МЕХАНИКА MECHANICS
Scientific article DOI: 10.18287/2541-7525-2024-30-1-40-49
Submited: 14.11.2023 Revised: 20.12.2023 Accepted: 28.02.2024
V.L. Litvinov
Samara State Technical University, Samara, Russian Federation Moscow State University, Moscow, Russian Federation E-mail: [email protected]. ORCID: http://orcid.org/0000-0002-6108-803X
K.V. Litvinova
Moscow State University, Moscow, Russian Federation E-mail: [email protected]. ORCID: http://orcid.org/0000-0002-1711-9273
ON ONE SOLUTION OF THE VIBRATION PROBLEM OF MECHANICAL SYSTEMS WITH MOVING BOUNDARIES
ABSTRACT
An analytical method of solving the wave equation describing the oscillations of systems with moving boundaries is considered. By changing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations, which can be solved using direct and inverse methods. An inverse method is described that makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions are obtained for a fairly wide range of laws of boundary motion. A direct asymptotic method for the approximate solution of a functional equation is considered. An estimate of the errors of the approximate method was made depending on the speed of the boundary movement.
Key words: wave equation; boundary value problems; oscillations of systems with moving boundaries; change of variables; laws of boundary motion; functional equations.
Citation. Litvinov V.L., Litvinova K.V. On one solution of the vibration problem of mechanical systems with moving boundaries. Vestnik Samarskogo universiteta. Estestvennonauchnaya Seriya / Vestnik of Samara University. Natural Science Series, 2024, vol. 30, no. 1, pp. 40-49. DOI: http://doi.org/10.18287/2541-7525-2024-30-1-40-49. (In Russ.)
Information about the conflict of interests: authors and reviewers declare no conflict of interests.
© Litvinov V.L., Litvinova K.V., 2024 Vladislav L. Litvinov — Candidate of Technical Sciences, head of the Department of General-Theoretical Disciplines, assistant professor, Samara State Technical University, 244, Molodogvardeyskaya Street, Samara, 443100, Russian Federation; doctoral student, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 1, Moscow, 119991, Russian Federation.
Kristina V. Litvinova — student, Moscow State University, GSP-1, Leninskie Gory, 1, Moscow, 119991, Russian Federation
Introduction
One-dimensional systems, the boundaries of which move, are widely used in engineering: ropes of lifting installations [1-9], flexible transmission links [1; 10-14], solid fuel rods [15], drill strings [3], etc. The presence of moving boundaries causes significant difficulties in describing such systems; therefore, approximate methods
of solution are mainly used here [1-3; 10; 14-21]. Among the analytical methods, the most effective is the method proposed in [11], which consists in the se-lection of new variables that stop the boundaries and leave the wave equation invariant. In [22], the solution is sought in the form of a superposition of two waves running towards each other. The method used in [23] is also effective, which consists in replacing the geometric variable with a purely imaginary variable, which allows us to apply the wave equation to the Laplace equation and apply the method of the theory of functions of a complex variable to the solution.
In this article an analytical method for solving the wave equation that describes the oscillations of systems with moving boundaries is proposed. By replacing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations that can be solved using direct and inverse methods. An inverse method is described which makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions have been obtained for a fairly wide range of boundary motion laws. A direct asymptotic method for the approximate solution of a functional equation is considered. The errors of the approximate method are estimated, depending on the speed of the boundary movement. This approach successfully combines the methodology used in [11; 22; 24-27].
1. Statement of the problem
Let us consider free oscillations in a system with moving boundaries.
utt(x,t) - a2uxx(x,t) =0. (1.1)
The boundary conditions at the fixed ends have the form
u (h(t),t) = 0; u (h(t),t) = 0. (1.2)
(Zi(0) < x < l2(0))
Here, u(x,t) is the displacement of the point of the object with the coordinate x at time t; a is the velocity of wave propagation in the system; l1(x), l2(x) are the laws of boundary motion.
In works [11; 22] Vesnitsky A.I. proposed a fairly general method for selecting new variables for the wave equation. Following this method, the replacement of variables is performed in the following form:
£ = p(t + x/a) — ф(t — x/a);
[ip(t + x/a) + ф(t — x/a)]
(1.3)
where p and ^ are some functions. As a result of such a replacement, the original equation remains invariant (wave), and p, ^ are determined from the condition of constancy £ at the boundaries.
In new variables £, t, defined by relation (1.3), the initial problem (1.1)-(1.2) is reduced to the following
utt(£,t) - u^(£,t)=0 (1.4)
under boundary conditions
U(£i(t), t) = 0; U^(12(t),T)=0; (1.5)
(¿i(T) < £ < £2(t)).
