Научная статья на тему 'ON THE USE OF WINE VINEGAR AS AN ATTRACTANT IN CROWN TRAPS'

ON THE USE OF WINE VINEGAR AS AN ATTRACTANT IN CROWN TRAPS Текст научной статьи по специальности «Биологические науки»

CC BY
156
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПИВНЫЕ ЛОВУШКИ / НАСЕКОМЫЕ / ФАУНА / ЛОВУШКИ С ПРИМАНКОЙ / ВИДОВОЕ РАЗНООБРАЗИЕ

Аннотация научной статьи по биологическим наукам, автор научной работы — Ruchin A.B., Egorov L.V.

A variety of baits in simple traps can be very helpful in the study of insect biodiversity. The study was conducted on the possibility of using crown traps with vinegar and beer during their joint exposure. Representatives of 10 insect orders were captured. Vinegar baits are less effective than beer baits. There were more insect speies and individuals in the beer traps. Representatives of the orders Coleoptera, Lepidoptera, Diptera and Hymenoptera were the most numerous in all traps. The only family Formicidae was well lured by vinegar. There were more than 87 species from 31 families in the species diversity of Coleoptera. There were 52 species in wine vinegar traps and 64 species in beer traps. It is better to use traps with vinegar bait in conjunction with beer baits.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ON THE USE OF WINE VINEGAR AS AN ATTRACTANT IN CROWN TRAPS»

traps, their design was previously described (Ruchin et al., 2020; Fig. 1). Each trap consisted of a plastic 1.5 or 5-liter container with a window cut in it on one side. The trap was installed in the tree crown at a height of 1.5 to 7 m from the soil surface. Six percent cider vinegar was used as an at-tractant. For comparison, a similar trap was installed next to such a trap, but with beer as an attract-ant. An equal amount of sugar was added to both traps at the same time. Three pairs of traps were installed in each study spot. A total of 6 traps, three of them were with beer and three with vinegar. Each such pair was suspended from a single tree branch at the distance of less than 1.2 m from each other. The data on traps with different attractants were then averaged. Pairs of traps were exposed in different biotopes. In total, 5 biotopes were studied, 15 pairs of traps were exposed (30 with vinegar and 30 with beer).

Fig. 1. Appearance of experimental traps: A - at a height of 1.5 m; B - at a height of 5 m.

The second author defined Coleoptera. The Coleoptera system, the volume and nomenclature of taxa are accepted according to the "Catalog of Coleoptera of the Palearctic" (Catalogue..., 2007, 2011, 2013, 2015, 2016, 2020a,b).

Results

In general, 4.980 insect specimens from 10 orders were registered during the experiments (Table 1). At the same time, the number of insect specimens caught in beer traps clearly exceeded that in vinegar traps, i.e. beer is the best attraction as bait.

Table 1. Average number of insect specimens recorded in traps with different types of bait

Family Height - 1.5 m Height - 5 m Total averages

vinegar beer vinegar beer vinegar beer

Blattodea 0.2 4.4 0.6 2.6 0.8 7.0

Heteroptera 0.6 0 0.2 0 0.8 0

Rhaphidioptera 0 0.2 0 0 0 0.2

Neuroptera 0 2.0 0.2 10.6 0.2 12.6

Coleoptera 19.6 173.0 23.5 102.3 43.1 275.3

Lepidoptera 9.8 104.0 32.6 243.0 42.4 347.0

Hymenoptera 1.2 5.8 0.8 13.0 2.0 18.8

Formicidae 60.6 43.6 64.0 22.0 124.6 65.6

Diptera 14.6 86.2 22.6 143.0 37.2 229.2

Mecoptera 0 0.8 0.2 4.8 0.2 5.6

Trichoptera 0.2 0 0.2 0.8 0.4 0.8

TOTAL, ind. 534 2100 607 2199 1137 3843

In vinegar traps located at a low altitude, representatives of eight orders were recorded. There were nine orders in beer traps. In traps placed at a height of 4-5 m, representatives of 10 orders were attracted by vinegarb and nine orders by beer. Thus, the variety of insects flying to different baits was similar at the order level.

Representatives of the orders Coleoptera, Lepidoptera, Diptera and Hymenoptera were the most numerous in all traps. At the same time, beer traps, unlike vinegar traps, attracted much more individuals of these orders. However, the family Formicidae was well lured by vinegar (Table 1). It turned out that ants in significant numbers were found both in traps at low and high altitudes.

