DOI 10.14526/2070-4798-2019-14-1-4-17 Описательный обзор: динамометр для измерения мышц туловища
Felder H.*, Bursch S., Rast T.
Olympic Training Center - Rheinland-Pfalz/Saarland (Germany) ORCID: 0000-0001-6770-9039, h.felder@olympiastuetzpunkt.org*
Обзорная статья
Аннотация: Эффект сокращения мышц приводит к динамическому движению вращательных или статически стабилизирующих контактных сил [1] в зависимости от архитектуры сустава, а также организации мышцев по отношению к осям движения. Из-за этого скелетные мышцы имеют элементарное значение в реализации всех физических движений.
Несмотря на значительную поддержку в повседневной жизни (поездка в машине), мышцы работают по-прежнему, они незаменимы во многих сферах сегодняшней жизни. Сила мышцы в том, что она может испытать стабильность, а также, изменения скорости. Однако подъем и переноска грузов также является частью профессиональной рутины многих мышц [2]. Мышечная сила также оказывает защитное действие на здоровье, так как возрастная потеря силы (саркопения) часто ассоциируется с уменьшением мышечного размера и функции [3, 4] - это может проявляться в снижении качества жизни [5, 6], снижении подвижности [2, 7] и повышенном риске падения у пострадавших пожилых людей [8].
В спорте ли, на работе или в укреплении здоровья - если улучшение ищется в одной из этих областей туловища - прочность и стабильность туловища имеют большое значение [9]. Текущий интерес проявляется в том, что туловище функционально является кинетическим звеном, способным передавать крутящийся момент между верхними и нижними конечностями [10]. В этом контексте здоровый и полностью функциональный позвоночник должен отвечать следующим требованиям: с одной стороны, должна быть высокая степень подвижности во всех сегментах и плоскостях движения позвоночника. С другой стороны, при динамических и статических нагрузках должна быть оптимальная и сбалансированная мышечная сила, и работоспособность мышц туловища и шеи [11]. В адекватном состоянии мышцы туловища соответственно способствуют правильному выполнению движений всего тела в рамках занятий спортом [12], профессиональной деятельностью, фитнесом и повседневной деятельностью [13].
Если же, с другой стороны, имеется мышечная недостаточность или дисбаланс в туловище, это может привести к проблемам в спортивной, профессиональной или повседневной деятельности пострадавших [14, 15] или к нарушениям здоровья [10, 16, 17].
Особое значение имеют проблемы со спиной и связанные с ними боли в спине. Уже в прежние годы Kraus et al. [18] пришел к выводу, что большинство болей в спине кроется в возникновении мышечной слабости мускулатуры туловища, что было подтверждено многими последующими исследованиями. Согласно Roy et al. [19] эта мышечная недостаточность вызывает более высокую нагрузку на пассивные тканевые структуры, что вызывает дегенеративные изменения, травмы и боли в спине. Для того, чтобы предотвратить боли в спине и серьезные травмы любого рода, а также лечить их целебно, необходима соответствующая силовая тренировка мышц спины. В дополнение к Паллок [20], многие другие исследования показали, что силовые тренировки для мышц туловища в течение длительного периода времени привели к увеличению изометрической максимальной прочности и дальнейшего снижения болевых симптомов.
В результате определена и количественная оценка силы туловища. Она позволяет получить представление о текущей производительности и здоровье человека [21], а также способность устанавливать, документировать и оценивать программы вмешательства [22]. Одной из возможностей опреде-
ления силы - как одной из основных характеристик двигателя - является измерение максимальной силы. Потому что"...максимальная сила — это размер, который описывает силовое свойство мышцы аналогично свойству показателей МПК, характеризующему выносливость" [2, p. 66]. Силовые динамометры, специально разработанные для этой цели, обычно пытаются определить генерируемые одно - и трехосные поясничные моменты мышц туловища и одновременно имитировать изометрические, изокинетические или другие мышечные действия [23].
Диагноз прочности туловища важен: поразителен тот факт, что до сих пор нет единого мнения в количественном определении оптимальных процедур и методов испытаний, которые будут использоваться [22].
В результате, в настоящее время существует множество различных диагностических аппаратов/ устройств. В связи с этим настоящая работа направлена на то, чтобы дать обзор современных диагностических устройств. Описание самих устройств можно найти в представленной литературе.
Для цитирования: Felder H.*, Bursch S., Rast T. Описательный обзор: динамометр для измерения мышц туловища. Педагогико-психологические и медико-биологические проблемы физической
культуры и спорта. 2019; 14(1): 4-17. DOI 10.14526/2070-4798-2019-14-1-4-17
requirements: On the one hand, there must be a
Introduction
The contraction effect of muscles results in either dynamically moving rotational or statically stabilizing contact forces [1], depending on the joint architecture involved as well as the organization of the muscle courses in relation to the movement axes. Because of this, skeletal muscles are of elementary importance in the realization of all physical movements.
