Научная статья на тему 'ON THE FOURIER TRANSFORM OF THE DISTRIBUTIONAL KERNEL Кα,β,γ,ν RELATED TO THE OPERATOR ⊕K'

ON THE FOURIER TRANSFORM OF THE DISTRIBUTIONAL KERNEL Кα,β,γ,ν RELATED TO THE OPERATOR ⊕K Текст научной статьи по специальности «Математика»

CC BY
62
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук

Аннотация научной статьи по математике, автор научной работы — Kananthai A., Suantai S.

Рассмотрено преобразование Фурье ядра Kα,β,γ,ν, где α, β, γ, ν комплексные параметры. Исследовано преобразование Фурье свертки Kα,β,γ,ν, * Kα',β',γ',ν', где α, β, γ, ν, α', β', γ`, v' комплексные параметры.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ON THE FOURIER TRANSFORM OF THE DISTRIBUTIONAL KERNEL Кα,β,γ,ν RELATED TO THE OPERATOR ⊕K»

Computational Technologies

Vol 7, № 5, 2002

ON THE FOURIER TRANSFORM OF THE DISTRIBUTIONAL KERNEL KaßrfV RELATED TO THE OPERATOR ©k ' ' '

A. Kananthai, S. Suantai Department of Mathematics Chiangmai University, Thailand e-mail: malamnka@science.cmu.ac.th

Рассмотрено преобразование Фурье ядра , где а, в, 7, V — комплексные па-

раметры. Исследовано преобразование Фурье свертки * ', где

а, в, 7, V, а', в', 7', V' — комплексные параметры.

1. Introduction

The operator ©k can be factorized into the form

efc:

2 / p + q ^ \ 2

v—У-(v—

^8x2) \ ^ dx2

k

V — + г V —

dx2 dx2

r=1 ' j=p+1 j.

k

v — - i p+q —'

dx2 dx2

r=1 ' j=P+1 j.

k

(1.1)

where p + q = n is the dimension of the space cn, i = \J—\ and k is a nonnegative integer.

2 / \ 2

p ö2 \2 / p+q 02

The operator ( ) — S тт~2 I is first introduced by A. Kananthai [1] and named

r=1 dxr- / \j=P+1 dx2

the Dimond operator denoted by

2

P d2 \ 2 / P+q ö^2

♦ =( £ Ы -(^a^l- (12)

,r=1 '/ \J=P+1

Let us denote the operators L1 and L2 by

p d 2 p+q d2

Ll = £ + 8 J+dX2' (L3)

r=1 ' J=P+1 j P d2 p+q d2

L2 = - 8 2+dXf- (L4)

r=1 ' j=P+1 j

Thus (1.1) can be written by

0k = ♦ Lk Lk. (1.5)

© A. Kananthai, S. Suantai, 2002.

Now consider the convolutions RH (u) * RJ(v) * SY(w) * Tv (z) where R^ , Rj, SY and Tv are defined by (2.2), (2.4), (2.6) and (2.7) respectively. We defined the distributional kernel Ka,j,Y,v by

Ka,pa,v = RHH * Rj * SY * Tv. (1.6)

Since the function RH(u),Rfj3(v),SY(w) and Tv(z) are all tempered distribution see [1, p. 30, 31] and [6, p. 154, 155], then the convolutions on the right hand side of (1.6) exists and is a tempered distribution. Thus Ka,j,Y,v is well defined and also a tempered distribution.

In this paper, at first we study the Fourier transform or Ka,j,Y,v where KajYiV is

defined by (1.6).

After that we put a = 3 = y = v = 2k, then we obtain K2k,2k,2k,2k related to the elementary solution of the operator ©k.

We also study the Fourier transform of the convolution Ka,j,Y,v * Ka>,j>>Y>>v>.

2. Preliminaries

Definition 2.1. Let x = (xi,x2, ...,xn) be a point in the space cn of the n-dimensional complex space and write

u x 2 + x2 + ... + xp xp+i ... xp+q, (2.1)

where p + q = n is the dimension of cn.

