТРАТА
Аннотация
Трудность извлечения золота из руд месторождения Бакырчик связана с наличием в составе элементного углерода в виде шунгитов, обладающих высокой сорбционной емкостью по отношению к флотационным реагентам и к цианистым комплексам золота, поэтому проведены исследования по селекции углистых веществ из особоупорного золотомышьяковистого сырья. Ключевые слова: золотомышьяковистый концентрат, арсенопиритный концентрат
Issabayev S.M.1, Kuzgibekova Kh. M.2, Zhinova E.V.3
1 Doctor of Technical Sciences, professor; 2 Candidate of techn.science, Docent; 3 Competitor, Chemical Metallurgy Institute named
after Abishev
PHYSICAL-CHEMICAL PRINCIPLES OF CARDONACEOUS MATERIALS SELECTION FOR ARSENOPYRITE
CONCENTRATE PROCESSING
Abstract
Extraction of gold from “Bakyrchik” deposit gold ore is complicated by the presence of elemental carbon in the form of schungite. The latter has a high absorptive capacity in respect to floatation reagent and cyanic gold complexes which require the research on carbonaceous materials selection from persistent gold-arsenic concentrate
Keywords: gold-arsenic concentrate, arsenopyrite concentrate
Schungite is determined as a “non-graphite” carbon and differs from graphite by the absence of crystallic structure, from bitumen and coals by the small number of contained volatile components. In Table 1 there are the results of physical-chemical properties of schungite fraction isolated from Bakyrchik ores according to the technology by Branch state establishment “Eastern scientific-research institution of non-ferrous metals” (VNIITzvetmet) [1].
Table 1 - Physical-chemical and absorptive properties of schungite fraction
Indices Schungite fraction
Poured/scattered/sprinkled density, g/cm3 0,650
Iode activity, % 72,4
Lightening ability by methylene blue, % 25,0
Schungite fraction capacity, mg/g on gold 14,2
Schungite fraction capacity, mg/g on silver 7,7
The results of schungite fraction absorptive properties, in particular the capacity in gold is 14,2 mg/g, in silver - 7,7 mg/g, show that for the effective application of traditional methods of gold lixiviation the preliminary stage of carbonaceous substances removal from the resistant gold-arsenic concentrate from Bakyrchik deposit is required.
One of the famous methods of absorptive carbonaceous substances activity reduction in the gold-contained ores is the method of absorptive activity passivation by the surface active substances. However this process depends on the converted carbonaceous substances degree, i.e. on their composition and structure. The application of the method of absorptive activity passivation to the schungite minerals group connected with the surface-active reagents did not give any positive results [2]. In this connection there were carried out experiments on the thermal processing influence on the schungite fraction removal from furnace charge of Bakyrchik gravity-floating-concentrates. The characteristic peculiarity of the nature gold-containing organic substances is their solution in the organic solvents, which contain nitrogen and arsenic compounds (functional groups), that is why 10% of tar solution was used for the carbonaceous substances removal.
The initial material after the Buechner funnel processing by 5-10% tar solution (the oil industry processing wastes) and 24-hour saturation was roasted in the muffle furnace under different temperatures and roasting length. The results are shown in fig. 1-3.
24
100 -I
90
80
70
60
50
40 -I---------1--------1---------1---------1---------1--------1---------1---------1
25 30 35 40 45 50 55 60 65
Duration, min.
1 - 7000С, is described by the equation y = x + 31,1, R2 = 0,9926; 2 - 6000С, has an equation y = 1,3057x + 9,3857, R2 = 0,9961 Fig. 1. Dependence of the degree of carbonaceous substances removal from Bakyrchik concentrate on the temperature and roasting length
100 -|
95 -
90 -
sO 6х 85
> О a s- 80 75 -
G О о 70 65
60
55
50
25
30 35 40 45 50 55 60 65
Duration, min 1
1 - 7000С, is described by the equation y = 0,9481x + 39,774, R2 = 0,976; 2 - 6000С, has an equation y = 1,0426x + 28,362, R2 = 0,9926 Fig. 2. Dependence of the degree of carbonaceous substances removal from Bakyrchik concentrate processed by 5% tar on the temperature
and roasting length
Duration, min
1 - 7000С, is equated y = 1,3319x + 20,859, R2 = 0,9065; 2 - 6000С, has an equation y = 1,3068x + 13,484, R2 = 0,8869; 3 - 5000С, has an equation y = 1,382x - 5,8649, R2 = 0,9999 Fig. 3. Dependence of the degree of carbonaceoussubstances removal on Bakyrchik concentrate processed by 10% tar on the temperature and roasting length
25
In Table 2 there are shown the meanings of activation energy of removal process of carbonaceous substances from furnace charge of gravity-floating-concentrate in proportion 1:1 based on the results, shown in fig. 1 -3.
Table 2 - Meanings of activation energy of removal process of carbonaceous substances
Initial material Activation energy meanings, kJ/molar
without tar processing processed by 5% tar solution processed by 10% tar solution
Furnace charge (gravity-floating-concentrate =1:1) 12,7 22,0 50,1
The carbonaceous substances removal process during Bakyrchik concentrates roasting under our testing conditions can be referred to
the reactions (1) of the type:
solid I + liquid ^ solid II + gas (1)
In our tests the induction period was observed with difficulties; after surface formation of phase section - porous iron oxides - diffusion did not influence the process of carbon removal that could be seen from the activation energy meanings (Table 2).