Even though numerous machines are a considerable support in everyday life, muscle work is still indispensable in many areas of life today. Muscle power is the prerequisite that both one's own body and objects can experience stability as well as speed changes. However, lifting and carrying loads is also part of the professional routine of many employed persons [2]. Muscle strength also has a protective effect on health, since age-related strength loss (sarcopenia) is often associated with reduced muscle size and function [3, 4] - this can manifest itself in a diminished quality of life [5, 6], reduced mobility [2, 7], and an increased risk of falling in the affected older adults [8].
Whether in sport, at work or in health promotion - if an improvement is sought in one of these areas - trunk strength and stability are of great importance [9]. The current interest is evident insofar as the trunk is functionally a kinetic link that can transmit torque between the upper and lower extremities [10]. In this context, a healthy and fully functional spine must meet the following
high degree of mobility in all segments and planes of motion of the spine. On the other hand, under both dynamic and static loads, there must be optimal and balanced muscle strength and performance of the trunk and neck muscles [11]. In an adequate condition, the trunk muscles accordingly promote the proper execution of whole-body movements within the performance of sports [12], professional activities, fitness and everyday activities [13].
If, on the other hand, there is muscular insufficiency or imbalance in the trunk, this can lead to problems in the athletic, occupational or everyday performance of those affected [14, 15] or to health impairments [10, 16, 17].
Especially back problems and associated back pain are of particular importance. Already in earlier years Kraus et al. [18] has the conclusion that the majority of back pain lies in the origin of muscular weakness of the trunk musculature, which was confirmed by many subsequent studies. According to Roy et al. [19] this muscular insufficiency causes a higher load on the passive tissue structures, which causes degenerative changes, injuries and pain in the back. In order to prevent back pain and serious injuries of any kind as well as to treat them curatively, a corresponding strength training of the back muscles is indispensable. In addition to Pullock's [20], many other studies have shown that strength training of the trunk muscles over a longer period of time has led to an increase in isometric maximum strength and a further reduction in pain
symptoms.
As a result the determination and quantification of torso strength provides insight into the current performance and (back) health of an individual [21], as well as the ability to establish, document and evaluate intervention programs [22]. One possibility to determine force - as one of the basic motor characteristics - is the measurement of maximum force. Because "...the maximum force is a size which describes the force property of the muscle in a similar way to the VO2max which characterizes the endurance property" [2, p. 66]. Force dynamometers specially developed for this purpose usually try to determine the generated one-to three-axis lumbar moments of the trunk muscles and at the same time simulate the isometric, isokinetic or other muscle actions [23].
The diagnosis of trunk strength is important: astonishing is the fact that there is
Table 1 - Display of a
still no consensus in quantifying the optimal test procedures and methods to be used [22]. As a result, there are currently numerous different diagnostic apparatuses/devices. On the occasion of this diversity and lack of transparency, the present work with the following overview aims to give an overview of current diagnostic devices.
Methods
In the databases PubMed, BASE and LIVIVO a literature search was carried out with the following keywords: back OR lumbar OR trunk OR core AND strength AND analysis OR performance. All studies were considered that carried out an instrument-based trunk force measurement. Later in the process these dynamometers were integrated into an overview table. In addition, further dynamometers are listed which were found exclusively via the search engine Google.
Results
selection of devices.
Dynamometers
(pictorial sources: retrieved 6. November 2018)
BfMC CTT Pegasus
Parameters
http://www.bfmc.info/eng/index. php?cs=4-2
BfMC CTT Kolossos
Unit
Form of contraction Planes
Position Unit
Form of contraction Planes
http://www.bfmc.info/eng/index. Position php?cs=4-4
Nm
isometric
trunk extension/flexion trunk rotation trunk lateral flexion additional: ROM-Training
sitting Nm
isometric
trunk extension/flexion trunk rotation trunk lateral flexion
Sources
[1]
[2]
sitting
BfMC CTT Minotaur
http://www.bfmc.info/eng/index. php?cs=4-8
Biodex Sytem4 Pro
https://www.proxomed.com/de/ produkte/biodex_system_4_pro-60. html
CITEC hand-held dynamometer
http://citec.nu/frm/uk.htm
CSMi Cybex Norm Isokinetic Dynamometer
http://cdn.intechQpen.com/pdfs/36700/InTech-Muscular_performance_assessment_of_trunk_ extensQrs_a_critical_appraisal_Qf_the_Hteratш■e. pdf
Unit
Form of contraction Planes
