Научная статья на тему 'ON THE BLOWING-UP OF SOLUTIONS OF ONE DEGENERATE CROSS-WISE SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS'

ON THE BLOWING-UP OF SOLUTIONS OF ONE DEGENERATE CROSS-WISE SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS Текст научной статьи по специальности «Математика»

CC BY
5
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
cross-wise system / blow-up solution / nonlinear boundary condition / global existence / critical exponent / крестообразная система / разрушающееся решение / нелинейное граничное условие / глобальное существование / критический показатель

Аннотация научной статьи по математике, автор научной работы — Арипов Мерсаид Мирсиддикович, Атабаев Одилжон Хусниддин Угли

Данная работа посвящена крест-накрест системе нелинейных параболических уравнений с нелинейными граничными условиями. Использовано метод стандартного уравнения для получения критического кривого глобального существования решения. Построены автомодельные субрешения для демонстрации неограниченных решений за конечное время.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

О РАЗРУШЕНИИ РЕШЕНИЙ ОДНОЙ ВЫРОЖДАЮЩЕЙСЯ ПОПЕРЕЧНОЙ СИСТЕМЫ С НЕЛИНЕЙНЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ

This paper is devoted to the cross-wise system of nonlinear parabolic equations with nonlinear boundary conditions. Standard equation’s method used in order to obtain critical global existence curve for the problem. Self-similar subsolutions constructed to show the blowing-up of solutions in finite time.

Текст научной работы на тему «ON THE BLOWING-UP OF SOLUTIONS OF ONE DEGENERATE CROSS-WISE SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS»

ВЕСТНИК ОШСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МАТЕМАТИКА, ФИЗИКА, ТЕХНИКА. 2023, №2

МАТЕМАТИКА

УДК 517.957

https://doi.org/10.52754/16948645 2023 2 158

ON THE BLOWING-UP OF SOLUTIONS OF ONE DEGENERATE CROSS-WISE SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

AripovMersaidMirsiddikovich, Dr., Professor

mirsaidaripov@mail.ru National University of Uzbekistan Tashkent, Uzbekistan Atabaev Odiljon Xusniddin o'g'li, PhD Student odiljonatabaev@gmail.com Andijan State University Andijan, Uzbekistan

Abstract: This paper is devoted to the cross-wise system of nonlinear parabolic equations with nonlinear boundary conditions. Standard equation's method used in order to obtain critical global existence curve for the problem. Self-similar subsolutions constructed to show the blowing-up of solutions in finite time.

Keywords: cross-wise system, blow-up solution, nonlinear boundary condition, global existence, critical exponent.

О НЕОГРАНИЧЕННЫХ РЕШЕНИЯХ ОДНОЙ ВЫРОЖДАЮЩЕЙСЯ КРЕСТ-НАКРЕСТ СИСТЕМЫ С НЕЛИНЕЙНЫМИ ГРАНИЧНЫМИ УСЛОВИЯМИ

Арипов Мерсаид Мирсиддикович, д.ф.-м.н., профессор

mirsaidaripov@,mail. ru Национальный Университет Узбекистана Ташкент, Узбекистан Атабаев Одилжон Хусниддин угли, базовый докторант

odiljonatabaev@gmail.com Андижанский Государственный Университет

Андижан, Узбекистан

Аннотация: Данная работа посвящена крест-накрест системе нелинейных параболических уравнений с нелинейными граничными условиями. Использовано метод стандартного уравнения для получения критического кривого глобального существования решения. Построены автомодельные субрешения для демонстрации неограниченных решений за конечное время.

Ключевые слова: cross-wise system, blow-up solution, nonlinear boundary condition, global existence, critical exponent.

Consider the following cross-wise system

du a d

— - vai —

dt

dv ~dt

= u

dx

d_ dx

u

mi-l

duk

v

m2 —l

dx

dv

dx

p1 —2 ^ i du

dx

y

P2 —2 A dv

dx

with nonlinear boundary

— u

mi —1

— v

m2 —1

duk p1 —2 du

dx dx x=0

dvk2 pi —2 - dv

dx dx x=0

= vq1 (0, t )

= uq2 (0,t)

(2)

and initial conditions

(3)

v0 are

u(x,0) = u0 (x) v(x,0) = v0 (x)

where parameters 0 <at< 1, m{ > 1, k > 1, p > 2, q > 0 (i = 1,2) and u0 nonnegative continuous functions with compact support in R+.