In Table 3 there are shown the results of carbonaceous substances removal from thermal-processed residue of Bakyrchik concentrates by hydrometallurgical methods.
Table 3 - Results of carbonaceous substances removal from (arsenic - 0,1%, gold - 24 g/t, iron - 12,88%, sulphur - 5,24%, carbon -
2,45%)
Testing conditions Oxidizer’s expense, in % on the furnace charge weight Carbon removal degree, %
Hydrochlorination:700C, 1 hour Cl2 1,9
Sulphur-oxidizing lixiviation: 900С, 1 hour 2% MnO2 7,2
Nitrate lixiviation: 900С, 1 hour 50% KNO3 0
Lixiviation with ammonium persulphate: 900С, 30 minutes 10% (NH4)2S2O8 13,8
From the analysis of Table 3 it is seen that liquid-phase carbonaceous substances selection from Bakyrchik concentrate does not give any positive results, that is why the choice is made in favor of pyrometallurgical methods of carbon removal.
Analysis of thermal and liquid-phase method of carbonaceous substances removal from resistant raw material shows that the most acceptable method is the thermal selection under the temperature lower than 7000C which is connected with porous material formation used in traditional methods of lixiviation of gold by cyanide, tiourea, tiosulphate and others. The research in carbonaceous substances removal from dearsenized thermal-processed residue from Bakyrchik concentrate was made by the roasting in the oxidized surroundings with Shubarkul carbon addition because the tar processing is complex for its technical support. In fig. 4-6 there are shown the results of the carbon removal from dearsenized thermal-processed residue by the oxidized roasting in the dependence on the temperature and the carbon amount taking into account the initial material weight.
5% carbon
Duration, min
1 - 6000С; 2 - 5000С; 3 - 4000С
Fig. 4. Dependence of the degree of carbonaceous substances removal on the roasting temperature at carbon expense 5% considering
the initial material weight
26
10% carbon
duration, min
1 - 6000С; 2 - 5000С; 3 - 4000С
Fig. 5. Dependence of the degree of carbonaceous substances removal on the roasting temperature at carbon expense 10% considering
the initial material weight
15 % carbon
1 - 6000С; 2 - 5000С; 3 - 4000С
Fig. 6. Dependence of the degree of carbonaceous substances removal on the roasting temperature at carbon expense 15% considering
the initial material weight
From fig. 4-6 it is seen that at 15% of Shubarkul carbon addition by the oxidizing roasting there is achieved 99,0% of carbon extraction at 6000C and 75 min. duration.
Consequently, these parameters of thermal schungite selection will serve as starting results in working out the technology of Bakyrchik concentrates agglomerated roasting aiming at absorptive-active carbonaceous substances removal.
References
1. Golikov A.A. An experience of resistant gold-containing ores. In the book: Collection of scientific articles of Eastern scientific-research institution of non-ferrous metals. Rational use of mineral resources in Republic of Kazakhstan and environment improvement. Ust-Kamenogorsk: 1996. P. 87-93.
2. Fridman I.D., Savari Ye.Ye., Dyomina N.N. Influence of carbonaceous substances contained in ores on the cyanization process // Non-ferrous metals. - 1979. - № 9. - P. 104-106.
Иванов А.Н.1, Носова М.Д.2
'Кандидат технических наук, доцент, 2 аспирант, Санкт-Петеребургский национальный исследовательский университет
информационных технологий, механики и оптики
ИСПОЛЬЗОВАНИЕ ТОЧЕК ИНВЕРСИИ ФАЗЫ ИНТЕРФЕРЕНЦИОННОЙ КАРТИНЫ ДЛЯ УВЕЛИЧЕНИЯ ТОЧНОСТИ И ЧУВСТВИТЕЛЬНОСТИ УГЛОВЫХ ИЗМЕРЕНИЙ
Аннотация
Для увеличения точности угловых измерений предлагается использовать точки инверсии фазы, содержащиеся в интерференционной картине. Проведенные исследования показали, что положение этих точек может быть определено с высокой точностью с помощью щелевой апертуры. Это дает возможность создать измерительные схемы, которые позволят проводить угловые измерения с погрешностью не больше 1 угл. сек. и в диапазоне порядка нескольких угловых градусов.
Ключевые слова: измерения, интерференция, фаза.
Ivanov A.N.1, Nosova M.D.2
^hD in technics, assosiate professor, 2postgraduate student, St. Petersburg National University of Informational Technologies,
Mechanics and Optics
USE OF THE PHASE INVERSION POINTS OF THE INTERFERENCE FRINGES FOR INCREASE OF ACCURACY AND
SENSITIVITY OF ANGULAR MEASUREMENTS
Abstract
It is offered to use the inversion points of interference pattern for increase of angular measurements accuracy. The investigations have shown that position of these points can be defined with high precision by means of split aperture. It permits to create measuring circuits which will allow making angular measurement with error no more than 1 second of arc in a range of order of several angular degrees. Keywords: measurement, interference, phase.
27