Position
Unit
Form of contraction Planes
Position
Unit
Form of contraction
Planes
Position
Nm
isometric
cervical extension/ flexion
cervical lateral flexion trunk extension/flexion trunk rotation trunk lateral flexion
sitting
Nm concentric/
excentrically/isometric
trunk extension/flexion
modularly expandable:
ankle, knee, shoulder, elbow, wrist and hip
sitting
[3]
N
isometric arbitrary arbitrary
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16] [17]
Unit
Nm
[18]
Form of contraction
Planes
Position
dynamic
trunk extension/flexion standing
[19]
[20] [21]
[22] [23]
David
Unit
Form of contraction Planes
https://www.davidhealth.com/ solution/spine-solution/
DIERS myoline professional
Position
Unit
Form of contraction Plane
https://diers.eu/de/produkte/ muskelkraftmessung/diers-myoline/
DigiMax ISO-Check
Position
Unit
Form of contraction Planes
kg
dynamic
consisting of six devices:
cervical extension/ flexion
cervical rotation cervical lateral flexion trunk extension/flexion
trunk rotation
trunk lateral flexion sitting
N
isometric
cervical extension/ flexion
cervical lateral flexion trunk extension/flexion trunk rotation trunk lateral flexion
additional:
knee extension/flexion
hip adduktion/ abduktion
elbow extension/flexion
shoulder external rotation/internal rotation
sitting
kg
isometric
cervical extension/ flexion
cervical lateral flexion trunk extension/flexion trunk rotation trunk lateral flexion
[24]
[25]
[26]
[27]
[28]
[29]
http://www.digimax-systems.de/ index.php/de/produkte/iso-check
Position
additional:
knee extension/flexion
butterfly/butterfly reverse
sitting
s
DigiMax Iso-CheckMobil
Unit
Form of contraction Planes
http:/ /www.digimax-systems. de/index.php/de/produkte/iso-checkmobil
Dr. Wolff BackCheck 607
Position
Unit
Form of contraction Planes
https://www.dr-wolff.de/trainings- Position diagnostik.html#trainings-diagnostik
D&R IsoMed 2000 Back Modul
Unit
Form of contraction
Planes
Positon
http://www.isomed2000.de/ downloads/TDat_BM_Eng.pdf
Ergo-Fit Torso Check
Unit
Form of contraction Planes
Position
kN
isometric
trunk extension/flexion trunk rotation trunk lateral flexion additional:
knee extension/flexion
pressure and traction of upper extremities
sitting
kg
isometric
cervical extension/ flexion
cervical lateral flexion trunk extension/flexion trunk lateral flexion additional:
pressure and traction of upper extremities
standing
Nm concentric/
excentrically/isometric trunk extension/flexion additional:
modularly expandable sitting
[30]
Nm
isometric
trunk extension/flexion trunk rotation trunk lateral flexion sitting
[31]
[32]
[33]
[34]
[35]
https://www.ergo-fit.de/ergo-fit/ produkte/torso-line/torso-check/
Hoggan MicroFET®2 Unit
Form of contraction
Planes
Position
Unit
Form of contraction Planes
Position
https://hogganscientific.com/product/microfet2-muscle-tester-digital-handheld-dynamometer/
HubEX LEX
https://www.komachine.com/en/company/dae-yang-mechanics-hubex/detail/
Isostation B-200
Unit
Form of contraction Planes
http://cdn.intechopen.com/pdfs/36700/InTech- Position
Muscular_performance_assessment_of_trunk_ extensors_a_critical_appraisal_of_the_literature. pdf
JTECH Medical Commander Echo MMT
Unit
Form of contraction
Planes
Position
https://www.jtechmedical.com/shop-now/ Commander-Echo-Muscle-Testing-Starter-Kit-p89053317
Lafayette Instrument Modell01165
Unit
lbs/N/kgf isometric dynamic arbitrary
MicroFET 3 additionally measures the range of motion (inclinometer)
arbitrary
/ /
lumbar extension/ flexion
supine
/
dynamic isometric
trunk extension/flexion
additional:
isoinertial felxion-repetition test
standing
kg
isometric arbitrary arbitrary
lbs/N/kg
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
1G
Form of contraction
Planes
Position
isometric arbitrary arbitrary
[53]
http://lafayetteevaluation.com/products/ lafayette-hand-held-dynamometer
MedX lumbar extensor
Unit
Form of contraction
Planes Position
lb
dynamic
isometric (at seven angels of trunk flexion)
lumbar extension/ flexion
sitting
https://www.medxonline.de/trainingsgerate/ erhaltliche-stationen/le-lumbar-extension/
Physiomed Con-trex TP 500
Unit
Form of contraction
Planes Position
Nm
concentric/
excentrically/isometric trunk extension/flexion standing
https://www.physiomed.de/ produkte/con-trex-tp-500/
[54]
[55]
[56]
[57]
[58]
[59]
[60]
Proxomed Tergumed 710
Unit
Nm
[61]
Form of contraction
isometric (strength diagnostic)
dynamic
(feedbacktraining)
Planes
consisting of five devices:
cervical extension/ flexion
cervical rotation
cervical lateral flexion
http://www.soreha.net/Home/ nav/134/id/62.html
trunk extension/flexion
trunk rotation
trunk lateral flexion
Position
sitting
Schnell 4back-Paket Professional
https://stolzenberg.org/site/de/ product.php?id=107
Takei T.K.K.5402 BACK D
Unit
Form of contraction
Planes
https://www.schnell-online.de/de/produkte- Position detail/i3-4back-professional/453-4back-paket-professional/?prevId=97
Stolzenberg Dynamed IsoCheck
Unit
Form of contraction Planes
Position
Unit
Form of contraction
Planes
Position
http://www.takei-si.co.jp/en/ productinfo/detail/50.html
References
1. H.-J. Appell und C. Stang-Voss, Funktionelle Anatomie. Grundlagen sportlicher Leistung und Bewegung, Heidelberg: Springer. 2008.