We studied the species diversity of Coleoptera in details (Table 2). It turned out that in total, more than 87 species from 31 families were registered in all traps (some taxa have not been determined to species). The greatest species diversity is registered in the families Cerambycidae (18 species), Nitidulidae (9), Elateridae (8) and Scarabaeidae (7). A small number of species represented the remaining families.

Table 2. Species diversity of Coleoptera recorded in traps with different bait

Family/species vinegar beer

Histeridae

Gnathoncus buyssoni Auzat, 1917 1 2

Platysoma deplanatum (Gyllenhal, 1808) 3

Platysoma elongatum (Thunberg, 1787) 11

Leiodidae

Agathidium sp. 1

Silphidae

Nicrophorus vespilloides Herbst, 1783 4

Oiceoptoma thoracicum (Linnaeus, 1758) 2

Staphylinidae sp. 7 28

Scydmaenidae

Scydmaenus hellwigii (Herbst, 1791) 1

Scarabaeidae

Cetonia aurata (Linnaeus, 1758) 1

Gnorimus variabilis (Linnaeus, 1758) 19

Phyllopertha horticola (Linnaeus, 1758) 2

Protaetia fieberi boldyrevi Jakobson, 1909 3

Protaetia marmorata (Fabricus, 1792) 2 61

Protaetia cuprea volhyniensis (Gory & Percheron, 1833) 1 7

Trichiusfasciatus (Linnaeus, 1758) 1

Scirtidae

Contacyphon ochraceus (Stephens, 1830) 1

Microcara testacea (Linnaeus,1767) 1

Buprestidae

Anthaxia quadripunctata (Linnaeus, 1758) 1 1

Throscidae

Trixagus sp. 2 2

Elateridae

Agrypnus murinus (Linnaeus, 1758) 2

Ampedus balteatus (Linnaeus, 1758) 1

Ampedus cinnabarinus (Eschscholtz, 1829) 9

Ampeduspomonae (Stephens, 1830) 2

Ampedus pomorum (Herbst, 1784) 2 7

Continuation of Table 2

Ampedus praeustus (Fabricius, 1792) 2

Dalopius marginatus (Linnaeus, 1758) 2

Prosternon tesselatum (Linnaeus, 1758) 7 22

Lycidae

Lygistopterus sanguineus (Linnaeus, 1758) 1 1

Xylobanellus erythropterus (Baudi di Selve, 1872) 1

Lampyridae

Lampyris noctiluca (Linnaeus, 1758) 1

Cantharidae

Cantharis figurata Mannerheim, 1843 3

Cantharis nigricans O.F. Müller, 1776 1 2

Rhagonycha nigripes (W. Redtenbacher, 1842) 1

Dermestidae

Globicornis emarginata (Gyllenhal, 1808) 1 2

Trogoderma glabrum (Herbst, 1783) 6 6

Cleridae

Thanasimus formicarius (Linnaeus, 1758) 1

Tillus elongatus (Linnaeus, 1758) 1

Melyridae

Cordylepherus viridis (Fabricius, 1787) 1

Dasytes niger (Linnaeus, 1761) 1

Erotylidae

Triplax lepida (Faldermann, 1837) 1

Monotomidae

Rhizophagus fenestralis (Linnaeus, 1758) 1 2

Nitidulidae

Cryptarcha strigata (Fabricius, 1787) 42 244

Cryptarcha undata (G.-A. Olivier, 1790) 15 13

Cyllodes ater (Herbst, 1792) 1

Epuraea guttata (G.-A. Olivier, 1811) 1 8

Epuraea sp. 1 21

Glischrochilus hortensis (Geoffroy, 1785) 4 42

Glischrochilus grandis (Tournier, 1872) 7 81

Glischrochilus quadripunctatus (Linnaeus, 1758) 8

Glischrochilus quadriguttatus (Fabricius, 1777) 1

Soronia grisea (Linnaeus, 1758) 10 107

Cucujidae

Pediacus depressus (Herbst, 1797) 13 18

Coccinellidae

Calvia quatuordecimguttata (Linnaeus, 1758) 2 1

Halyzia sedecimguttata (Linnaeus, 1758) 1 2

Psyllobora vigintiduopunctata (Linnaeus, 1758) 2 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Scymnus frontalis (Fabricius, 1787) 1