Here t, £ are a dimensionless time (t > 0) and a dimensionless spatial coordinate; U(£,t) = u(x,t) ; £^(t) — the laws of movement of borders.
Boundary conditions (1.5) in variables £, t are set on new, generally speaking, moving boundaries, the position of which depends on two functions ^ and Since they ^ and ^ are arbitrary, one can require that the boundary conditions should be written on fixed boundaries, i. e. i1 = const and i2 = const (i2 > i1). For this, it is necessary that p and ^ necessary to satisfy the system of functional equations:
f(T + h(T)) - t(T - h(T ))= i\; ( )
p(T + i2(T)) - 4(t - i2(T)) = 12, (1)
which uniquely determine the functions of p and ^ through the known laws of boundary motion. When the borders move at a speed higher than the speed of wave propagation, the solution of the wave equation becomes incorrect, therefore, a restriction is imposed on the speed of the boundaries ¡¿¡(t)| < 1. Constants £i can be arbitrary, but not equal values (for example, ¿1 =0, ¿2 = 1). Then system (1.6) will take the form:
p(T + ¿i(t)) = t - ¿i(t));
p(T + ¿2(t)) = t - ¿2(t)) + 1, ( 7)
The existence of a solution to this system was proved in [11].
Solution (1.4)-(1.5) is found by the Fourier method [27]:
w
U(£,T)= 12 sin (u0n& (Dn cos {u0nT) + En sin {u0nT)) =
w n=1 (1.8)
= E rn {sin (u0n(T + £) + an) - sin (u0n(T - £) + an)} ,
n=1
where (e0t) = ; rn = 5 \JDn + En; an = arctg (En/Dn).
The solution obtained in [1-3; 10-13; 22-24] has a form similar to (1.8).
Returning to the variables x and t, we get
w
u(x,t) = ^ rn {sin(^0n^(t + x) + an) - sin(^0n^(t - x) + an)} . (1.9)
n=1
Here y and they are found from the solutions of the system of functional equations (1.7) according to the known laws of boundary motion, and the constants Dn, En are determined from the initial conditions.
Generally speaking, it is not easy to solve system (1.7). There are two different approaches to solving it:
— inverse problems [3, 11, 15, 22-26], i. e. according to the given "phases" of natural oscillations y and finding the laws of motion of the boundaries £i(T);
— direct problems [15; 28], i. e. finding the "phases" of natural oscillations according to the given laws of motion of the boundaries £i(T).
2. Solution of the inverse problem
To solve system (1.7) A.I. Vesnitsky [11] used the inverse method, i. e. to the given y and ^ from the resulting system of equations, the laws of boundary motion £1 (t) and £2 (t) are found. When solving the inverse problem, the equations of system (1.7) are reduced to the study of algebraic or transcendental equations with respect to £i(t), which in many cases admit exact solutions. Based on the inverse problem Vesnitsky A.I. and Potapov A.I. [11; 22] solutions for a fairly wide range of laws of boundary motion are obtained.
System (1.7) has infinitely many solutions, since on the interval [0,1] the function y(z) and on the interval [-1,0] the function ^(z) can be set arbitrarily, and using the method of successive approximations [27], the values of functions in other areas are found. It is enough for us to find one particular solution that determines the one-to-one correspondence of points z and points y1 = y(z); y2 = ^(z) Of all the solutions, we are only interested in monotone ones, and monotone solutions in the case of boundary movement at a speed lower than the wave propagation speed (\£1(t)| < 1; \£2(t)| < 1) can only be monotonously increasing.
Lemma. If the function y(z) - is monotonously increasing (decreasing), then the function ip(z) is also monotonously increasing (decreasing).
Proof. Indeed, from the first equation of system (1.7) at t = t0 , it follows that
y(T0 + h(T0)) = ^(T0 - hT)).
Now suppose that t5 > t0 and the function y(z) also increases (decreases), then in the case of boundary motion at a speed lower than the wave propagation speed (¡¿1(t)\ < 1; \£2(t)\ < 1), we will have:
ti + £1 (tI) > T0 + £I(t0);
tI - £1(t{) > T0 - £1(t0)
Since the function y(z) in this case increases (decreases), then in order to perform the first equality of system (1.7) at t = t1, it is necessary that the function ip(z) increases (decreases), i.e. the function ip(z) is also increasing (decreasing).
Let us also show that the monotonic solution of system (1.7) in the case of boundary motion at a speed lower than the wave propagation velocity can only be increasing.
Indeed, given the inequality £1(t) < £2(t) we get:
T + £1(t) < t + £2(t); t - £1 (t) >t - £2(t);
Suppose that y(z) and ip(z) they decrease, then we can write:
y(T + £2(t)) < y(T + £1(t)) = 4>(t - £1(t)) < 4>(t - £2(t)).
