Научная статья на тему 'On the weak solutions of the equation related to the Diamond operator'

On the weak solutions of the equation related to the Diamond operator Текст научной статьи по специальности «Математика»

CC BY
92
34
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук

Аннотация научной статьи по математике, автор научной работы — Kananthai A., Suantai S., Longani V.

The author would like to thank the Thailand Research Fund for financial support.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «On the weak solutions of the equation related to the Diamond operator»

Вычислительные технологии

Том 5, № 5, 2000

ON THE WEAK SOLUTIONS OF THE EQUATION RELATED TO THE DIAMOND OPERATOR *

A. KANANTHAI, S. SUANTAI, V. LÜNGANI Chiangmai University, Department of Mathematics, Thailand e-mail: malamnka@science.cmu.ac.th

Рассматривается функция Грина оператора ®k, определенного следующим обра-

зом:

®k =

p+q ö

A", dx2

\3=P+1 J

4-1

где р + ц = п — размерность пространства Сп векторов х = (Х\,Х2, ..., хп) с п комплексными компонентами х^, к — целое неотрицательное число. Выполнено исследование функции Грина, которая затем применяется для построения слабого решения уравнения К(х), такого что

фк К (х) = / (х),

где / — обобщенная функция.

1. Introduction

The operator ©fc can be factorized in the following form

ek

p д2 \ 2 i p+q d2 4 2

S dx2 J — dx2

j=i

V — + г V —

dx2 dx2

. i=1 ' j=p+1 J.

v —-i p+q —

dx2 dx2

. i=1 ' j=P+1 J.

(1.1)

where i = y/—1 and p + q

n.

P d 2 V / P+q d 2

The operator | ^^ -hj j — у =+ -x^ ) has first been

i=1

introduced by A. Kananthai [4] and is named the Diamond operator which is denoted by

Let us denote the operators

Lk

v —Y- f V —

к — Vj=P+I dj

v—+i p+q —

dx2 dx2

,i= 1 ' j=p+1 J.

(1.2)

(1.3)

*The authors are responsible for possible misprints and the quality of translation. © A. Kananthai, S. Suantai, V. Longani, 2000.

к

4

к

к

к

к

2

к

and

Lk

p+q

.... ^ dxf

i=1 ' j=p+1 J_

P

dx2

E--1

(1.4)

Thus the operator ©k, iterated k-times defined by (1.1) can be written in the form

©k = ♦ Lk L2. (1.5)

In this work, we obtain the Green function of the operator ©k, i.e. ©kG(x) = 6 where 6 is the Dirac-delta distribution and G(x) is the Green function and x £ Rn. Moreover, we find the weak solution of the equation

©k K(x) = f (x)

(1.6)

where f is a given generalized function and K(x) is an unknown and x £ Rn

k

2. Preliminary

Definition 2.1. Let x = (x1, x2,..., xn) £ Rn Let us denote by

P P+q

u = E x2 "E x2 (2.1)

i=1 j=P+1

the nondegenerated quadratic form, whereas p + q = n is the dimension of Rn. Let r+ = {x £ Rn : x1 > 0 and u > 0} and r+ denotes its closure. For any complex number a, we define the function

(a —n)

u 2

RH(u) = ^ Kn(0) for x £ Г+, (2.2)

0 for x £ r+, where the constant Kn(a) is given by the formula

• K^nl ) ™

r ^ 2 + a - P^ r /P - a

The function RH is called The Ultra-Hyperbolic Kernel of Marcel Riesz and was introduced by Y. Nozaki (see [3], p. 72).