Mycetophagidae

Litargus connexus (Geoffroy, 1785) 2 3

Zopheridae

End of Table 2

Synchita humeralis (Fabricius, 1792) 1

Mordellidae

Mordella sp. 1

Mordellistena humeralis (Linnaeus, 1758) 2

Tomoxia bucephala A. Costa, 1854 3 1

Tenebrionidae

Lagria hirta (Linnaeus, 1758) 1

Mycetochara flavipes (Fabricius, 1792) 3

Oedemeridae

Oedemera femorata (Scopoli, 1763) 1

Chrysanthia viridissima (Linnaeus, 1758) 1 3

Scraptiidae

Anaspisfrontalis (Linnaeus, 1758) 2

Cyrtanaspis phalerata (Germar, 1847) 1

Cerambycidae

Aegomorphus clavipes (Schrank, 1781) 1

Anoplodera sexguttata (Fabricius, 1775) 1

Dinoptera collaris (Linnaeus, 1758) 1 2

Leptura quadrifasciata Linnaeus, 1758 7 333

Leptura thoracica Creutzer, 1799 1 83

Lepturalia nigripes (DeGeer, 1775) 2 28

Mesosa myops (Dalman, 1817) 1

Necydalis major Linnaeus, 1758 3

Purpuricenus globulicollis Dej ean, 1839 1

Rhagium inquisitor (Linnaeus, 1758) 9

Rhagium mordax (DeGeer, 1775) 1 40

Rutpela maculata (Poda von Neuhaus, 1761) 2

Spondylis buprestoides (Linnaeus, 1758) 1

Stenurella bifasciata (O.F. Müller, 1776) 3

Stenurella melanura (Linnaeus, 1758) 1

Stictoleptura maculicornis (DeGeer, 1775) 1 3

Stictoleptura rubra (Linnaeus, 1758) 1

Xylotrechus rusticus (Linnaeus, 1758) 1

Chrysomelidae

Altica sp. 1

Plagiodera versicolora (Laicharting, 1781) 2

Brentidae

Oxystoma cerdo (Gerstaecker, 1854) 1

Curculionidae

Anisandrus dispar (Fabricius, 1792) 4

Archarius pyrrhoceras (Marsham, 1802) 1

Hylobius abietis (Linnaeus, 1758) 1

Miarus ajugae (Herbst, 1795) 1

Phyllobius argentatus (Linnaeus, 1758) 1

TOTAL, species 52 64

TOTAL, ind. 192 1274

The number of species accounted for 52 in vinegar traps and for 64 species in beer traps. The four above-mentioned families accounted for almost half of the total species diversity, and there were 21 species from those families found in vinegar traps (Cerambycidae - 7, Nitidulidae -

7, Elateridae - 4, Scarabaeidae - 3), and 37 species in beer traps (Cerambycidae - 17, Nitidulidae -

8, Elateridae - 6, Scarabaeidae - 6).

Almost all taxa were previously indicated for the Mordovia State Nature Reserve (Egorov et al., 2020, 2021). However, one species - Contacyphon ochraceus - was discovered in this territory for the first time.

Discussion

There is data that acetic acid baits effectively trap several taxa from different orders, including Lepidoptera (Lan-dolt, Higbee, 2002; Toth et al., 2010), Diptera (Cha et al., 2012), Coleoptera (Baini et al., 2016; Piccini et al., 2021) and Hymenoptera (Landolt et al., 2000; Landolt, Zhang, 2016).

Many researchers use vinegar as a bait in traps set on the different branches (Rastegar et al., 2013; Powell, 2015; Vorst, Heijerman, 2015; Piccini et al., 2021). Along with formalin, vinegar is often used as a preservative in soil traps (Brandmayr et al., 1996; Assmann, 1999; Ilic, Curcic, 2013; Brigic et al., 2016; Pizzolotto et al., 2018). Allegro and Dulla (2008) used wine vinegar to catch ground beetles. It turned out that some groups and species of Carabidae (for example, tribe Sphodrini, including the species of the genus Calathus) are more likely to fall into traps with the vinegar. On the other hand, the genus Amara was not attracted by vinegar and was represented equally in terms of numbers in all traps.