2. J. Tomasits und P. Haber, Leistungsphysiologie. Lehrbuch für Sport- und Physiotherapeuten und Trainer, Heidelberg:
Nm
isometric (strength diagnostic)
dynamic
(feedbacktraining)
consisting of four devices:
trunk extension/flexion trunk rotaion trunk lateral flexion sitting
kg
isometric
trunk extension/flexion trunk rotation trunk lateral flexion additional:
knee extension/flexion elbow extension/flexion
hip adduktion/ abduktion
shoulder external rotation/internal rotation
sitting
kgf (kilogram-force)
isometric
sagittal
standing
[62]
[63]
[64]
[65]
[66]
[67]
Springer, 2016.
3. B. H. Goodpaster, S. W. Park, T. B. Harris, S. B. Kritchevsky, M. Nevitt, A. V. Schwartz, E. M. Simonsick, Tylavsky, F. A, M. Visser und A. B. Newman, „he loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study," J Gerontol A Biol Sci Med Sci, Bd. 61, Nr. 10, pp. 1059-1064, 2006.
4. E. J. Metter, R. Conwit, J. Tobin und J. L. Fozard, „Age-associated loss of power and strength in the upper extremities in women and men," J Gerontol A Biol Sci Med Sci, Bd. 52, Nr. 5, pp. B267-B276, 1997.
5. S. Imagama, Y. Matsuyama, Y. Hasegawa, Y. Sakai, Z. Ito, N. Ishiguro und N. Hamajima, „Back muscle strength and spinal mobility are predictors of quality of life in middle-aged and elderly males," Eur Spine J, Bd. 20, Nr. 6, pp. 954-961, 2011.
6. G. Heathcote, „Autonomy, health and ageing: transnational perspectives.," Health Educ Res, Bd. 15, Nr. 1, pp. 13-24, 2000.
7. B. Shahtahmassebi, J. J. Hebert, M. D. Hecimovich und T. J. Fairchild, „Associations between trunk muscle morphology, strength and function in older adults," Sci Rep, Bd. 7, Nr. 1, 2017.
8. Y. Kasukawa, N. Miyakoshi, M. Hongo, Y. Ishikawa, H. Noguchi, K. Kamo, H. Sasaki, K. Murata und Y. Shimada, „Relationships between falls, spinal curvature, spinal mobility and back extensor strength in elderly people.," J Bone Miner Metab, Bd. 28, Nr. 1, pp. 82-87, 2010.
9. V. Akuthota, A. Ferreiro, T. Moore und M. Fredericson, „Core stability exercise principles," Curr Sports Med Rep, Bd. 7, Nr. 1, pp. 39-44, 2008.
10. U. Granacher, A. Gollhofer, T. Hortobágyi, R. W. Kressig und T. Muehlbauer, „The Importance of Trunk Muscle Strength for Balance,," Sports Med, Bd. 43, Nr. 7, pp. 627-641, 2013.
11. A. Parviainen, I. Denner und A. Denner, A complete handbook for DAVID BACK CLINIC. Part two: treatment Program, Vantaa/Finnland: Handbuch der Fa. DAVID Fitness & Medical LTD, 1992.
12. L. Torres-Ronda, L. Sánchez-Medina und J. J. González-Badillo, „Muscle Strength And Golf Performance: A Critical Review," J Sports Sci Med, Bd. 10, Nr. 1, pp. 9-18, 2011.
13. D. G. Behm, E. J. Drinkwater, J. M. Willardson und P. M. Cowley, „The use of instability to train the core musculature," Appl Physiol Nutr Metab, Bd. 35, Nr. 1, pp. 91-108, 2010.
14. D. Barbado, A. Lopez-Valenciano, C. Juan-Recio, C. Montero-Carretero, J. H. van Dieen und F. J. Vera-Garcia, „Trunk Stability, Trunk Strength and Sport Performance Level in Judo,"
PLoS One, Bd. 11, Nr. 5, 2016.
15. W. B. Kibler, J. Press und A. Sciascia, „The role of core stability in athletic function," Sports Med, Bd. 36, Nr. 3, pp. 189-198, 2006.
