Научная статья на тему 'On determination of linear frequencies of bending vibrations of piezoelectric shells and plates by exact and averaged treatment'

On determination of linear frequencies of bending vibrations of piezoelectric shells and plates by exact and averaged treatment Текст научной статьи по специальности «Физика»

CC BY
92
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «On determination of linear frequencies of bending vibrations of piezoelectric shells and plates by exact and averaged treatment»

80 BecmHUK CaMry — EcmecmeeHHOHaynuan cepun. 2007. №2(52)

MEXAHMKA

YAK 534.1

ON DETERMINATION OF LINEAR FREQUENCIES OF BENDING VIBRATIONS OF PIEZOELECTRIC SHELLS AND PLATES BY EXACT AND AVERAGED TREATMENT

© 2007 A.G.Bagdoev, A.V. Vardanyan, S.V. Vardanyan1

In this paper the derivation and numerical solution of disspersion relations for frequencies of free bending vibrations for piezoelectric cylindrical thin shells with longitudinal polarization and plates with normal polarization is made. Solution is done by exact space treatment and by Kirchhoff hypothesis. Comparision of obtained tables shows that frequencies by exact and based on Kirchhoff hypothesis are quite different.

Introduction

The bending vibrations of magnetoelastic shells and plates by averaged treatment based on classic theory are considered in [1—5]. By the new space treatment at first developed for elastic plates in [6], the magnetoelstic vibrations of plates and shells are considered in [7-9]. The dispersion relation for Lamb waves in piezoelastic strip by exact treatment is obtained in [10], [11], where are obtained numerically five modes of mentioned waves, but is not made carefully investigation of solution of transcendent dispersion equation corresponding to law of relation of frequency from wave number for bending waves for thin plates. The above mentioned investigation is carried out analytically in [7-9] for magnetoelastic plates and it is shown that almost for all cases the results obtained by exact solution are distinguished essentially from averaged solution based on Kirchhoff hypothesis, which formerly give excellent results for elastic plates [6]. In present paper by space treatment of [6-11] are determined analytically and numerically the frequencies of free bending vibrations of the piezoelectric cylindrical shell with longitudinal polarisation and the comparison with averaged treatment is carried out. Besides the same investigation for piezoelectric plate with transverse polarization is carried out and are made and

1 Bagdoev Alexander Georgevich ([email protected]), Vardanyan Anna Vanikovna ([email protected]), Vardanyan Sedrak Vanikovich ([email protected]) Institute of Mechanics of NAS RA, Marshal Baghramyan 24 b, Yerevan, 0019, Armenia.

compared calculations of frequencies by space and averaged treatment. As for shell as for plate it is shown that Kirchhoff hypotesis for determination of free bending vibrations frequencies for piezoelectric is not applicable.

1. Statement of problem and solution for cylindrical shell

Let us consider the infinite cylindrical shell of small thickness 2h and radius of middle section R made from piezoelectric with elastic constants C11, C12, C13, C44 and piezomodulus e^\, 633, e\5 [10]. For the case of axial polarization of shell choosing coordinate along axis of cylinder and as radial coordinate one can write the stresses and electrical induction components in shell

[10] as

dUr Ur duz

arr - (-11—-----1- C12---1- C13—----1- eji—,

dr r dz dz

IdUr Ur\ dUz

ozz - C13 "T—1------+ C33——1- 633 —,

( dr r j dz dz

(dUr dUz \

Orz - C44 —------1- —— + £15 —,

\dz dr! dr (11)

dur ur duz dcj) ^ ' >

% - Li2^— + Cn— + C13— +631 — , dr r dz dz

(dUr dUz \

Dr - ei5 ——1- -7— ~ eii"S->

( dz dr j dr

(dUr Ur\ dUz

“a- + — + e33 "T-------£33 -T-,

dr r j dz dz

where Ur, Uz are displacements components, ^— potential of electrical field, Eh, £33 are dielectric permeabilities.