Our results show that beer traps more effectively attract all insect groups except ants. This is especially noticeable in the example of Coleoptera. The number of species and numerical abundance of this order in beer traps significantly exceeded similar indicators in vinegar traps. We point out that when the difference in the number of species in traps with different attractants was not so large, the number of species and families of Coleoptera differed significantly. There were a lot of representatives of Cerambycidae and Scarabaeidae in of beer traps. Well-attracted species from the families Cerambycidae, Nitidulidae, Elateridae, Scarabaeidae (for example, Cryptarcha strigata, Soronia grisea, Leptura quadrifasciata, Leptura thoracica and others) have always numerically prevailed in beer traps. According to Ruzzier et al. (2021), only 13 species from three families were caught in vinegar traps. However, our data indicate a more significant species diversity of species attracted by such baits.

Apparently, a significant amount of various chemical compounds (aldehydes, alcohols, ke-tones, etc.) appears in beer traps during fermentation, which attract a variety of insects. In vinegar, the number of chemical compounds is limited. The only family that was actively falling in vinegar traps were ants. According to Tau§an et al. (2012), vinegar is a good attractant for this group.

Conclusion

Crown simple traps with baits such as vinegar and beer are effective for studying the species diversity of insects. Representatives of 10 insect orders are caught on such baits. However, baits with vinegar are less effective than baits with beer. There were more insect speies and individuals in the beer traps. Representatives of the orders Coleoptera, Lepidoptera, Diptera and Hymenoptera were the most numerous in all traps. At the same time, beer traps, unlike vinegar traps, attracted much more individuals of these orders. The only family Formicidae was well lured by vinegar. There were more than 87 species from 31 families in the species diversity of Coleoptera. There were 52 species in wine vinegar traps and 64 species in beer traps. The four above-mentioned families accounted for almost half of the total species diversity, 21 species belonging to these families were identified in vinegar traps (Cerambycidae - 7, Nitidulidae - 7, Elateridae - 4, Scarabaeidae -3) and 37 species in beer traps (Cerambycidae - 17, Nitidulidae - 8, Elateridae - 6, Scarabaeidae -6). Thus, it is better to use traps with vinegar bait in conjunction with beer baits.

References

Aleinikov A.A. 2019. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: possible anthropogenic causes and long-term effects // Nature Conservation Research. Vol. 4(Suppl. 1). P. 21-34. https://dx.doi.org/10.24189/ncr.2019.033

Allegro G., Dulla M. 2008. Attractant efficiency of the wine vinegar to Ground Beetles (Coleoptera, Carabidae) in pitfall trap sampling // Riv. Piem. St. Nat. Vol. 29. P. 211-224.

Assmann T. 1999. The ground beetle fauna of ancient and recent woodlands in the lowlands of north-west Germany (Coleoptera, Carabidae) // Biodiversity and Conservation. Vol. 8. P.1499-1517.

Baini F., Del Vecchio M., Vizzari L., Zapparoli M. 2016. Can the efficiency of pitfall traps in collecting arthropods vary according to the used mixtures as bait? // Rendiconti Lincei. Vol. 27(3). P. 495-499.

Barros R.C., Fonseca M.G., Jardim M.T., Vendramini V.E., Damiani B.C.B., Julio C.E.A. 2020. Species of Cerambycinae (Insecta, Coleoptera, Cerambycidae) from east Paraná State (Brazil), with new geographic records // Zootaxa. Vol. 4845 (1). P. 001-025. https://doi.org/10.11646/zootaxa.4845.L1

Bondarenko A.S., Zamotajlov A.S., Belyi A.I., Khomitskiy E.E. 2020. Fauna and ecological characteristics of ground beetles (Coleoptera, Carabidae) of the Nature Sanctuaries «Prichernomorskiy» and «Tuapsinskiy» (Russia) // Nature Conservation Research. Vol. 5(3). P. 66-85. https://dx.doi.org/10.24189/ncr.2020.032

Brandmayr P., Colombetta G., Pizzolotto R. 1996. Carabid communities in two biotopes of the Marano lagoon (Italy) (Coleoptera: Carabidae) // Acta Soc. Zool. Bohem. Vol. 60. P. 355-362.

Brigic A., Vujcic-Karlo S., Slivar S., Alegro A., Kepcija R.M., Peros R., Kerovec M. 2016. Distribution and life-history traits of Calathus cinctus Motschulsky, 1850 (Coleoptera: Carabidae) in Croatia, with distribution of closely related species // Italian Journal of Zoology. Vol. 83(4). P. 549-562.