Denote by = {x £ rn : xi > 0 and u > 0} the set of an interior of the forward cone and r+ denotes it closure and Rn is the n-dimensional Euclidean space. For any complex number a, define

( a — n

u 2

RHa (u)={ K(a) for x £ r+' (2.2)

0 for x £ r+, where the constant Kn(a) is given by the formula

n r f2^-^) V(l—a ) r(a)

2 + a - p\ r(p - a

Kn(a)

The function RH is called the ultra-hyperbolic Kernel of Marcel Riesz and was introduced by Y. Nozaki [5, p. 72].

It is well known that RH is an ordinary function if Re (a) > n and is a distribution of a if Re (a) < n. Let supp RH (u) denote the support of RH (u) and suppose supp RH (u) C r+, that is supp RH(u) is compact.

Definition 2.2. Let x = (xi,x2, ...,xn) £ rn and write

v = x\ + x2 + ... + x\. (2.3)

For any complex number ft, define

<(v) = 2-^n^r(-(l. (2.4)

rif

The function R^ (v) is called the elliptic Kernel of Marcel Riesz and is ordinary function for Re (ft) > n and is a distribution of ft for Re (ft) < n.

Definition 2.3. Let x = (x1; x2,..., xn) be a point of the space cn of the n-dimensional complex space and write

W — X2 + X2 + ... + Xp i (Xp+1 + Xp+2 + ••• + xp+j , (2.5)

where p + q — n is the dimension of cn and i — V —1. For any complex number 7, define the function

S (w) = 2-Yn-nr (^) ^. (2.6)

V 2 y

The function (w)is an ordinary function if Re (7) > n and is a distribution of 7 for Re(7) < n. Definition 2.4. For any complex number v, define the function

\ v — n

n — v \ Z 2

(;) — 2^ - U~JF(|)' (2-7)

where

z — X2 + X2 + ... + Xp + i (xp+i + Xp+2 + ... + Xp+J , (2.8)

X — (x1; x2,..., xn) g cn, p + q — n is the dimension of cn and i — v —1.

We have Tv(z)is an ordinary function if Re(v) > n and is a distribution of v for Re(v) < n. Definition 2.5. Let f (x) be continuous function on rn where x — (x1; x2,..., xn) g rn. The Fourier transform of f (x) denoted by of or f (C) and is defined by

of (x) — f (C) — J e-i(i'x)f (x)dX, (2.9)

Rn

where C — (Ci, C2, ...,Cn) g rn and (C,x) — C1X1 + C2X2 + ... + CnXn.

Definition 2.6. Let ^(x) be a tempered distribution with compact support. The Fourier transform of ^(x) is defined by

¿(C)—<Mx),e-i(«>x) >. (2.10)

Lemma 2.1. The functions R^, R^, and Tv defined by (2.2), (2.4), (2.6) and (2.7) respectively, are all tempered distributions. Proof see [1, p. 30, 31] and [6, p. 154, 155].

Lemma 2.2. The function (—1)kK2k;2k;2k;2k(x) is an elementary solution of the operator ®fc, that is ®fc(—1)kK2fc;2fc,2fc,2fc(x) — 6 where ®fc is defined by (1.1), K2fc;2fc,2fc,2fc(x) is defined by (1.6) with a — ft — 7 — v — 2k and 6 is the Dirac-delta distribution.

Proof see [4, p. 66].

Lemma 2.3. 1. The Fourier transform of the convolution RH(u) * R^(v) is given by the formula

a \ f ß

9 R(u) *Rß(v))

(i)q 2a+ß r( ay.2

n

Kn(a)Hn(ß)r| r(n '

ß

p p+q

Ee? -E ej

r=1 j=p+1

2 J \ 2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

where RH (u) and R^(v) are defined by (2.2) and (2.4) respectively,

' 3 '

A

—ß

r=1

(2.11)

Hn(ß)

r| 2 I 2ßn-

r

n - ß

and i = V -1.