It is well known that RH is an ordinary function if Re (a) > n and is a distribution of a if Re (a) < n. Let us supp RH (u) denote the support of RH (u). Assume RH (u) C r+. Definition 2.2. Let x = (x1,x2, ..., xn) be a point of the Euclidean space Rn and

n

v = £ x2. (2.3)

i= 1

Define the function

a — n

V 2

K(v) = -^T-:, (2.4)

where a is any complex number and the constant Hn(a) is given by the formula

n 12*V( a

Hn(a) = —,-^f. (2.5)

r / n - a

Now the function R' (v) is called the Elliptic Kernel of Marcel Riesz. Definition 2.3. Let x — (x1,x2, ..., xn) be a point of the Cn and let

W — xx + + ••• + xp i(xp+i + x^+2 + + xp+q), (2-6)

where i — \J—\ and p + q — n is the dimension of Rn. Define the function

a — n

W 2

Sa(w) = WT^ ' (2-7

Hn(a)

where a is any complex number and Hn(a) is defined as the formula (2.5). Definition 2.4. Define the function

a — n

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

z 2

Ta (z) — -—-, (2.8)

Hn(a)

where

z — xi + x 2 + ... + xp + i(xp+1 + xp+2 + '" + xp+q) (2*9)

and i — \J —1, p + q — n and Hn(a) is defined as (2.5).

Lemma 2.1. The convolution RHk (u)*(—1)k R'k (v) is an elementary solution of the operator remove off ♦ where ♦ is defined by (1.2) and RHk (u) and R'k(v) are defined by (2.2) and (2.4) respectively with a — 2k.

Proof. The elementary solution of ♦ is the solution of the equation ♦ K(x) — 5 where 5 is the Dirac-delta distribution, K(x) is an unknown and x £ Rn. Now we need to prove that

K(x) — RHk(u) * (—l)kR2k(v).

To prove this , see ([4], p. 33).

Lemma 2.2. (i) The function K(x) — S2(w) is the solution of the equation L1K(x) — 0 where L1 is defined by (1.3) and S2(w) is defined by (2.7) with a — 2.

(ii) The function K(x) — (—1)k(—i) 2 S2k(w) is an elementary solution of the operator L'k, where L'k is the operator iterated k times defined by (1.3) and S2k (w) is defined by (2.7) with a — 2k.

p d2 p+q d2 proof. « Now L1 — £ ^ + i £ ^.

i=1 i j=p+1 j We need to show that L1S2(w) — 0. Now if a is real, we have for 1 < r < p

r\ r\ / a — n\, .. a — n —2 a — n —2

d d w 2 \ (a — n) w 2 w 2

-Sa(w) — -7— u f s —-~--u , s 2xr — (a — n)xr

dxr dxr \ Hn(a) I 2 Hn(a) Hn(a)

r\2 a — n— 2

d2 ^ , s , ,w 2 a — n, a—n—4 2

Sa(w) = (a — n) ^ (a — n — 2)w 2 X2

dx2 H„(a) H„(a) r'

Thus

2

p n2 p V"^ d2 a — n a —n —2 a — n a — n — 4

Sa(w) = Pu f \w 2 + U ( M — n — 2)w 2 .

dx2 Hn(a) Hn(a)

Similarly

p+q o2 / n p+q

d2 q(a — n) a—n—2 a — n a—n—4 2

i / tttSa(w) = TT . , w 2 — 7 (a — n — 2)w 2 > x,-.

^ dx2 ^ Hn(a) Hn(a)v 7 ^ j

j=p+i j nV 7 nV 7 j=p+i

Thus

(p + q), \ a—n—2 (a — n)(a — n — 2) a—n—4 /^ 2 . 2

Lisa(w) = Hn(ay<a—n)w 2 +——nw—w 2 ^x2 — !5>22

\i=1 j=p+1

(\ / \ / \ a — n — 2

a — n) a—n—2 (a — n)(a — n — 2) a—n—2 , ,, , ,w 2 /„.„n

= H ( / w^ + --ht^-^^ = (a — 2)(a — n) —-—. (2.10)

Hn(a) —n(a) —n(a)

For a = 2, we have L1S2 = 0. That is K(x) = S2(w) is a solution of the homogeneous equation L1K(x) = 0.

(n) To show that K(x) = (—1)k(—7) 2 S2k(w) is an elelmentary solution of Lk, that is Li(—1)k(—i)2S2k(w) = 5. At first we need to show that Lk(—1)kSa(w) = Sa-2k(w) and S-2fc (w) = (—1)k (i) 2 Ll5.