This system has been proposed as a mathematical model for a variety of physical problems, for example, this system can be used to describe the development of multiple groups in the dynamics of biological groups, where u and v are the densities of different groups [1],[6]-[8].

In some cases, this system is closer to real-world conditions that the classical divergent form of the system. For instance, for biological species, divergent distribution means that the species can move to all locations within its environment with equal probability. However, if we consider this problem with objective conditions, population density will affect the propagation rate. Therefore, a kind of diffusion equation will be more realistic. For this type of diffusion, propagation rate is governed by population density, which increases for large populations and decreases for small populations equation [9]-[10].

Aripov and Rakhmonov [5] considered the problem

/ \du d p(x )— = — dt dx

dum

dum

dx

p—2

dx

dum dx

p—2 A P dum

dx

, (x, t)e R x(0,+w)

(0,t) = uq(0,t), t e(0,+w)

u(0, x) = u0 (x), x e R+

where p(x) = (l + x)n, m > 0, 1 < p < 1 +1/ m, q > 0, n e R. For the critical case critical exponents of the global existence and Fujita type of solutions are obtained as

= (m(n +1)+1)( P —1), q = m(p — 1)+ P—l

q0

of the form

p + n

n +1

by application of the self-similar solution

2

f — + n

u(x, t) = eLg($), g(£)= K + e p—1 , £ = (l + x)eJt.

v J

The leading term of the asymptotic behaviour of self-similar solutions of the problem is obtained. On the basis of the asymptotic of solutions, suitable initial approximations are offered for the iterative process in the case of fast diffusion, depending on the values of the numeric parameters.

Positive solutions of degenerate and strongly coupled quasilinear parabolic system

u = vaAu + u (a — bu1 + cys) v = u(Av + v(a2 — b2vp + c2vq)

with null Dirichlet boundary condition describing a cooperating model with crosswise diffusion, where the constants a,b,C > 0 (i = 1,2), a,(3 > 0 and 1,s,p,q > 1 studied in [3]. Local existence of positive classical solution is proved. Moreover, it will be proved that the solution is global if intra-specific competitions of the species are strong, whereas the solution may be non-global if the inter-specific cooperation is strong and 0 <a< s, 0 <(< p with

a,(< 2.

In [2] following non-linear degenerate parabolic system with Dirichlet boundary condition is studied

U = ya1 (uxx + au) Vt = ua2 (Vxx + bv)

The regularization method and the upper and lower solution technique are used to show the local existence of a solution for a non-linear degenerate parabolic system. The existence of a global solution is discussed, the blow-up property of the solution is set.

The work of the authors Chen Botao, Mi Yongsheng, Mu Chunlai [4] is devoted to the study of conditions for global solvability and nonsolvability in time of solutions to the following problem

U =(KP (um1 )x)x, Vt =(vx|p2 (vm2 )x)x, x > 0,0 < t < T,

(um1) (0, t) = ua1 (0, t)v(2 (0, t), 0 < t < T,

: (vm2) (0, t) = ua2 (0, t)v(1 (0, t), 0 < t < T, u(x,0) = u0 (x), v(x,0) = y (x), x > 0

where m{ > 1, p > 0, q > 0, a > 0, ( > 0. Critical exponents were obtained for problem.

Motivated by the above mentioned works, the aim of this paper is to construct the self-similar subsolutions to show the blow-up in finite time solutions of the problem (1)-(3).

We need the following notation

s1 = m1 + k1 (p! — 2) , S2 = m2 + k2 (p2 — 2) , fe — 1)(p1q1 + a fo — 1))+(p1 — 1)(s2 + p2 — 1)

n =

_— 1Ap1q1 + a^yp1 — ^+yp1 — 1As2 + p2 — ■_

+ a (a — 1)Xp2 q2 + a2 (pi —1))—(s1 + px — 1)(s2 + pi —1),

m

(Pl - 1\P2^2 + «2 (P2 - 1)) + (P2 - + Pi - 1) (pq + «1 (P1 - 1))(.P2q2 + «2 (P2 - 1)) - (S + P1 - ^ + P2 - 1) ,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

72 q1- 71s1 P1 -1

M2 - 72S2 P2 - 1

Theorem. Let

min<

«1 (P2 - 1) - (P1 - 1)(s2 - 1) «2 (P1 - 1) - (P2 - 1)(s1 - 1)\ > q

«1«2 - (S - 1)(S2 - 1) ' «1«2 - (S - 1)(S2 - 1) If (Pq + « (p - 1)XP2q2 + «2 (P2 -1)) > (s + Pi -1)(^ + P2 -1) then the system (1)-(3) has a solution that blows-up in finite time.