Cardoso P., Erwin T.L., Borges P.A.V., New T.R. 2011. The seven impediments in invertebrate conservation and how to overcome them // Biological Conservation. Vol. 144. Iss. 11. P. 2647-2655. https://doi.org/10.1016/j.biocon.2011.07.024

Catalogue of Palaearctic Coleoptera. 2007. Vol. 4. Elateroidea - Derodontoidea -Bostrichoidea. Lymexyloidea - Cleroidea - Cucujoidea / Lobl I., Smetana A. (Eds.). Stenstrup: Apollo Books. 935 p.

Catalogue of Palaearctic Coleoptera. 2010. Vol. 6. Chrysomeloidea / Lobl I., Smetana A. (Eds.). Stenstrup: Apollo Books. 924 p.

Catalogue of Palaearctic Coleoptera. 2011. Vol. 7. Curculionoidea I / Lobl I., Smetana A. (Eds.). Stenstrup: Apollo Books. 373 p.

Catalogue of Palaearctic Coleoptera. 2013. Vol. 8. Curculionoidea II / Lobl I., Smetana A. (eds.). Leiden-Boston: Brill. 700 p.

Catalogue of Palaearctic Coleoptera. Vol. 2/1. 2015. Revised and updated version. Hydrophiloidea - Staphylinoidea / Lobl I., Lobl D. (Eds.). Leiden-Boston: Brill. 1702 p.

Catalogue of Palaearctic Coleoptera. 2016. Vol. 3. Revised and updated version. Scarabaeoidea - Scirtoidea - Dascilloidea - Buprestoidea - Byrrhoidea / Lobl I., Lobl D. (Eds.). Leiden-Boston: Brill. 983 p.

Catalogue of Palaearctic Coleoptera. 2020a. Vol. 5. Revised and Updated Second Edition. Tenebrionoidea / Iwan D., Lobl I. (Eds.). Leiden-Boston: Brill. 945 p. https://doi: 10.1163/9789004434998_004

Catalogue of Palaearctic Coleoptera. 2020b. Vol. 6/1. Updated and Revised Second Edition. Chrysomeloidea I (Vesperidae, Disteniidae, Cerambycidae) / Danilevsky M. (Ed.). Leiden-Boston: Brill. 712 p.

Cha DH, Adams T, Rogg H, & Landolt PJ (2012) Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing Drosophila, Dro-sophila suzukii // J. Chem. Ecol. Vol. 38(11). P. 1419-1431.

Cicort-Lucaciu A.S. 2020. Road-killed ground beetles prove the presence of Carabus hungaricus (Coleoptera: Carabidae) in North-Western Romania // Nature Conservation Research. Vol. 5(3). P. 134-138. https://dx.doi.org/10.24189/ncr.2020.035

Dangles O., Casas J. 2019. Ecosystem services provided by insects for achieving sustainable development goals // Ecosyst. Serv. Vol. 35. P. 109-115.

Dvorak L., Dvorakova K., Obona J., Ruchin A.B. 2020. Selected Diptera families caught with beer traps in the Republic of Mordovia (Russia) // Nature Conservation Research. Vol. 5(4). P. 65-77. https://dx.doi.org/10.24189/ncr.2020.057

Egorov L.V., Ruchin A.B., Semenov V.B., Semionenkov O.I., Semishin G.B. 2020. Checklist of the Coleoptera of Mordovia State Nature Reserve, Russia // ZooKeys. Vol. 962. P. 13-122. https:// doi.org/10.3897/zookeys.962.54477

Egorov L.V., Ruchin A.B., Semionenkov O.I., Semishin G.B., Esin M.N. 2021. Some data on the Coleoptera fauna of the Mordovia State Nature Reserve. Report. 10 // Proceedings of the Mordovia State Nature Reserve. Vol. 26. P. 96-128.

Egorov L.V., Semishin G.B. 2016. The coleopterans collected using window traps in the Mordovia State Nature Reserve. Report 1 // Proceedings of the Mordovia State Nature Reserve. Vol. 17. P. 70-78.

Guarnieri F.G. 2009. A survey of longhorned beetles (Coleoptera: Cerambycidae) from Paw Paw, Morgan County, West Virginia // Maryland Entomologist. Vol. 5(1). P. 11-22.

Fagundes C.K., Di Mare R.A., Wink C., Manfio D. 2011. Diversity of the families of Coleoptera captured with pitfall traps in five different environments in Santa Maria, RS, Brazil // Brazilian Journal of Biology. Vol. 71(2). P. 381-390. http://dx.doi.org/10.1590/S1519-69842011000300007

Ilic N., Curcic S. 2013. The longhorn beetles (Coleoptera: Cerambycidae) of Rtanj Mountain (Serbia) // Acta entomologica serbica. Vol. 18(1/2). P. 69-94.