16. K. H. Cho, J. W. Beom, T. S. Lee, J. H. Lim, T. H. Lee und J. H. Yuk, „Trunk muscles strength as a risk factor for nonspecific low back pain: a pilot study," Ann Rehabil Med, Bd. 38, Nr. 2, pp. 234-240, 2014.
17. M. R. Nourbakhsh und A. M. Arab, „Relationship between mechanical factors and incidence of low back pain.," J Orthop Sports Phys Ther, Bd. 32, Nr. 9, pp. 447-460, 2002.
18. H. Kraus, A. Melleby und S. R. Gaston, „Back pain correction and prevention. National vuluntary organizational approach.," N Y State J Med, Bd. 77, Nr. 8, pp. 1335-1338, 1977.
19. S. H. Roy, C. J. De Luca und D. A. Casavant, „Lumbar muscle fatigue and chronic lower back pain," Spine, Bd. 14, Nr. 9, pp. 992-1001, 1989.
20. M. L. Pollock, „Training responses utulizing MedX rehabilitative equipment," in SPINAL REHABILITATION UPDATE 91, Daytona Beach/USA, 1991.
21. A. Kocjan und N. Sarabon, „Assessment of Isometric Trunk Strength - The Relevance of Body Position and," J Sports Sci Med, Bd. 13, Nr. 2,
pp. 365-370, 2014.
22. C. Demoulin, S. Grosdent, R. Smeets, J. Verbunt, B. Jidovtseff, G. Mahieu, J.-M. Crielaard und M. Vanderthommen, „Muscular Performance Assessment of Trunk Extensors: A Critical Appraisal of the Literature," in Low Back Pain 2, InTech, 2012, pp. 141-165.
23. M. R. Azghani, F. Farahmand, A. Meghdari, G. Vossoughi und M. Parnianpour, „Design and evaluation of a novel triaxial isometric trunk muscle strength measurement system," Proc Inst Mech Eng H, Bd. 223, Nr. 6, pp. 755-766, 2009.
24. BFMC, „CTT Pegasus," [Online]. Available: http://www.bfmc.info/eng/index. php?cs=4-2. [Zugriff am 6 November 2018].
25. BFMC, „CTT Kolossos," [Online]. Available: http://www.bfmc.info/eng/index. php?cs=4-4. [Zugriff am 6 November 2018].
26. BFMC, „CTT Minotaur," [Online].
Available: http://www.bfmc.info/eng/index.
php?cs=4-8. [Zugriff am 6 November 2018].
27. Proxomed, „Biodex Systen 4 Pro," [Online]. Available: https://www.proxomed.com/ de/produkte/biodex_system_4_pro-6o.html. [Zugriff am 6 November 2018].
28. Biodex, „System 4 Pro," [Online]. Available: http://www.biodex.com/physical-medicine/products/dynamometers/system-4-pro. [Zugriff am 6 November 2018].
29. M. P. García-Vaquero, D. J.-R. C. Barbado, A. López-Valenciano und F. J. VeraGarcia, „sokinetic trunk flexion-extension protocol to assess trunk muscle strength and endurance: Reliability, learning effect, and sex differences," Journal of Sport and Health Science, pp. 1-10, 2016.
30. K. Barczyk-Pawelec, J. R. Piechura, W. Dziubek und K. Rozek, „Evaluation of Isokinetic Trunk Muscle Strength in Adolescents With Normal and Abnormal Postures," Journal of Manipulative and Physiological Therapeutics, Bd. 38, Nr. 7, pp. 484-492, 2015.
31. K. H. Cho, J. W. Beom, T. S. Lee, J. H. Lim, T. H. Lee und J. H. Yuk, „Trunk Muscles Strength as a Risk Factor for Nonspecific Low Back Pain: A Pilot Study," Annals of Rehabilitation Medicine, Bd. 38, Nr. 2, pp. 234-240, 2014.
32. R. J. Triolo, S. N. Bailey, M. E. Miller, L. M. Lombardo und M. L. Audu, „Effects of Stimulating Hip and Trunk Muscles on Seated Stability, Posture and Reach after Spinal Cord Injury," Archives of Physical Medicine and Rehabilitation, Bd. 94, Nr. 9, pp. 1766-1775, 2013.
33. D. Barbado, A. Lopez-Valenciano, C. Juan-Recio, C. Montero-Carretero, J. H. van Dieen und F. J. Vera-Garcia, „Trunk Stability, Trunk Strength and Sport Performance Level in Judo," PLoS ONE, Bd. 11, Nr. 5, 2016.
34. L. F. Quintino, J. Franco, A. F. M. Gusmao, P. F. D. S. Silva und C. D. C. D. M. Faria, „Trunk flexor and extensor muscle performance in chronic stroke patients: a case-control study," Brazilian Journal of Physical Therapy, Bd. 22, Nr. 3, pp. 231-237, 2018.