Proof. To prove the nonexistence of global solutions, we construct a blow-up self-similar solution of the system. Construct

u(x, t) = (T -1)-71 /1 (£ ), £ = x(T -1)-CT1 v(x, t) = (T -1 )-72 /2 (£2), £2 = x(T -1 ,

where T is a positive constant and / , / are two compactly supported functions to be

determined.

After some computations, we have

,-(71+1)L , _ e d/1^

(4)

ut =(T -1 )-(71+1) 7/

V

1 y

u

m -1

duk1

d_ dx

dx r

u

P1

-2 N\ du

dx

^ — f)~71 (m1~1)-(71k1 +CT1)(P1-2 )-71 -^1 yjm1-1

y

d/1k1

d£1

P1 -2

dL d£

m1-1

duk1

dx

P1-2 n\

du dx

(^ — t)-71 (m1 -1)_(71k1 +CT1)(P1-2)"71 -2CT1-«172 y q1

d

m -1

/1m1

d/k1

P1

-2 A f

Vt =(T -1)-

-(72 +1)

72.Z2 +

2 y

v

u

m2-1

dvk2

«2

d

dx /

P2

-2 A

dv dx

dx

v

m2 -1

dv

dx

(T -1)

P2-2 N\

dv dx

-72 (m2 -1 )-(72k2 +CT2 )(P2 -2 )-72 y m2 -1

d£2

P2-2

d£2

(T -1)

"72 (m2-1)"(72k2 +CT2 )(P2-2)"72-2ct2-71«2 y q2

d d£

m2 -1

P2 -2

d/2

«

v

2

2

and for the boundary

m —1

u

duki Pi—2 ~ du

dx dx

= (T — t )-ri -l)-(riil+CTl )( A—2 fm -1 vqi (0, t) = (T —1)—/2qi f2qi (0)

dfikl

v

m2 —i

dvk P2 —2 dv

dx dx

_ (^ _ j)—T2 (m2 —iM/2k2 +°2 )(P2 —2)-/2 —1°2 y m2 —i

df2

Pi—2

f

(0)

x=0

d^2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

P2 —2

df2 d^2

(0)

uq2 (0, t ) = (T — t )—m2 fq2 (0)

Notice that

/i +i = /i (mi —1) + (/iki + CTi )(Pi — 2) + /i + + ctiY2 Y2 + i = /2 (m2 — i) + (/2 k2 + ^2 )( P2 — 2)+ /2 + 2l2 + /iC2

/1 (m— 1)++ ^ Xpi — 2)+YI + ai = Y2 qi

Y2 (m2 — 1) + (/2k2 + ^2 )(P2 — 2) + /2 + ^2 = Y&1 Thus, (u, v) is subsolution of (1)-(3) provided that

fc

fC

d

d£i

d

m —i

fimi

V /

df1k1

m2 —i

dti df2

Pi—2

f d^i

- Yifi +°i£i

f d£i

2

d^2

P2 —2

df2

d^2

- /2f2 + ^2

df2 d^2

m —i

— fimi

/'mi —i

2

dfk

dti

dfk

Pi—2

d^2

P2 —2

f

d£i

f

d^2

(0)< f? (0)

(0)< fq (0)

Set

fi fe )= A (a — ^ f2 (£ )= A2 (a — ^

where

ci =

Ci (P2 — i)—(A — ^ — i) „ _ C2 (Pi — i)—(^2 — ^i — i)

CiC2 — (si — i)(^2 — i)

C2 =

CiC2 —(si — i)(s2 — i) '

(5)

(6)

(7)

A and a are constants that should be determined. With transformation (7) inequalities (5) become