Now, from (2.10) and (2.5)

a—n—2 , v , v a—n—2

w 2 (a — 2)(a — n)w 2

L1Sa(w) = (a — 2)(a — n)- —

Hn(a) » 2ar(f)

' ' 1 \ / n — a \

2

By direct calculation with the property of Gamma function we obtain

w 2 w 2

LiSUfw) =----TT-— =--;-- = — Sa-2(w).

1 ^ n 0a-2 r() Hn(a - 2) a 21 ;

n2 '2 rr

r( ^^^)

By keeping on operating the operator L1 k-times to the function Sa(w), we obtain

LkSa(w) = (-1)kSa-2k (w)

or

ii

Li (—1)1 Sa(w) = Sa-2fc (w). (2.11)

Then we show that S—2k = (—1)k(i)2 5.

Now

S-2k (w) = lim Sa(w) = lim

a^—2k a^—2k

a —n

w 2

Hn(a)

lim

a^-2k

a —n

w 2

v i n — a

■ n 2 ■ lim 2 ar

a^-2k

lim |T(a )! a^-2k V 2

a^-2kl 2 J

(2.12)

a—n—2

a—n—2

Now consider liinjw 2 ]. We have w = xf +x2 + ...+xp — ¿(x^+i+xp+2 + ). By changing

the variables, let xi = yf, x2 = y2, • ••, xp = yp and xp+i = —+= , xp+2 = —=, ...,xp+9 = -p+9

—i y—i V —

Thus w = y2 + + ... + yp + + ... + , where y^i = 1, 2,..., n) is real and p + q = n. Let r2

w

y2 + yi + ••• + y« and consider the distribution wA, where A is a complex parameter. Since < wA,Q >= f wAQ(x)dx, where Q(x) is the element of the space D of the

Q

infinitely differentiable functions with compact supports and x £ Rn, dx = dxidx2...dxn. Thus

A r\ I 2A d(Xi

< wA,Q >= / r2

Rn

d (yi ,y2,...,yn)

Qdyidy2...dy„

(—i)

- , r2AQdyidy2...dy„

< r2A,Q > .

(—i)

2

Thus

res <wA,Q>= —— _ A=—n (—i)2 A=

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

res < r2A, Q >

— n 2

1 2nn -q—^ < ^(x),Q >

(—i)2r(n) ( ),Q

or

A 1 2n2 , res w = -—— _ /__^ o(x).

\ _ —n

—n

Now, by Gelfand and Shilov (see [1], p. 271), < wA,Q > hase simple poles at A = —--k

and for k = 0 the residue of r2A at A = —^ is given by res r2A = —y— $(x).

2 A=—2n r( n)

(2.13)

(-i)2 r (2)

Now we find res wA for k is nonnegative integer by, Gelfand and Shilov (see [1], p. 272) we A= -f -k

have

1

wA =

4k (A + 1)(A + 2)...(A + k)(A + n )(A + n + 1)...(A + n + k — 1)

fc„,,A+fc

Lk w

Thus

2

A=r—ns-k wA = A=—n LiwA' 4k (A + 1)...(A + k)(A + n )...(A + n + k — 1)

2

A= —n-k

by (2.12) we have

Thus

res w A= —n-k

A

2n 2

(—i)2 4kk!r(n + k)

Lk ¿(x).

lim [w 2 ] = lim wA

a^-2k

—n-k

(2.14)

Now from (2.12), we have

n

, . a — n

lim (a + 2k)w 2 S—2k (w) = -—^n 22k W - + k

lim (a + 2k)r (f) V2

a — n

res w 2

a=—2k — A k~

a^-2k

,-Y 4k r - + k res r (f) V 2 y

a=-2k V2/

1

2

1

Now

-a \ 2(-1)k

res r . . ,, a=-2k \2J k!