35. CITEC, „about CITEC," [Online]. Available: http://citec.nu/frm/uk.htm. [Zugriff am 6 November 2018].
36. I. F. Koblauer, Y. Lambrecht, M. L. van der Hulst, C. Neeter, R. H. Engelbert, R. W. Poolman und V. A. Scholtes, „Reliability of maximal isometric knee strength testing with modified handheld dynamometry in patients awaiting total knee arthroplasty: useful in research and individual patient settings? A reliability study," BMC Musculoskelet Disord, 2011.
37. K. J. Rose, J. Burns, M. M. Ryan, R. A. Ouvrier und K. N. North, „Reliability of quantifying foot and ankle muscle strength in very young children," Muscle Nerve, Bd. 37, Nr. 5, pp. 626-631, 2008.
38. T. Takken, E. Elst, N. Spermon, P. J. Helders, A. B. Prakken und J. van der Net, „The physiological and physical determinants of functional ability measures in children with juvenile dermatomyositis," Rheumatology (Oxford), Bd. 42, Nr. 4, pp. 591-595, 2003.
39. L. Merlini, A. Cicognani, E. Malaspina, M. Gennari, S. Gnudi, B. Talim und E. Franzoni, „Early prednisone treatment in Duchenne muscular dystrophy," Muscle Nerve, Bd. 27, Nr. 2, pp. 222227, 2003.
40. L. Merlini, E. S. Mazzone, A. Solari und L. Morandi, „Reliability of hand-held dynamometry in spinal muscular atrophy," Muscle Nerve, Bd. 26, Nr. 1, pp. 64-70, 2002.
41. CSMi, „HUMAC NORM," [Online]. Available: http://www.csmisolutions.com/ products/isokinetic-extremity-systems/humac-norm. [Zugriff am 6 November 2018].
42. isokinetics, „Humac Norm," [Online]. Available: http://www.isokinetic.info. [Zugriff am 6 November 2018].
43. B. B. L. Van Damme, V. K. Stevens, D. E. Van Tiggelen, N. N. P. Duvigneaud, E. Neyens und L. A. Danneels, „Velocity of isokinetic trunk exercises influences back muscle recruitment patterns in healthy subjects," Journal of Electromyography and Kinesiology, Bd. 23, Nr. 2, pp. 378-386, 2013.
44. J.-C. Bernard, S. Boudokhane, A. Pujol, E. Chaleat-Valayer, G. Le Blay und J. Deceuninck, „Isokinetic trunk muscle performance in pre-teens and teens with and without back pain," Annals of Physical and Rehabilitation Medicine, Bd. 57, Nr. 1,
pp. 38-54, 2014.
45. G. Corin, P. H. Strutton und A. H. McGregor, „Establishment of a protocol to test fatigue of the trunk muscles," Br J Sports Med, Bd. 39, Nr. 10, pp. 731-735, 2005.
46. E. T. Kent, „Case studies: Use of Cybex trunk extension flexion unit in the rehabilittion of back patients," JOSPT, pp. 578-581, 1987.
47. DAVID, „David Spine Solution," [Online]. Available: https://www.davidhealth.com/ solution/spine-solution/. [Zugriff am 6 November 2018].
48. T. Kienbacher, B. Paul, R. Habenicht, C. Starek, M. Wolf, J. Kollmitzer und G. Ebenbichler, „Reliability of isometric trunk moment measurements in healthy persons over 50 years of age," J Rehabil Med, Bd. 46, Nr. 3, pp. 241-249, 2014.
49. T. Kienbacher, J. Kollmitzer, P. Anders, R. Habenicht, C. Starek, M. Wolf, B. Paul, P. Mair und G. Ebenbichler, „Age-related test-retest reliability of isometric trunk torque measurements in patiens with chronic low back pain," J Rehabil Med, Bd. 48, Nr. 10, pp. 893-902, 2016.
50. DIERS, „DIERS myoline," [Online]. Available: https://diers.eu/de/produkte/ muskelkraftmessung/diers-myoline/. [Zugriff am 6 November 2018].
51. G. Schröder, G. Kundt, M. Otte, D. Wendig und H.-C. Schober, „Impact of pregnancy on back pain and body posture in women," J Phys Ther Sci, Bd. 28, Nr. 4, pp. 1199-1207, 2016.
52. GigiMax, „ISO-Check," [Online]. Available: http://www.digimax-systems.de/ index.php/de/produkte/iso-check. [Zugriff am 6 November 2018].
53. DigiMax, „Iso-CheckMobil," [Online]. Available: http://www.digimax-systems.de/index. php/de/produkte/iso-checkmobil. [Zugriff am 6 November 2018].
54. Dr. Wolff, „Trainingsdiagnostik," [Online]. Available: https://www.dr-wolff.de/ trainings-diagnostik.html#trainings-diagnostik. [Zugriff am 6 November 2018].
55. D&R, „IsoMed 2000," [Online]. Available: http://www.isomed2000.de/prod. im.intro.php?lc=en_cn. [Zugriff am 6 November 2018].