However, this inequality contradicts the second equation of system (1.7). Therefore, functions y(z) and ^(z)can only be monotonically increasing. The lemma is proved. □
Note that from system (1.7) the functions y(z) and ip(z) are determined up to a constant in the sense that if y(z) and ip(z) are the solution of system (1.7), then y(z) + C and ^(z) + C are also a solution
(here C — is an arbitrary constant). Therefore, for certainty, we can choose such a function ф(г), that ф( —1) = —1. At the same time, from the second equation of system (1.7) for t = 0, it follows that p(1) = 0. From the first equation of system (1.7) for t = 0, we obtain
p(0) = ф(0).
When assigning functions p(z) and ф(г), several arbitrary constants are introduced into them. The dependence of the found laws of motion £1(т) and £2(t) found on the values of these constants makes it possible to approximate quite diverse laws of motion of the boundaries by laws obtained from solving the inverse problem.
The set of reverse solutions is quite wide. The solutions below satisfy the relations:
£i(0)=0; i2(0) = 1; ф( — 1) = —1.
The set of obtained laws of motion of boundaries is divided into classes:
1. The solutions shown in Table 2.1 belong to class A when the left boundary is fixed and p(z) = ip(z). Solutions numbered 1, 2, 3, 6 were obtained by A.I. Vesnitsky and A.I. Potapov [11; 22], solutions 4, 5, 7 were obtained for the first time.
Table 2.1
Class A decisions
Таблица 2.1
Решения класса А
l2(T ) P(z) = ф(г;)
1 VT +1 Ln[(vz+l)/(l-v)] . Ln[(l+v)/(l-v)] 1
2 ^bt + B2 /\B\ л/Bz + B + 0, 25— — л/B2 — B + 0, 25 — 1
3 1/(4Bt + 1) Bz2 +0, 5z — B — 0, 5
4 a BieaT —B2 e ат B1(eaz — e-a) + B2(e-az — ea) — 1, Bi = B2 + 1/(ea — e-a), a > 0
5 \j (t + B)2(a2 — 1) + 1 + 2aB + B2 — а(т + B) Ln[(z+B)2 + l+2aB+B2] Ln[(l+a)/(l-a)] Ln[(B-l)2 + l+2aB+B2] Ln[(l+a)/(l-a)] 1
6 arctg(az+B)
a [—d +y/1 + d2 + (ат + B)2] , d = l+B2-a2 d = 2a arcctg[(l+B2-a2) / (2a)] arctg(B-a) -| arcctg[(l+B2-a2)/(2a)] 1
7 a [In ^l+24AA2e2aT ) — T Aeaz + B, a = ln 1+V2+4A2
2. The next class B is determined by the fact that the boundaries move according to the same law:
¿i(t)= ¿(t); ¿2(t) = 1+ ¿(t); ¿(0) = 0.
Since the movement of the boundaries is interconnected, there is also an interconnection between the functions p(z) and ^(z). It is expressed by the functional equation:
p(p('^(z)) + 1) - ^(z - 1) = 1. (2.1)
System (1.7) in this case can only be satisfied by functions that are solutions of equation (2.1). Here are two previously unknown solutions of class B: 1) i = vt; p(z) = (1 - v)z/2 + (1 + v)/2 - 1;
^(z) = (1 + V)z/2 + (1 + v)/2 - 1;
2) ¿(t) = a \n[(Be-aT - CeaT)/(B - C)];
y(z) = B(e-az - 1) - C(e-a - 1) - 1; B = C + 1/(e-a - 1);
iP(z) = C(eaz - 1) - C(e-a - 1) - 1.
3. For class C solutions, the boundaries move symmetrically in different directions, i.e.
¿i(t) = -¿(t); ¿2(t) = ¿(T). The equation of the relationship of functions y(z) and ^(z) here has the form:
y(z) = ^(z)+0, 5
Class C solutions are obtained from class A solutions using the following formulas:
¿(t) = ¿a(t); Hz) = 1 Mz); <p(z)= t(z) + 0, 5 ,
where the corresponding functions of class A solutions are indicated with the index A.
4. A solution of class D is obtained for the case when both boundaries move uniformly:
¿i(t) = (B2 - bi)t/(b2 + Bi); ¿2(t) = (B2e1/c - bí)t/(bí + B2eí/c) + 1;
y(z) = C Ln(B1z + D) - C Ln(D - B2) - 1;
^(z) = C Ln(Bxz + D) - C Ln(D - B2) - 1;
D = (Bi + B2e1/c)/(e1/c - 1).