A;1 A? cpi—2kpi—2Ci (ci — xa — —1 + AiC^i (a — ^)ci —1 — y Ai (a — ^)ci > 0

ACA22C2P2—2k?—2c2(c2 — CiC2)(a — ^)c2 —i + A2cp^(a — — — /2A2(a — -0

2—2 b- P2—2, 2 c 2 k2 c 2 c 2

Now we consider the case

2

2

2

Ar2-V-2CP1-1 (c - c2ai - ) = A?-^k?-2c2P2-1 (c2 - qa2 \Yl - W ) and choose

a = As1 -1 A"1 w, (8)

where

w = cP1-1kP1

-2 C^

Here we remark that the assumption

(pq + "1 (P1 - 1))(P2 q2 + «2 (P2 - 1)) > (S + P1 - 1)(s2 + P2 -1)

imply ^ > 0, y2 > 0, then the inequalities (5) hold.

On the other hand, the boundary conditions in (6) are satisfied if we have

A1 paC1 -c« < Aq1 aC2q1

, (9)

A2 paC2-C1"2 < Aq2acq

where p1 = c1P1-1k1P1 -2, p2 = cP2-1k2P2-2

The condition ensures that we can take A1 and A2 large enough such that the inequalities (9) are valid

0^1 + «1 (P1 - OXp2 q2 + «2 CP2 - 1)) > (s1 + P1 - 1)(s2 + P2 - 1)

Therefore, if the initial data u0, ^ is a subsolution to (1)-(3). By the comparison principle,

it implies that the solution of (1)-(3) with large initial data blow up in a finite time. The proof is complete.

REFERENCE

1. Samarskii A. A. Blow-Up in Quasilinear Parabolic Equations / Samarskii A. A. , Galaktionov V. A. , Kurdyumov S. P., Mikhailov A. P. - Berlin: Walter de Grueter, 1995. - 560 p.

2. Duan Z. Global and Blow-Up Solutions for Nonlinear Degenerate Parabolic Systems with Crosswise-Diffusion / Duan Z., Li Z. // Journal of Mathematical Analysis and Applications. 2000. Vol. 244, Issue 2, p 263-278.

3. Han Y. A degenerate and strongly coupled quasilinear parabolic system with crosswise diffusion for a mutualistic model / Han Y., Gao W. // Nonlinear Analysis Real World Applications. 2010. Vol. 11, Issue 5, p 3421-3430.

4. Chen B. Global existence and nonexistence for a doubly degenerate parabolic system coupled via nonlinear boundary flux / Chen B., Mi Y., Mu C. // Acta Mathematica Scientia. 2011. Vol. 31, Issue 2, p 681-693.

5. Aripov M. Estimates and Asymptotic of Self-similar Solutions to a Nonlinear Filtration Problem with Variable Density and Nonlocal Boundary Conditions / Aripov M., Rakhmonov Z. // Universal Journal of Computational Mathematics. 2011. Vol. 4, Issue 1, p 1-5.

6. Rakhmonov Z. On the Properties of Solutions of Multidimensional Nonlinear Filtration Problem with Variable Density and Nonlocal Boundary Condition in the Case of Fast Diffusion / Rakhmonov Z. // Journal of Siberian Federal University [Mathematics & Physics]. 2016. Vol. 9, Issue 2, p 225-234.

7. Aripov M. The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux / Aripov M., Raimbekov J. // Journal of Siberian Federal

University [Mathematics & Physics]. 2019. Vol. 12, Issue 1, p 112-124.

8. Rakhmonov Z. On a problem of cross-diffusion with Nonlocal boundary conditions / Rakhmonov Z., Urunbayev J. // Journal of Siberian Federal University[Mathematics & Physics]. 2019. Vol. 12, Issue 5, p 614-620.

9. Aripov M. Computer simulation of nonlinear diffusion processes / Aripov M., Sadullaeva Sh. -Tashkent: National University of Uzbekistan Press, 2020. - p 800.

10. Aripov M. Mathematical modeling of heat conduction processes in a medium with double nonlinearity / Aripov M., Rakhmonov Z. - Tashkent: Kaleon Press, 2021. - p 300.

i Надоели баннеры? Вы всегда можете отключить рекламу.