56. R. Roth, L. Donath, E. Kurz, L. Zahner und O. Faude, „Absolute and relative reliability of isokinetic and isometric trunk strength testing using the IsoMed-2000 dynamometer," Phys Ther Sport, Bd. 24, pp. 26-31, 2017.
57. D.-H. Seo und G. D. Park, „Effect of Togu-exercise on Lumbar Back Strength of Women with Chronic Low Back Pain," J Phys Ther Sci, Bd. 26, Nr. 5, pp. 637-639, 2014.
58. ERGO-FIT, „Torso Check," [Online]. Available: https://www.ergo-fit.de/ergo-fit/ produkte/torso-line/torso-check/. [Zugriff am 6 November 2018].
59. HOGGAN, „microFET2," [Online]. Available: https://hogganscientific.com/product/ microfet2-muscle-tester-digital-handheld-dynamometer/. [Zugriff am 6 November 2018].
60. B. L. Newman, C. L. Pollock und M. A. Hunt, „Reliability of measurement of maximal isometric lateral trunk-flexion strength in athletes using handheld dynamometry," J Sport Rehabil, Bd. 21, Nr. 4, pp. 1-5, 2012.
61. P. Baschung Pfister, E. D. de Bruin, I. Sterkele, B. Maurer, R. A. de Bie und R. H. Knols, „Manual muscle testing andhand-held dynamometry in people with inflammatory myopathy: An intra-and interrater reliability and validity study," PLoS One, Bd. 13, Nr. 3, pp. 1-22, 2018.
62. B. F. Mentiplay, L. G. Perraton, K. J. Bower, B. Adair, Y. H. Pua, G. P. Williams, R. McGaw und R. A. Clark, „Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study," PLoS One, Bd. 10, Nr. 10, pp. 1-18, 2015.
63. R. K. Douma, R. Soer, W. P. Krijnen, M. Reneman und C. P. van der Schans, „Reference values for isometric muscle force among workers for the Netherlands: a comparison of reference values," BMC Sports Sci Med Rehabil, Bd. 6, Nr. 1, pp. 1-10, 2014.
64. H. Keep, L. Luu, A. Berson und S. J. Garland, „Validity of the Handheld Dynamometer Compared with an Isokinetic Dynamometer in Measuring Peak Hip Extension Strength," Physiother Can, Bd. 68, Nr. 1, pp. 15-22, 2016.
65. DAE YANG MECHANICS, HUBEX, „Lumbar Extension Flexion Exercise (LEX),"
[Online]. Available: https://www.komachine.com/ en/company/dae-yang-mechanics-hubex/detail/. [Zugriff am 6 November 2018].
66. H.-S. Lee, „Enhanced muscle activity during lumbar extension exercise with pelvic stabilization," Journal of Exercise Rehabilitation, Bd. 11, Nr. 6, pp. 372-377, 2015.
67. C. Demoulin, S. Grosdent, J.-M. Crielaard, B. Jidovtseff, R. J. Smeets, J. A. Verbunt und M. Vanderthommen, „Muscular Performance Assessment of Trunk: A Critical Appraisal of the Literature," InTech, pp. 141-166.
68. J. K. Ng, M. Parnianpour, C. A. Richardson und V. Kippers, „Functional roles of abdominal and back muscles during isometric axial rotation of the trunk," J Orthop Res, Bd. 19, Nr. 3, pp. 463-471, 2001.
69. J. K. Ng, C. A. Richardson, M. Parnianpour und V. Kippers, „EMG activity of trunk muscles and torque output during isometric axial rotation exertion: a comparison between back pain patients and matched controls," J Orthop Res, Bd. 20, Nr. 1, pp. 112-121, 2002.
70. H.-J. Kim, S. Chung, S. Kim, H. Shin, J. Lee, S. Kim und M.-Y. Song, „Influences of trunk muscles on lumbar lordosis and sacral angle," European Spine Journal, Bd. 15, Nr. 4, pp. 409-414, 2006.
71. JTECH.Medical, „Commander Echo Muscle Testing Starter Kit," [Online]. Available: https://www.jtechmedical.com/shop-now/ Commander-Echo-Muscle-Testing-Starter-Kit-p89053317. [Zugriff am 6 November 2018].
72. C. L. Lanning, T. L. Uhl, C. L. Ingram, C. G. Mattacola, T. English und S. Newsom, „Baseline values of trunk endurance and hip strength in collegiate athletes," J Athl Train, Bd. 41, Nr. 4, pp.
427-434, 2006.
73. C. Kubas, Y. W. Chen, S. Echeverri, S. L. McCann, M. J. Denhoed, C. J. Walker, C. N. Kennedy und W. D. Reid, „Reliability and Validity of Cervical Range of Motion and Muscle Strength Testing," J Strength Cond Res, Bd. 31, Nr. 4, pp. 1087-1096, 2017.