In particular, if a = 3 = 2k then (2.11) becomes

9(RH(u) * R?k(v))

(-1)

p+q

EC2 - £ e?

, r=1

j=p+1

(2.12)

where k is nonnegative integer and (—1)kRHk(u) * Rf2k(v) is an elementary solution of the operator ♦ iterated k-times defined by (1.2).

Moreover |s(R2k(u) *Rf2k(v))| < M, where M is constant, that is s is bounded, that implies s is continuous on the space S' of the tempered distribution.

2. The Fourier transform of the convolution SY(w) * Tv(z) is given by the formula

2Y+VnnT{ ^ r 'V

9(Sy(w) * Tv(z))

hn(y)hn(v) r /n - tf n - v

x

x

A

p+q

—Y

E«?+

r=1

j=p+1

A

p+q

Ee? -

(2.13)

r=1

j=p+1

where SY(w) and Tv(z) are defined by (2.6) and (2.7) respectively,

Y

ri-j2^ n r( V-\2 n 2

Hn(Y) = ~^M-^ and Hn(v) = - V2

r

n - Y

r

n — v

In particular, if y = v = 2k then (2.13) becomes S(Sy(w) * Tv(z)) --

(e?+e? +...+e?)2 + (e?+1+e?+2 +...+eP+q)2

(2.14)

— a

k

2

2

p

1

—v

p

p

1

k

where k is a nonnegative integer and (—1)k(—i)2S2k(w) and (—1)k(—i)2T2k(z) are elementary solutions of the operators L and L2 defined by (1.3) and (1.4) respectively.

Proof: 1. To prove (2.11) and (2.12) see [2] and to show that ö is bounded, now

(u) * R2fc (v))| =

(—i)k

p+q

EC2) — ( EC2

r=i

j=p+i

<

EC

r=i

+

p+q

e e2 j=p+i

k —

< M,

where p + q = n for large g r (r = 1, 2,..., n).

That implies that s is continuous on the space S' of tempered distribution. For the case (—1)kR^c(u) * (v) is an elementary solution of the operator ♦, see [1]. 2. We have

(w)

w ^

Hn(Y) ■

where Hn(Y)

n 2 ) ^ n 2

r

n — y

and w — X-2 + X2 + ... + Xp i(Xp+i + Xp+2 + ••• + Xp+q).

Now, changing the variable xi — yi, x2 — y2, ..., xp — yp,

— yp+i — yp+2 xp+i ,-:, Xp+2

p+q

yp+q

Then we obtaill w — y2 + y2 + ... + yp + yp+i + yp+2 + ... + yp+q. Let p2 — y2 + y2 + ... + yp+q, p + q — n. Then

(w)

Hn(Y)

3 i(i'x)w^ dx

^Vt i e-i«'V-n d((^i,X2,...,Xra)) dyidy2...dy„ Hn (Y ^ d(yi,y2,...,yn)

Hn(Y )(—i)2

pY-rae-i(im +Î2y2 +...+ÇPyP+yp+l+...+^p+f yp+q )dy

Hn(Y )(—i)2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2Yn2v^2++...+ep + i(ep+i+ep+2 +...+ep+q)) 7 (2.15)

v — n

z 2

by [5, p. 194]

Similarly, for TV(z) — H / \ we have z — x1 + x2 + ... + xp + i(xp+1 + xp+2 + ... + xp+q).