Jackman J.A., Nelson C.R. 1995. Diversity and phenology of tumbling flower beetles (Coleoptera: Mordellidae) captured in a Malaise trap // Entomological News. Vol. 106. No. 3. P. 97-107.

Kim K.C. 1993. Biodiversity, conservation and inventory: why insects matter // Biodiversity & Conservation. Vol. 2. P. 191-214. https://doi.org/10.1007/BF00056668

Landolt P.J., Higbee B.S. 2002. Both sexes of the true armyworm (Lepidoptera: Noctuidae) trapped with the feeding attractant composed of acetic acid and 3-methyl-1-butanol // Fl. Entomol. Vol. 85(1). P. 182-185.

Landolt P.J., Smithhisler C.S., Reed H.C., McDonough L.M. 2000. Trapping social wasps (Hymenoptera: Vespidae) with acetic acid and saturated short chain alcohols // J. Econom. Entomol. Vol. 93(6). P. 1613-1618.

Landolt P., Zhang Q.H. 2016. Discovery and development of chemical attractants used to trap pestiferous social wasps (Hymenoptera: Vespidae) // J. Chem. Ecol. Vol. 42(7). P. 655-665.

Lynov A.V., Negrobov O.P., Ruchin A.B., Semishin G.B. 2020. An original trap for collecting insects attracted by scent baits // Proceedings of the Mordovia State Nature Reserve. Vol. 25. P. 403-408.

MacGowan I., Vikhrev N.E., Krivosheina M.G., Ruchin A.B., Esin M.N. 2021. New records of Diptera from the Republic of Mordovia, Russia // Far Eastern Entomologist. No 423. P. 9-20. https://doi.org/10.25221/fee.423.3

MacRae T.C., Rice M.E. 2007. Distributional and biological observations on North American Cerambycidae (Coleoptera) // Coleopterists Bulletin. Vol. 61(2). P. 227-263.

Marques M.I., Adis J., Brizzola dos Santos G., Battirola L.D. 2006. Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil // Revista Brasileira de Entomologia. Vol. 50(2). P. 257-267. https://doi.org/10.1590/S0085-56262006000200007

Piccini I., Cristiano L., Di Pietro V., Bonelli S., Biscaccianti A.B. 2021. A revision of distribution, ecology and conservation issues of the threatened comb-claw beetle Gerandryus aetnensis (Coleoptera: Tenebrionidae, Alleculinae) // Fragmenta entomologica. Vol. 53 (1). P. 13-20.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Pizzolotto R., Mazzei A., Bonacci T., Scalercio S., Iannotta N., Brandmayr P. 2018. Ground beetles in Mediterranean olive agroecosystems: Their significance and functional role as bioindicators (Coleoptera, Carabidae) // PLoS ONE. Vol. 13(3). e0194551. https://doi.org/10.1371/journal.pone.0194551

Powell G.S. 2015. A checklist of the sap beetle (Coleoptera: Nitidulidae) fauna of Indiana, with notes on effective trapping methods // Insecta Mundi. Vol. 0424. P. 1-9.

Prather C.M., Laws A.N. 2018. Insects as a piece of the puzzle to mitigate global problems: An opportunity for ecologists // Basic Appl. Ecol. Vol. 26. P. 71-81.

Rastegar J., Hadian A., Havaskary M., Rafeii A. 2013. On a collection of longhorn beetles (Coleoptera: Cerambycidae) from Iran // Entomofauna. Zeitschrift für Entomologie. Bd. 34. Ht. 27. S. 625-636.

Rozhnov V.V., Lavrinenko I.A., Razzhivin V.Yu., Makarova O.L., Lavrinenko O.V., Anufriev V.V., Babenko A.B., Bizin M.S., Glazov P.M., Goryachkin S.V., Kolesnikova A.A., Matveyeva N.V., Pestov S.V., Petrovskii V.V., Pokrovskaya O.B., Tanasevich A.V., Tatarinov A.G. 2019. Biodiversity revision of a large arctic region as a basis for its monitoring and protection under conditions of active economic development (Nenetsky Autonomous Okrug, Russia) // Nature Conservation Research. Vol. 4(2). P. 1-28. http://dx.doi.org/10.24189/ncr.2019.015

Ruchin A.B. 2021. Contribution to the study of Orthoptera and Dermaptera (Insecta) of the Czech Republic // Proceedings of the Mordovia State Nature Reserve. Vol. 26. P. 232-236.