The solution number one in Table 2.1 can be used to study the rope vibrations of load-lifting installations at uniform ascent (descent) [1; 2; 4-9]. The above solutions of class B can be used in the study of oscillations of flexible transmission links [12-14]. The rest of the solutions are model.
The class of inverse solutions is limited, for example, no solution was obtained for the uniformly accelerated motion of the boundary 1(t) = 1 + vt2 . Obtaining the indicated solution is relevant when describing the longitudinal and transverse vibrations of the ropes of load-lifting installations at the acceleration stage [1].
3. Solution of the direct problem
The solution of the direct problem, as a rule, faces great difficulties. Well-known methods for solving functional equations, sometimes can find y and ^ from known ones £i(T), but in a limited range of argument values and in a form that is not very suitable for analytical research.
In this regard, we consider an approximate solution of the functional equation
y(T + l(T)) - y(T - l(T)) = 1. (3.1)
For an approximate solution of equation (3.1), it is proposed to use the asymptotic method [28].
For fixed boundaries £(t) = £, the solution to (3.1) is the linear function
1
ys(z) = —z + const.
In the case of a slow motion of the boundary £(t), the "phase" of the wave y(z) during its run through the system changes slightly with respect to ys (z). It is assumed that y(z) has derivatives of any order, and writing y(T + £(t)) in the form of power series in £(t), after substituting them into (1.1), we obtain a differential equation for slowly changing current "phase" y(T)
^ lk+1 d,k+1y
^Jk + \)\' dT^ = 1. (3.2)
k=0 v '
Since y(T) deviates slightly from the linear law ys (z = t) during the wave travel time, each next term
on the left side of equation (3.2) is much smaller than the previous one, and its solution must be sought in the form of a series
w
y(T ) = Y1 yn(T). (3.3)
n=0
Substituting (3.3) into (3.2) and equating the terms of the same order of smallness individually to zero, we obtain for the zero approximation
T
1 dt
y0(T = 2 J W).
0
In the case of a linear law of motion of the boundary £(t) = 1 + vt, the phase of dynamic natural oscillations is equal to
= . (3.4)
Values (3.4) were compared with the values obtained using the exact solution (Table 2.1):
( Ln [(vz + 1)/(1 - v)] 1
¥(z) = -¡—йГ~,—VJn-vT - 1 (3.5)
Ln [(1 + v)/(1 - v)]
The values of the maximum absolute errors A of the asymptotic method, depending on the speed of the boundary movement v, are given in Table 3.1.
Table 3.1
Error of the asymptotic method depending on the velocity of the boundary
Таблица 3.1
Погрешность асимптотического метода в зависимости от скорости границы
V 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
A 0,002 0,006 0,013 0,023 0,036 0,053 0,073 0,100 0,139
In the interval v g [0,1; 0,6] the errors of the approximate method are small. The increase of the error when v approaches unity is explained by the fact that the function (3.5) becomes infinitely large when v ^ 1.
Insignificant errors make it possible to apply the described method to solve functional equation (3.1) in cases where its exact solution is not known.
Conclusion
Using the analytical method of variable substitution, the original boundary value problem is reduced to a system of functional-difference equations. The solution of the original problem depends on whether it is possible to solve the given system (1.7). Vesnitsky A.I. proposed to solve it by the reverse method, i.e. to set functions p and ^ and from the resulting system of equations to find the laws of motion of the boundaries. The paper presents five new inverse solutions of the system.
An approximate asymptotic method for solving the functional equations of system (1.7) is considered. Under conditions of slow motion of the boundaries, minor errors make it possible to apply this method in cases where the exact solution of the system of functional equations is not known.
The above solutions can be used in the study of rope vibrations of lifting installations with a uniform ascent (descent), flexible links of transmission (for example, a belt drive), etc.
References
[1] Savin G.N., Goroshko O.A. Dynamics of a thread of variable length. Kyiv, 1962, 332 p. (In Russ.)
[2] Goroshko O.A., Savin G.N. Introduction to the mechanics of deformable one-dimensional bodies of variable length. Kiev: Naukova Dumka, 1971, 270 p. (In Russ.)
[3] Litvinov V.L., Anisimov V.N. Mathematical modeling and study of oscillations of one-dimensional mechanical systems with moving boundaries: monograph. Samara: Samarskii gosudarstvennyi tekhnicheskii universitet, 2017, 149 p. Available at: https://www.elibrary.ru/item.asp?id=36581641. EDN: https://www.elibrary.ru/yqksvn. (In Russ.)
[4] Kolosov L.B., Zhigula T.I. Longitudinal and transverse vibrations of the rope string of the lifting installation.