Hn(v )

Putting X1 — y1, X2 — y2, ..., Xp — yp, Xp+1 — yp+1, ..., Xp+q — ^^. Thus z — y2 + y| +... + yp+„,

ii p + q — n. Let p2 — y2 + y| + ... + yp+q, p + q — n. Then

öTv (z)

Hn(v )

e i(i,x)zn dx

1

Hn(v )(i) 2

pV-rae-i(Çiyi+Ç2y2+...+ÇPyP+^P+i yp+l+...+^^ yp+q )dy

1

k

2

2

2

1

1

1

1

2v n 2

r

Hn(v)(i)2 Tf n - v

2 1 + ... + e? i(eP+1 + e?+2 + ...

p2+q

(2.16)

Since SY(w) and Tv(z) are tempered distributions, then SY(w) * Tv(z) exists and S(SY(w) *

Tv (z)) = 9(Sy (w))9(Tv (z)). Thus

9(Sy(w) * Tv(z)) = 9(Sy(w))9(Tv(z)) =

2Y+v nn

r

r

Hn(Y)Hn(v)r(n-Y^ ^n-^

p p+q

£c2 + ^e2

r=1 j=p+1

\

p p+q

£e,2 - ^ej

r=1 j=?+1

by (2.15) and (2.16). Now consider

2Y+v nn

r(2) r (2

Hn(Y)Hn(v) r f n - y\ rf n - v

r

Putting y = v = 2k, thus (2.18) becomes

(2.17)

(2.18)

24k nn

\ 2 I 2

/n - 2k\ /n - 2k

24knn M 2 JM 2

Hn(2k)Hn(2k)vin - 2k\ ^f n - 2k\ 24knn

T(k)T(k)

x

x

mm

n n - 2k\ v( n - 2k

1.

Thus, from (2.17)

9(S2k(w) * T2k(z))

Ee2) + ( E e2

i=1

j=p+1

(2.19)

— v

—v

2

2

1

k

2

2

3. Main results

Theorem 3.1. The Fourier transform of the distributional kernel (x) is given by the

formula

(

3K,

a,ß,Y,v

(x)

(n)2n(i)q

v r( aw 2 M YW2

p p+q

y ^ er e2

r=1 j=?+1

Kn(a)Hn(ß )Hn(Y )Hn(v)

x

x

C

r=1

-P

p+q

-Y

EC2 + i E C2

p+q

r=1

j=p+1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

EC2 — i e C2

r=1

j=p+1

n — a \ r /n — ft\ r / n — y\ r / n — v

V

In particular, if a — ft — y — v — 2k then (3.1) becomes

(3.1)

3K,

a,P,Y,v

(x)

( —1)^

(C12 + C2 +... + Cp2)4 — (Cp2+1 + Cp+2 +... + Cp2+J4

(3.2)

Moreover (—1)kK2k)2k;2k;2k(x) is an elementary solution of the operator ©k defined by (1.1).

Proof. Now Ka,p;Y,v'(x) — RH(u) * Rp(v) * S7(w) * tv(z) by (1.6). Since RH,Rp,S7(w) and TV(z) are all tempered distributions by Lemma 2.1, thus 0Ka;p)7)V(x) — 0(RH(u) * Rp(v))0(S7(w) * TV(z)). By (2.11) and (2.17), we obtained (3.1) as required. For the case a — ft — y — v — 2k, by (2.12) and (2.19) we obtain (3.2) as required.

For (—1)kK2k)2k;2k;2k(x) is an elementary solution of the operator ©k see [4, p. 66].

Theorem 3.2. The Fourier transform of the convolution Ka;p)7)V(x) * Ka/;p/)7/)V/ (x) is given by the formula

(3.3)

0 (Ka,p)7,v (x) * Ka/,p/,7/,v/ (x)) — 3Ka,p)7)v (x)3Ka/)p/)7/ ^ (x),

where Ka;p)7)V(x) is defined by (1.6), a, ft, y, v, a', ft', y' and v' are complex numbers.

Proof. Now Ka;p;7;V(x) — RH(u) * Rp(v) * S7(w) * TV(z) by (1.6). Since Ka;p)7)V(x) is the convolutions of all tempered distributions, thus Ka;p)7)V(x) is also a tempered distribution and the convolution Ka;p)7)V(x) * Ka/,p/,7/,V/ (x) exists.