Then equations of motion and induction yield [10]

d2Ur 1 dUr Ur\ d2Ur ,d2Uz

Cn ~ty + --r----------j + ^44~aY + ^13 +

dr2 r dr r2 dz2 drdz

. . d2§ d2Ur

+ (g3i + eis) —— = p-

(1.2)

drdz dt2

^ , d2uz 1 duz\ ^ d2uz n d2ur 1 dur\

44 TT + + 33 TT + ('13 + ^44) 7T7T + +

dr2 r dr) dz2 \drdz r dz j

d2§ 1 \ d2§ d2Uz

+e'5^ + 7») + enl^ = p W

d2Uz 1 dUz\ d2Uz N /d2Ur 1 dUr

z z z r r

ei5 + -~r~ + ^33“TT + (ei5 + e3l) 7r~T" +

dr2 r dr dz2 \drdz r dz

jd2<b 1 d2<b

“eil|a^ + 7aFrC33aJ= ’

where is density. The exact particular solution of (1.2), (1.3) for propagated along axis plane wave as in corresponding piezoelectric plate [11] and in mag-netoelastic shell and plate [7-9] can be looked for in space treatment in form

= rvJ, j = 12,3,

Ur = AJI1 (?,) elkz-m + AJK1 (?,) elkz-m + c.c.,

X 1 J V 1 (1.4)

Uz = BjIo (?j) elkz—ltot + BJKo (J elkz—ltot + c.c.,

$ = ^ jIo Jkz—m + jo (J eikz—ltot + c.c.,

where Io, 1, Ko, 1 are Bessel functions of imagine argument on is carried out summation from 1 to 3. On account relations

I0 (?) = I1 (?), ko (?) = -K1 (?),

+ \h (?) = h (?), + \k, (?) = -Ko (?) (1'5)

d? ? d? ?

one can from (1.2)-(1.5) obtain

2

—iAjiCuvj — C44k2 + pto2^ + (C13 + C44) VjkBj+

+ (e31 + e15) Vjk§J = 0,

AjVjik (C13 + C44) + (C44V^ — C33k2 + pto2) Bj+ (1.6)

^ J-(e15V^ — e33k2} = 0,

(e31 + e15) AjV jik + Bj^v2 — e33k2) + ^ J (—eUV2 + 633k2) = 0.

The equation for V2 is distinguished from equation of [11] for plate with normal polarization and yields

pto2 2 C44 C13 + C44 C33

yJ = lJk’ 7^12 = v ’ r = ^1’ ---------------r------- = ^2’ r~ = ^4’

Cuk2 C11 C11 C11

Cu = 1

C„ 2’ (1.7)

e33 e15 2 E11 ,7 (e31 + e15)

M-5 =-----------, ^6 =-------------, ^7 = —, k{ = —-------------------,

e31 + e15 e31 + e15 E33 C11E33

k2 = , k3 = ^.5k\, det Hflj-jl = 0,

where

«11 = — X2 + ^1 — V2, «12 = «21 = M^Xj, a13 = k(KJ,

«22 = ^X2 — ^4 + V2, (1.8)

«23 = k2 (^X2 — ^5) , «31 = XJ, «32 = ^X2 — M-5, «33 = 1 — ^X2.

For elastic case when ^5 = ^ = k2 = k2 = k3 = 0 (1.7), (1.8) have two roots

X0 3, and for piezoelectric one must seek solution of (1.7) starting from values

0 0 1 (e31 + e15) ^j

of "h.2 = X3 = X~, Xi = —. Denoting -------------------------—-------- = qpy one can obtain from

M-7 C11

(1.6)

and [11]

where

iAj«11 + Bj«12 + 9 j«13 = 0,

iAj«21 + Bj«22 + 9 J«23 = 0, (1.9)

iAj«31 + B j«32 + 9 j«33 = 0

iAj = ajUj, Bj = pjUj, 9j = YjUj, (1.10)

(Xj) = «12«23 — «13 «22, P j (Xj)

= «12«23 — «13«22, P j (X= «21 «13 — «11 «23, X A = «11 «22 — «2

(1.11)

12

For Aj, —Bj, —9j one obtains the same (1.11) equation expressed by Uj. Then (1.4) gives

Ur = —iaJUJI1 (?^eikz—itot — iaJUjK1 (?^eikz—itot + c.c., Uz = pjUjIo (?j) eikz—itot — PjUjKo (?j) eikz—itot + c.c.,

(e31^15H = yjUjIo (%) elkz~imt - yjU'Ko (%) elkz~m + c.c., (L12)

(e31 + e15) i

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

—r--------$ = <P>

C11

where is carried out summation on from 1 to 3. Using (1.1), (1.5) and (1.12) one obtains

°rr _ _n TJ \ V /fc \jkz-imt _ ^.12 „ TT \ 1 (^■/) Jkz-imt

ike - c

+

11 C11 ?j

C

_P ft TT 7~ (’£ \ Jkz-mt n TTf\ i^f ("t \ Jkz-mt

c 11

+

- ^-pyt/;X0 (^)eite-itof+

C11 j ?j C11 j

e31 !/,y,£^,*0 (§,)**”“ +c.c„

e31 + e15 V ' e31 + e15

O

44

rz T T 7 \ Jkz—itot . 1/,*TTf^(<il \ Jkz—itot .