News of the Higher Institutions. Mining Journal, 1981, no. 3, pp. 83-86. (In Russ.)
[5] Zhu W.D., Chen Y. Theoretical and experimental investigation of elevator cable dynamics and control. Journal of Vibrations and Acoustics, 2006, vol. 128, issue 1, pp. 66-78. DOI: https://doi.org/10.1115/1.2128640.
[6] Shi Y., Wu L., Wang Y. Nonlinear analysis of natural frequencies of a cable system. Journal of Vibration Engineering & Technologies, 2006, no. 2, pp. 173-178.
[7] Wang L., Zhao Y. Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations. Journal of Sound and Vibration, 2009, vol. 319, issues 1-2, pp. 1-14. DOI: http://dx.doi.org/10.1016/jjsv.2008.08.020.
[8] Zhao Y., Wang L. On the symmetrical modal interaction of the suspended cable: Three-to one in-ternal resonance. Journal of Sound and Vibration, 2006, vol. 294, issues 4-5, pp. 1073-1093. DOI: https://doi.org/10.1016/j.jsv.2006.01.004.
[9] Litvinov V.L. Longitudinal oscillations of the rope of variable length with a load at the end. Bulletin of Science and Technical Development, 2016, no. 1 (101), pp. 19-24. Available at: https://vntr.ru/ftpgetfile.php?id=919; https://elibrary.ru/item.asp?id=28765822. EDN: https://elibrary.ru/yfmnxr. (In Russ.)
[10] Samarin Yu.P. On a nonlinear problem for a wave equation in a one-dimensional space. Applied Mathematics and Mechanics, 1964, vol. 26, no. 3, pp. 77-80. Available at: https://pmm.ipmnet.ru/ru/Issues/1964/28-3. (In Russ.)
[11] Vesnitsky A.I. Waves in systems with moving boundaries and loads. Moscow: Fizmatlit, 2001, 320 p. Available at: https://knigogid.ru/books/1915093-volny-v-sistemah-s-dvizhuschimisya-granicami-i-nagruzkami/toread?ysclid= lnx2mbqz7e29843152. (In Russ.)
[12] Litvinov V.L., Anisimov V.N. Transverse vibrations rope moving in longitudinal direction. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2017, vol. 19, no. 4, pp. 161-166. Available at: https://elibrary.ru/item.asp?id=32269460. EDN: https://elibrary.ru/tboayo. (In Russ.)
[13] Erofeev V.I., Kolesov D.A., Lisenkova E.E. Investigation of wave processes in a one-dimensional system lying on an elastic-inertial base with a moving load. Bulletin of Science and Technical Development, 2013, no. 6 (70), pp. 18-29. Available at: https://vntr.ru/ftpgetfile.php?id=696; https://elibrary.ru/item.asp?id=22010422. EDN: https://elibrary.ru/snqzyx. (In Russ.)
[14] Litvinov V.L. Transverse vibrations viscoelastic rope variable length on an elastic foundation with considering the influence of the resistance forces environmental. Bulletin of Science and Technical Development, 2015, no. 4 (92), pp. 29-33. Available at: https://vntr.ru/ftpgetfile.php?id=845; https://elibrary.ru/item.asp?id=29275371. EDN: https://elibrary.ru/yqqlqb. (In Russ.)
[15] Litvinov V.L. Exact and approximate solutions the problem of oscillations of a rod of variable length. Bulletin of Science and Technical Development, 2017, no. 9 (121), pp. 46-57. Available at: https://vntr.ru/vols/2017-09/5vntr9-121.pdf; https://elibrary.ru/item.asp?id=30267074. EDN: https://elibrary.ru/zmiruh. (In Russ.)
[16] Anisimov V.N., Litvinov V.L. Investigation of resonance characteristics of mechanical objects with moving borders by application of the Kantorovich-Galyorkin method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2009, № 1 (18), pp. 149-158. DOI: https://doi.org/10.14498/vsgtu658. EDN: https://www.elibrary.ru/kzzxnn. (In Russ.)
[17] Lezhneva A.A. Flexural oscillations of a beam of variable length. Mechanics of Solids, 1970, no. 1, pp. 159-161. (In Russ.)
[18] Anisimov V.N., Korpen I.V., Litvinov V.L. Application of the Kantorovich-Galerkin method for solving boundary value problems with conditions on moving boundaries. Mechanics of Solids, 2018, vol. 53, no. 2, pp. 177-183. DOI: https://doi.org/10.3103/S0025654418020085. EDN: https://www.elibrary.ru/wtofxt. (in English; original in Russian)
[19] Litvinov V.L. Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations. Proceedings of Krasovskii Institute of Mathematics and Mechanics UB RAS, 2020, vol. 26, no. 2, pp. 188-199. DOI: https://doi.org/10.21538/0134-4889-2020-26-2-188-199. EDN: https://elibrary.ru/lgjahf. (In Russ.)