Since Ka;p;7;V (x) is a tempered distribution, then the Fourier transform

o (Ka,p)7)v(x) * Ka,p/,7/,v/(x)) — (oK„)ft7)v(x)) (3Ka/)p/i7/iv'(x)),

where o(Ka;p;7;V(x)) is given by (3.1).

Corollary 3.1. (The alternative proof of Theorem 3.1). The Fourier transform

OK

2k,2k,2k,2k

(x) —

(—1)k

¿=1

p+q

EC2 — EC2

kj=p+1

where k is a nonnegative integer and Ka,p)7)V(x) is defined by (1.6).

Proof. From Theorem 3.1 with the particular case a — ft — y — v — 2k, we can find OK2k)2k;2k;2k (x) directly from the elementary solution of the operator ©k defined by (1.1). Since (—1)kK2k,2k,2k,2k(x) is an elementary solution of the operator ©k.

Thus ©k ( —1)kK2k,2k,2k,2k (X) — 6 or (©k (—1)k6) * K2k,2k,2k,2k (x) — 6. By taking the Fourier transform both sides, we obtain

(

S( — 1)k6) * oK2k.2k.2k.2k(X) — 06 —1.

(3.4)

Now consider 0(©k(—1)k6). Since 6 is tempered distribution with compact support. Thus

(

:(—1)k6) —<

1)k6,e-i(i'x) >— < ♦LkLk(—1)k6,e-i(i'x) > by (2.10) where ©k

♦kLkLk by (1.5). Thus

< ♦ Lk Lk (—1)k 6,e-i(i'x) >—< ♦ L16, (—1)k Lk e-i(i'x) >=

— V

p

p

k

k

4

4

p

p

kk p+q k p p+q k

<

♦kL1Ö, (-1)k(-1)^c2 - i£ e2) e—'«>x) >=< s,[J2 er2 - i£ e2) «>x) >=

r=1 j=p+1

vr=1 j=?+1

=<

p p+q

♦ks, (E ei - i £ e2) (E ei+* E 2) (-d"^' >

k

p p+q

er + i / y e2

k

,r=1

j=p+1

,r=1

j=p+1

p 2 p+q 2

=< s, (-1)^ M + £ e2 ♦e—'«'x) >

r=1

p 2 p+q 2

-<s-(-«k Ee.2 + E e2

j=p+1

v

p 2 p+q 2

r2 -

r=1

j=p+1

r=1

p 4 p+ q 4

-<s.(-1)" EC2 - Ee

,r=1

j=p+1

e—i(£,x) >= /1

j=p+1

,r=1

>

p+q

(-1)k r2 -

j=p+1

Thus 9(®k(-1)"s) = (-1)" I ( ec2Y - ( E e2

r=1

Thus by (3.4) we obtain

9K2",2k,2k,2k (x)

j=p+1

j

(-1)k

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

p 4 p+q

Ee2 - E

i=1 j=p+1

k

References

[1] KANANTHAI A. On the solution of the n-dimensional Diamond operator // Appl. Math. and Comput. 1997. Vol. 88. P. 27-37.

[2] KANANTHAI A. On the spectrum of the Distributional Kernel related to the Residue // Intern. J. of Mathematics and Mathematical Sci.

[3] NozAKI Y. On Riemann — Liouville integral of Ultra-hyperbolic type // Kodai Mathematical Sem. Reports. 1964. Vol. 6, No. 2. P. 69-87.

[4] KANANTHAI A., SuANTAI S. On the weak solutions of the equation related to the Diamond operator // Comput. Technologies. 2000. Vol. 5, No. 5. P. 61-67.

[5] Gelfand I.M., Shilov G.E. Generalized Functions. Vol. 1. N.Y.: Acad. Press, 1964.

[6] DONOGHUE W. F. Distributions and Fourier transforms. N. Y.: Acad. Press, 1969.

k

k

k

k

k

4

4

p

k

4

4

Received for publication January 15, 2002

i Надоели баннеры? Вы всегда можете отключить рекламу.