Ruchin A.B., Alekseev S.K., Khapugin A.A. 2019. Post-fire fauna of carabid beetles (Coleoptera, Carabidae) in forests of the Mordovia State Nature Reserve (Russia) // Nature Conservation Research. Vol. 4(Suppl.1). P. 11-20. https://dx.doi.org/10.24189/ncr.2019.009

Ruchin A.B., Egorov L.V. 2018. Fauna of longicorn beetles (Coleoptera: Cerambycidae) of Mordovia // Russian Entomological Journal. Vol. 27. No 2. P. 161-177. doi: 10.15298/rusentj.27.2.07.

Ruchin A.B., Egorov L.V., Khapugin A.A. 2021. Usage of fermental traps for studying the species diversity of Coleoptera // Insects. Vol. 12. P. 407. https://doi.org/10.3390/insects12050407

Ruchin A.B., Egorov L.V., Khapugin A.A., Vikhrev N.E., Esin M.N. 2020. The use of simple crown traps for the insects collection // Nature Conservation Research. Vol. 5(1). P. 87-108. https://dx.doi.org/10.24189/ncr.2020.008

Rukavina I., Kostanjsek F., Jelaska S.D., Pirnat A., Serie J.L. 2018. Distribution and habitat suitability of two rare saproxylic beetles in Croatia - a piece of puzzle missing for South-Eastern Europe // iForest. Vol. 11. P. 765-774. doi: 10.3832/ifor2753-011

Ruzzier E., Galli A., Bani L. 2021. Monitoring exotic beetles with inexpensive attractants: a case study // Insects. Vol. 12. P. 462. https://doi.org/10.3390/insects12050462

Silva D P., Andrade A.F.A., Oliveira J.P.J., Morais D.M., Vieira J.E.A., Engel M.S. 2019. Current and future ranges of an elusive North American insect using species distribution models // Journal of Insect Conservation. Vol. 23. P. 175-186.

Täu§an I., Tatu A.I., Cravä A.V. 2012. Comparative analysis of pitfall traps with different liquids for studying ground-dwelling insects with special reference to ant communities (Hymenop-tera: Formicidae) // Acta Oecologica Carpatica. Vol. 5. P. 127-134.

Tomaszewska W., Egorov L.V., Ruchin A.B., Vlasov D.V. 2018. First record of Clemmus troglodytes (Coleoptera: Coccinelloidea, Anamorphidae) for the fauna of Russia // Nature Conservation Research. Vol. 3(3). P. 103-105. http://dx.doi.org/10.24189/ncr.2018.016

Toth M. et al. 2010. Male and female noctuid moths attracted to synthetic lures in Europe // J. Chem. Ecol. Vol. 36(6). P. 592-598.

Vorst O., Heijerman T. 2015. Enige aantekeningen over Quedius dilatatus in Nederland (Coleoptera: Staphylinidae) // Entomologische Berichten. Bd. 75. № 1. S. 2-10.

Williams R.N., Ellis M.S., Keeney G. 1995. A bait attractant study of the Nitidulidae (Coleoptera) at Shawnee State Forest in Southern Ohio // Great Lakes Entomologist. Vol. 27(4). P. 229-234.

Zamotajlov A.S., Serdyuk V.Yu., Khomitskiy E.E., Belyi A.I. 2019. New data on distribution and biology of some rare ground beetles (Coleoptera, Carabidae) in South Russia // Nature Conservation Research. Vol. 4(4). P. 81-90. https://dx.doi.org/10.24189/ncr.2019.066

О ПРИМЕНЕНИИ ВИННОГО УКСУСА В КАЧЕСТВЕ АТТРАКТАНТА В

КРОНОВЫХ ЛОВУШКАХ

А.Б. Ручин1, Л.В. Егоров1,2

1 Объединенная дирекция Мордовского государственного природного заповедника имени П.Г. Смидовича и национального парка «Смольный», Россия e-mail: [email protected] 2Государственный природный заповедник «Присурский», Россия e-mail: [email protected]