[20] Litvinov V.L., Litvinova K.V. An approximate method for solving boundary value problems with moving boundaries by reduction to integro-differential equations. Computational Mathematics and Mathematical Physics, 2022, vol. 62, № 6, pp. 945-954. DOI: https://doi.org/10.1134/s0965542522060112. EDN: https://elibrary.ru/qexsaz. (In English; original in Russian)
[21] Litvinov V.L. Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support. Theoretical and Mathematical Physics, 2023, vol. 215, issue 2, pp. 709-715. DOI: https://doi.org/10.1134/S0040577923050094. (In English; original in Russian)
[22] Vesnitsky A.I. Inverse problem for a one-dimensional resonator changing its dimensions in time. Izv. vuzov. Radiophysics, 1971, vol. 10, Pp. 1538-1542.
[23] Barsukov K.A., Grigoryan G.A. On the theory of a waveguide with movable boundaries. Izv. vuzov. Radiophysics, 1976, vol. 2, pp. 280-285.
[24] Anisimov V.N., Litvinov V.L., Korpen I.V. On a method of analytical solution of wave equation describing the oscillations sistem with moving boundaries. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2012, № 3(28), pp. 145-151. DOI: https://doi.org/10.14498/vsgtu1079. EDN: https://www.elibrary.ru/qbutvh. (In Russ.)
[25] Litvinov V.L. Solving boundary value problems with moving boundaries using the method of change of variables in the functional equation. Middle Volga Mathematical Society Journal, 2013, vol. 15, № 3, pp. 112-119. Available at: https://www.mathnet.ru/rus/svmo405. (In Russ.)
[26] Anisimov V.N., Litvinov V.L. Analytical method of solving wave equation with a wide range of conditions for a moving boundary. Bulletin of Science and Technical Development, 2016, no. 2 (102), pp. 28-35. Available at: https://vntr.ru/ftpgetfile.php?id=929; https://elibrary.ru/item.asp?id=28765827. EDN: https://elibrary.ru/yfmnzp. (In Russ.)
[27] Koshlyakov N.S., Gliner E.B., Smirnov M.M. Equations in partial derivatives of mathematical physics. Moscow: Vysshaya shkola, 1970. Available at: https://alexandr4784.narod.ru/kgs.html?ysclid=lnyc6xnrdc604386929. (In Russ.)
[28] Litvinov V.L. Study free vibrations of mechanical objects with moving boundaries using asymptotical method. Middle Volga Mathematical Society Journal, 2014, vol. 16, issue 1, pp. 83-88. Available at: https://journal.svmo.ru/archive/article?id=1295. (In Russ.)
Научная статья DOI: 10.18287/2541-7525-2024-30-1-40-49
УДК 517.958:531.12; 534.11 Дата: поступления статьи: 14.11.2023
после рецензирования: 20.12.2023 принятия статьи: 28.02.2024
В.Л. Литвинов
Самарский государственный технический университет, г. Самара, Российская Федерация
Московский государственный университет имени М.В. Ломоносова, г. Москва, Российская Федерация
E-mail: [email protected]. ORCID: http://orcid.org/0000-0002-6108-803X
К.В. Литвинова
Московский государственный университет имени М.В. Ломоносова, г. Москва, Российская Федерация E-mail: [email protected]. ORCID: http://orcid.org/0000-0002-1711-9273
ОБ ОДНОМ РЕШЕНИИ ЗАДАЧИ О КОЛЕБАНИЯХ МЕХАНИЧЕСКИХ СИСТЕМ С ДВИЖУЩИМИСЯ ГРАНИЦАМИ
АННОТАЦИЯ
В статье рассмотрен аналитический метод решения волнового уравнения, описывающего колебания систем с движущимися границами. Заменяя переменные, останавливающие границы и оставляющие уравнение инвариантным, исходная краевая задача сводится к системе функционально-разностных уравнений, которая решена прямым и обратным методами. Описан также обратный метод, позволяющий аппроксимировать весьма разнообразные законы движения границы законами, полученными в результате решения обратной задачи. Новые частные решения получены для достаточно широкого круга законов движения границы. С помощью прямого асимптотического метода рассматривается приближенное решение функционального уравнения. Оценка погрешностей приближенного метода производится в зависимости от скорости движения границы.
Ключевые слова: волновое уравнение; краевые задачи; колебания систем с подвижными границами; замена переменных; законы движения границ; функциональные уравнения.