Thus by (2.14), we obtain

(-1)k 2n2n-r k!4kr (f + k) k

S-2k(w) = --V-——, v 2 , ' Lk5(x) =

v ; (-i)2 2 ■ 4kk!r (f + k) 1 v ;

= Lk 5(x) = (-1)k (i)2 L1 5(x). (-i) 2

Thus

So(w) = (i) 2 5(x). (2.15)

From (2.11) and (2.15), we obtain

Ll (-1)k S2k (w) = S2k-2k (w) = So(w) = (i) 2 5(x)

or

Lk (-1)k (-i)2 S2k (w) = 5.

It follows that K(x) = (—1)k(-i)2S2k(w) is an elementary solution of the operator Lk. Similary K(x) = (—1)k(i)2T2k(z) is an elementary solution of the operator L^k where z is defined by (2.9) and T2k is defined by (2.8) with a = 2k.

3. Main results

Theorem 3.1. Given the equation

ek k (x) = 5 (3.1)

where ©k is the operator iterated k-times defined by (1.1), 5 is the Dirac-delta distribution, x = (x1,x2,...,xn) £ Rf and k is a nonnegative integer. Then the convolution

K(x) = RHk(u) * (-1)kReek(v) * (-1)k(-i)2S2k(w) * (-1)k(i)2T2k(z) (3.2)

is an elementary solution or the Green function of the equation (3.1) where R^ (u),R2k (v),S2k (w) and T2k (z) are defined by (2.2), (2.4), (2.7) and (2.8) respectively with a = 2k. Proof. By (1.5) the equation (3.1) can be written as

0kK (x) = ♦ Lk Lk K (x) = 5. (3.3)

Since the function R^.(u),R^k(v),S2k(w) and T2k(z) are tempered distributions (see [5], p. 34, Lemma 2.1) and the convolution of functions in (3.2) exists and is a tempered distribution (see [5], p. 35, Lemma 2.2 and [2], pp. 156-159). Now convolving both sides of (3.3) by R^k,(u) * (-1)kR2k(v) * (-1)k(-i)2S2k(w) * (-1)k(i)2T2k(z) we obtain

♦ k [RHk (U) * (-1)kR22k (V)] * Lk [(-1)k(-i) 2 S2k (w)] * Lk [(-1)k(i) 2T2k(z)] * K(x) =

= [Rfk(u) * (-1)kR^k(v) * (-1)k(-i)2S2k(w) * (-1)k(i)2T2k(z)] * 5.

By Lemma 2.1 and Lemma 2.2 (ii), we obtain (3.2) as required, we call the solution K(x) in (3.2) the Green function of the operator ©k we denote the Green function

G(x) = RHk(u) * (-1)kR2k(v) * (-1)k(-i)2S2k(w) * (-1)k(i)2T2k(z). (3.4)

Theorem 3.2. Given the equation

©k K (x) = f (x) (3.5)

where ©k is defined by (1.1) and f (x) is a generalized function, then K(x) = G(x) * f (x) is a weak solution for (3.5) where G(x) is a Green function of ©k defined by (3.4). Proof. Convolving both sides of (3.5) by G(x) defined by (3.4) we obtain

G(x) * ©kK(x) = G(x) * f (x)

©kG(x) * K(x) = G(x) * f (x). 6 * K(x) = G(x) * f (x) K(x) = G(x) * f(x)

or

By Theorem 3.1, we have

or

as required.

The author would like to thank the Thailand Research Fund for financial support.

References

[1] Gelfand I. M., Shilov G. E. Generalized Functions. 1, Academic Press. N. Y., 1964.

[2] Donoghue W. F. Distributions and Fourier Transforms. Academic Press, 1969.

[3] Nozaki Y. On Riemann-Liouville integral of ultra-hyperbolic type. Kodai Mathematical Seminar Report, 6(2), 1964, 69-87.

[4] Kananthai A. On the solutions of the n Dimensional Diamond operator. Appl. Math. and Comp., 1997, 88:27-37.

[5] Kananthai A. On the convolution equation related to the Diamond Kernel of Marcel Riesz. J. Comp. Appl. Math., 100, 1998, 33-39.

Received for publication April 26, 2000

i Надоели баннеры? Вы всегда можете отключить рекламу.