Разнообразные приманки в простых по конструкции ловушках могут оказать значительную помощь в изучении биоразнообразия насекомых. Изучена возможность применения кроновых ловушек с уксусом и пивом при их совместной экспозиции. Отлавлены представители 10 отрядов насекомых. При этом приманки с уксусом менее эффективны, чем приманки с пивом. В пивные ловушки попало большее число видов при их большей численности. Наибольшей численностью во всех ловушках отличались представители отрядов Coleoptera, Lepidoptera, Diptera и Hymenoptera. Единственной группой, которая хорошо приманивалась уксусом, является семейство Formicidae. Видовое разнообразие Coleoptera было представлено более 87 видами из 31 семейства. Число видов в ловушках с уксусом составляло 52, в пивных - 64 вида. Ловушки с приманкой из уксуса лучше применять совместно с пивными приманками. Ключевые слова: пивные ловушки, насекомые, фауна, ловушки с приманкой, видовое разнообразие

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ СООБЩЕСТВ ЗООПЛАНКТОНА СЕВЕРНЫХ ОЗЁР ПОСЛЕ ИЗБЫТОЧНОГО ВЫПАДЕНИЯ ОСАДКОВ

В ЛЕТНИЙ ПЕРИОД

Н.Г. Баянов

Государственный природный биосферный заповедник «Керженский»

e-mail: [email protected]

Изменения структурных характеристик зоопланктоценозов связаны с изменениями прозрачности воды, которая в свою очередь зависит от водности года и типа питания водоёма. После падения прозрачности в 1993 г. произошло увеличение биомассы пелагических зоопланктоценозов поверхностно-проточных водоёмов и ценозов литоральных биотопов озёр всех типов. В 1994 г. имело место уменьшение биомассы зоопланктона в основных биотопах поверхностно-проточных озёр. В подземно-проточных озерах в 1994 г. произошло увеличение биомасс зоопланктона исключительно литоральных биотопов. Не обнаружено достоверных изменений индекса разнообразия Шеннона и индекса доминирования Симпсона в пелагических биотопах поверхностно-проточных озёр. Тут можно предположить слабую чувствительность самих индексов, так как структурные перестройки (в частности, изменения в соотношении различных систематических групп и видовой структуры) были налицо. В то же время в 1993 г. произошли значимые изменения этих индексов для литоральных сообществ озёр всех типов и пелагических зоопланктонных сообществах подземно-проточных озёр. В пелагических биотопах поверхностно-проточных озёр обнаруживаются достоверные различия по годам в доле хищников. Она возросла в 1993 г. и упала в 1994 г. Аналогично направленные изменения произошли и в литоральных биотопах подземно-проточных озёр. Среди различных систематических групп наиболее существенные изменения произошли в доле коловраток. Из них наиболее чуткой к изменению взвесей в воде оказалась Asplanchna priodonta, увеличившая свои количественные показатели в несколько раз во всех типах озёр. Ключевые слова: северные карстовые озёра, система озеро-водосбор, зоопланктон, структура сообществ, осадки, Asplanchna

Введение

Озёрные экосистемы находятся в состоянии подвижного равновесия. Одной из причин колебаний является обмен веществом и энергией между озером и его водосбором, между озёрной экосистемой и таковыми прилегающих территорий. Интенсифицирует этот обмен такой природный фактор как дожди. Выпадая на территорию водосбора, дождевые воды текут к озеру, собирая по пути органическое и минеральное вещество, как растворенное, так и в виде взвешенных частиц. Поступление в озёрные пищевые цепи дополнительных питательных веществ приводит к смещению равновесия в экосистеме, что выражается в изменениях структурных характеристик составляющих её сообществ, в частности, зоопланктоцено-зов. Таким образом, структура планктоценозов является важным показателем, как при оценке трофического статуса водоёмов, так и при индикации разного рода возмущений извне, происходящих как по вине человека, так и в силу естественных причин.

В природных водах зоопланктон действует как естественный биологический фильтр (Щербаков, 1967). Фильтрационная деятельность планктонных ракообразных неразрывно связана с процессом питания, в результате чего в водах снижается количество взвешенного органического вещества, в состав которого входят основные компоненты пищи зоопланктона - фитопланктон, бактериопланктон и детрит (Крючкова, 1983). Увеличение количества взвесей в воде приводит к засорению фильтрационного аппарата и выпадению из планктона части фильтраторов, т.е. нехищных форм. Меняется соотношение числа видов ветвистоусых и веслоногих ракообразных или соотношение показателей обилия этих групп (Иванова, 1976).

i Надоели баннеры? Вы всегда можете отключить рекламу.