Цитирование. Litvinov V.L., Litvinova K.V. On one solution of the problem of vibrations of mechanical systems with moving boundaries // Вестник Самарского университета. Естественнонаучная серия / Vestnik of Samara University. Natural Science Series. 2024. Т. 30, № 1. С. 40-49. DOI: http://doi.org/10.18287/2541-7525-2024-30-1-40-49.
Информация о конфликте интересов: авторы и рецензенты заявляют об отсутствии конфликта интересов.
© Литвинов В.Л., Литвинова К.В., 2024 Владислав Львович Литвинов — кандидат технических наук, заведующий кафедрой общетеоретических дисциплин, доцент, Самарский государственный технический университет, 443100, Российская Федерация, г. Самара, ул. Молодогвардейская, 244; докторант МГУ имени М.В. Ломоносова, механико-математический факультет, ГСП-1, 119991, Российская Федерация, г. Москва, Ленинские горы, 1.
Кристина Владимировна Литвинова — студент 4 курса, МГУ имени М.В. Ломоносова, ГСП-1, 119991, Российская Федерация, г. Москва, Ленинские горы, 1.
Литература
1] Савин Г.Н., Горошко О.А. Динамика нити переменной длины. Киев, 1962, 332 с.
2] Горошко О.А., Савин Г.Н. Введение в механику деформируемых одномерных тел переменной длины. Киев: Наукова Думка, 1971, 270 с.
3] Литвинов В.Л., Анисимов В.Н. Математическое моделирование и исследование колебаний одномерных механических систем с движущимися границами. Самара: Самарский государственный технический университет, 2017. 149 с. URL: https://www. elibrary.ru/item. asp?id=36581641. EDN: https://www.elibrary.ru/yqksvn.
4] Колосов Л.В., Жигула Т.И. Продольно-поперечные колебания струны каната подъемной установки // Изв. вузов. Сер.: Горный журнал. 1981. № 3. С. 83-86.
5] Zhu W.D., Chen Y. Theoretical and experimental investigation of elevator cable dynamics and control // Journal of Vibrations and Acoustics, 2006, vol. 128, issue 1, pp. 66-78. DOI: https://doi.org/10.1115/1.2128640.
6] Shi Y., Wu L., Wang Y. Nonlinear analysis of natural frequencies of a cable system // Journal of Vibration Engineering & Technologies, 2006, no. 2, pp. 173-178.
7] Wang L., Zhao Y. Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations // Journal of Sound and Vibration, 2009, vol. 319, issues 1-2, pp. 1-14. DOI: http://dx.doi.org/10.1016/jjsv.2008.08.020.
8] Zhao Y., Wang L. On the symmetrical modal interaction of the suspended cable: three-to one in-ternal resonance // Journal of Sound and Vibration, 2006, vol. 294, issues 4-5, pp. 1073-1093. DOI: https://doi.org/10.1016/j.jsv.2006.01.004.
9] Литвинов В.Л. Продольные колебания каната переменной длины с грузом на конце // Вестник научно-технического развития. 2016. № 1 (101). С. 19-24. URL: https://vntr.ru/ftpgetfile.php?id=919; https://elibrary.ru/item.asp?id=28765822. EDN: https://elibrary.ru/yfmnxr.
10] Самарин Ю.П. Об одной нелинейной задаче для волнового уравнения в одномерном пространстве // Прикладная математика и механика. 1964. Т. 28, № 3. С. 542-543. URL: https://pmm.ipmnet.ru/ru/Issues/1964/28-3.
11] Весницкий А.И. Волны в системах с движущимся границами и нагрузками. Москва: Физматлит, 2001. 320 с. URL: https://knigogid.ru/books/1915093-volny-v-sistemah-s-dvizhuschimisya-granicami-i-nagruzkami/toread?ysclid= lnx2mbqz7e29843152.
12] Литвинов В.Л., Анисимов В.Н. Поперечные колебания каната, движущегося в продольном направлении // Известия Самарского научного центра Российской Академии наук. 2017. Т. 19, № 4. С. 161-166. URL: https://elibrary.ru/item.asp?id=32269460. EDN: https://elibrary.ru/tboayo.
13] Ерофеев В.И., Колесов Д.А., Лисенкова Е.Е. Исследование волновых процессов в одномерной системе, лежащей на упруго-инерционном основании, с движущейся нагрузкой // Вестник научно-технического развития. 2013. № 6 (70). C. 18-29. URL: https://vntr.ru/ftpgetfile.php?id=696; https://elibrary.ru/item.asp?id=22010422. EDN: https://elibrary.ru/snqzyx.