74. K. L. Beyerman, M. B. Palmerino, L. E. Zohn, G. M. Kane und K. A. Foster, „Efficacy of treating low back pain and dysfunction secondary
to osteoarthritis: chiropractic care compared with moist heat alone," J Manipulative Physiol Ther, Bd. 29, Nr. 2, pp. 107-114, 2006.
75. Lafayette Instrument Evaluation, „Lafayette Hand-Held Dynamometer," [Online]. Available: http://lafayetteevaluation.com/ products/lafayette-hand-held-dynamometer. [Zugriff am 6 November 2018].
76. B. F. Mentiplay, L. G. Perraton, K. J. Bower, B. Adair, Y. H. Pua, G. P. Williams, R. McGaw und R. A. Clark, „Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study," PLoS One, Bd. 10, Nr. 10, pp. 1-18, 2015.
77. MedX, „MedX Equiptment. Lumbar Extension (LE)," [Online]. Available: https:// www.medxonline.de/trainingsgerate/erhaltliche-stationen/le-lumbar-extension/. [Zugriff am 6 November 2018].
78. J. Park und J. C. Lee, „Effects of complex rehabilitation training on low back strength in chronic low back pain," Journal of Physical Therapy Science, Bd. 28, Nr. 11, pp. 3099-3104, 2016.
79. H. J. Moon, K. H. Choi, D. H. Kim,
H. Kim, Y. K. Cho, K. H. Lee, J. H. Kim und Y. J. Choi, „Effect of Lumbar Stabilization and Dynamic Lumbar Strengthening Exercises in Patients With Chronic Low Back Pain," Annals of Rehabilitation Medicine, Bd. 37, Nr. 1, pp. 110-117, 2013.
80. P. L. DeMichele, M. L. Pollock, J. E. Graves, D. N. Foster, D. Carpenter, L. Garzarella, W. Brechue und M. Fulton, „Isometric torso rotation strength: effect of training frequency on its development," Arch Phys Med Rehabil, Bd. 78, Nr.
I, pp. 64-69, 1997.
81. PHYSIOMED, „CON-TREX TP 500," [Online]. Available: https://www.physiomed. de/produkte/con-trex-tp-500/. [Zugriff am 6 November 2018].
82. J. Müller, S. Müller, J. Stoll, K. Fröhlich, H. Baur und F. Mayer, „Reproducibility of maximum isokinetic trunk strength testing in healthy adolescent athletes," Sports Orthopaedics and Traumatology, Bd. 30, Nr. 3, pp. 229-237, 2014.
83. X. Ma, W. Sun, A. Lu, P. Ma und C. Jiang, „The improvement of suspension training for trunk muscle power in Sanda athletes," J Exerc Sci Fit, Bd.
15, Nr. 2, pp. 81-88, 2017.
84. proxomed, „tergumed 710," [Online]. Available: https://www.proxomed.com/de/
produktlinie/tergumed_710__inklusive_
diagnostik-42.html. [Zugriff am 6 November 2018].
85. SCHNELL, „4back-Paket PROFESSIONAL," [Online]. Available: https://www.schnell-online.de/de/produkte-detail/13-4back-professional/453-4back-paket-professional/?prevId=97. [Zugriff am 6 November 2018].
86. Stolzenberg, „Dynamed Iso-Check," [Online]. Available: https://stolzenberg.org/site/ de/product.php?id=107. [Zugriff am 6 November 2018].
87. takei-si, „T.K.K.5402 Back D," [Online]. Available: http://www.takei-si.co.jp/ en/productinfo/detail/50.html. [Zugriff am 6 November 2018].
Статья поступила в редакцию: 05.02.2019
88. S. Imagama, Y. Matsuyama, Y. Hasegawa, Y. Sakai, Z. Ito, N. Ishiguro und N. Hamajima, „Back muscle strength and spinal mobility are predictors of quality of life in middle-aged and elderly males," European Spine Journal, Bd. 20, Nr. 6, pp. 954-961, 2011.
89. K. Hirano, S. Imagama, Y. Hasegawa, N. Wakao, A. Muramoto und N. Ishiguro, „Impact of back muscle strength and aging on locomotive syndrome in community living japanese women," Nagoya Journal of Medical Science, Bd. 75, Nr. 1-2, pp. 47-55, 2013.
90. S. Imagama, Y. Hasegawa, N. Wakao, K. Hirano, A. Muramoto und N. Ishiguro, „Impact of spinal alignment and back muscle strength on shoulder range of motion in middle-aged and elderly people in a prospective cohort study," Eur Spine J, Bd. 23, Nr. 7, pp. 1414-1419, 2014.
Felder H.* - Olympic Training Center - Rheinland-Pfalz/Saarland (Germany) Bursch S. - Olympic Training Center - Rheinland-Pfalz/Saarland (Germany) Rast T. - Olympic Training Center - Rheinland-Pfalz/Saarland (Germany)