14] Литвинов В.Л. Поперечные колебания вязкоупругого каната переменной длинны, лежащего на упругом основании, с учетом влияния сил сопротивления среды // Вестник научно-технического развития. 2015. № 4 (92). С. 29-33. URL: https://vntr.ru/ftpgetfile.php?id=845; https://elibrary.ru/item.asp?id=29275371. EDN: https://elibrary.ru/yqqlqb.
15] Литвинов В.Л. Точное и приближенное решения задачи о колебаниях стержня переменной длины // Вестник научно-технического развития. 2017. № 9 (121). С. 46-57. URL: https://vntr.ru/vols/ 2017-09/5vntr9-121.pdf; https://elibrary.ru/item.asp?id=30267074. EDN: https://elibrary.ru/zmiruh.
16] Анисимов В.Н., Литвинов В.Л. Исследование резонансных свойств механических объектов с движущимися границами при помощи метода Канторовича-Галеркина // Вестник Самарского государственного технического университета. Сер.: Физико-математические науки. 2009. Вып. 1 (18). С. 149-158. DOI: https://doi.org/10.14498/vsgtu658. EDN: https://www.elibrary.ru/kzzxnn.
17] Лежнева А.А. Изгибные колебания балки переменной длины // Известия Российской Академии наук. Сер.: Механика твердого тела. 1970. № 1. P. 159-161.
18] Анисимов В.Н., Корпен И.В., Литвинов В.Л. Применение метода Канторовича-Галеркина для решения краевых задач с условиями на движущихся границах // Известия Российской Академии наук. Сер.: Механика твердого тела. 2018. № 2. С. 70-77. URL: https://elibrary.ru/item.asp?id=32836734. EDN: https://elibrary.ru/ywsllt.
[19] Литвинов В.Л. Решение краевых задач с движущимися границами при помощи приближенного метода построения решений интегродифференциальных уравнений // Труды Института математикии и механики УрО РАН. 2020. Т. 26, № 2. С. 188-199. DOI: https://doi.org/10.21538/0134-4889-2020-26-2-188-199. EDN: https://elibrary.ru/lgjahf.
[20] Литвинов В.Л., Литвинова К.В. Приближенный метод решения краевых задач с подвижными границами путем сведения к интегродифференциальным уравнениям // Журнал вычислительной математики и математической физики. 2022. Т. 62, № 6. С. 977-986. DOI: https://doi.org/10.31857/S0044466922060126. EDN: https://elibrary.ru/nhedup.
[21] Литвинов В.Л. Вариационная постановка задачи о колебаниях балки с подвижной подпружиненной опорой // Теоретическая и математическая физика. 2023. Т. 215. № 2. С. 289-296. DOI: https://doi.org/10.4213/tmf10473.
[22] Vesnitsky A.I. Inverse problem for a one-dimensional resonator changing its dimensions in time // Izv.vuzov. Radiophysics. 1971. Vol. 10. Pp. 1538-1542.
[23] Barsukov K.A., Grigoryan G.A. On the theory of a waveguide with movable boundaries // Izv. vuzov. Radiophysics. 1976. Vol. 2. Pp. 280-285.
[24] Анисимов В.Н., Литвинов В.Л., Корпен И.В. Об одном методе получения аналитического решения волнового уравнения, описывающего колебания систем с движущимися границами // Вестник Самарского государственного технического университета. Сер.: Физико-математическме науки. 2012. № 3(28). С. 145-151. DOI: https://doi.org/10.14498/vsgtu1079. EDN: https://www.elibrary.ru/qbutvh.
[25] Литвинов В.Л. Решение краевых задач с движущимися границами при помощи метода замены переменных в функциональном уравнении // Журнал Средневолжского математического общества. 2013. Т. 15, № 3. С. 112-119. Available at: https://www.mathnet.ru/rus/svmo405.
[26] Литвинов В.Л., Анисимов В.Н. Аналитический метод решения волнового уравнения с широким классом условий на движущихся границах // Вестник научно-технического развития. 2016. № 2(102). С. 28-35. URL: https://vntr.ru/ftpgetfile.php?id=929; https://elibrary.ru/item.asp?id=28765827. EDN: https://elibrary.ru/yfmnzp.
[27] Кошляков Н.С., Глинер Е.Б., Смирнов М.М. Уравнения в частных производных математической физики. Москва: Высшая школа, 1970. URL: https://alexandr4784.narod.ru/kgs.html?ysclid=lnyc6xnrdc604386929.
[28] Литвинов В.Л. Исследование свободных колебаний механических объектов с движущимися границами при помощи асимптотического метода // Журнал Средневолжского математического общества. 2014. Т. 16, № 1. С. 83-88. URL: https://journal.svmo.ru/archive/article?id=1295.