= rijUjl\ j e + rijUjK\ (§yJ e + c.c.,

kC

* , 13 \ , ^6C11,

» . = « + (> /. + J,

C44

t(e°;ei!)=w

f‘ = - E‘ (1.13)

(e31 + e15)2

The boundary conditions on shell surfaces as in case of piezoelectric plates give [11]

orr (R ± h, z) = 0, orz (R ± h, z) = 0,

C11 (1.14)

9 (R ± h, z) = 9 (R ± h, z), Dr (R ± h, z) = Dr (R ± h, z)

e31 + e15

The dimensionless potential qp(r, z, t) in dielectric out of shell satisfy the equa-d29 1 dcp d2p

tion —— H------------1---— = 0 and one can look for solution outside of shell in

dr2 r dr dz2

form

(9 = (j)+eikz itotK0 (kr) + c.c., r > R + h, (9 = (—eikz—itotI0 (kr) + c.c., r < R — h.

(1.15)

— d<f

For Dr = e— one obtains dr

—Dr = -<b+ee,kz mtK\ (hr) + c.c., r > R + h, k

\br = qb_ee'fe-'“f/i (kr) + c.c., r < R-h. k

The first line equations (1.14) give four equations

■jW (5.7) + W" Ov)+

(1.16)

C K1 (?±) C

+a,U’l\,K[ (<•*) + -2.ajUfo-±±L + (?;) - (1.17)

11 ?j 11

' + (1-| '

— (1 — UjYjIo (?j±) + (1 — UjYjKo (?j±) = 0,

n*Ujh (?±) + nUjK1 (?±) = 0, ?± = (R ± h) kXj,

where is carried out summation on from 1 to 3. The last conditions in (1.14) and (1.12), (1.15) yield.

YjUjIo (?+) — YjUjKo (?+) = (+Ko {(R + h)k},

YjUjIo (?") — YjUjKo (?—) = (—Io {(R — h)k},

( ) ( ) C fpth (67) + t'jU'jK, (SJ) = “ *+*, № + ««,

( ) ( ) C

fpth (%)+>;u’Kt (57) = -fe[ "eis)A-^ № -»«•

or excluding of (j —, (j +

y Uh (?J)-y uk (?;)

(e31 + e15)2

6C11

Y UA (?-) — Y UK (?-)

K'J (?;)+t; uk (?;))

K0{(R + h)k} Kx {(R + h)k}’

(e31 + e15)2

eC

11

fcJ (?;)+t;uK (?;))

_X]I0{(R-h)k} h{(R-h)kY

(1.18)

where is carried out summation on from 1 to 3. Equations (1.17), (1.18) relate all Uj, Ujj by homogeneous linear system, where determinant equation is

n+ n+ n+ M+ M+ M++

n— n; n; M— M2— M3—

P1+1 P+ P3+ n+ n+ n+

P1- P2- P3- n— n- n-

N+ N+ N++ A+ A++ A++

N— N2- N3- A1- A2— A3—

= 0,

(1.19)

C1

I1 (?±)

C

C12 1 j C13

UJ ~ aJ J 1 (^/) c^aJ

“(1 — ^) YjI0 (?±),

K>(?*) . c

My = ajkjK[ (?j) + ^a,l

C12 Cn

rv

+ (1 — ^) yjKo (?j±) , P±=J (?±), nj±=n;K1 (?±),

N+ = v T - (g31+g!5)2 j Yy0l^J Ecn K\ {k(R + h)}

J1 (?-)

11

(1.20)

Ko {k (R + h)},

AJ = —Y ,K0 (?;)

a; = j (?;)

(e31 + e15)

2t

eC11 I1 {k (R — h)}

(e31 + e15)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Io {k (R — h)},

2t

K1 (?j+)

eC11 K1 {k (R + h)}

Ko {k (R + h)},

(e31 + e15)

2t

;K> (?;)

-Io {k (R — h)}.

eC11 I1 {k (R — h)}

Where there is not summation by j.

We must carry out calculations for piezoelectric case (1.8), (1.19). For all values

+

of constants for BaTio3 are as follows

1 5 i

M-l = ~, M-2 = T> M"4 = 1,

3 6

^ [L5=2, [16 = 7:, M-7 = 1, — = 10, (L21)

Cii 2 2 e

Jfc? = —, « = 4, 50, 100.

1 300

Placing X.1,2,3 (v) from (1.7) in (2.4), (1.19), one must solve dispersion equation for small values of kh , i.e. for h = 0.1 cm, k = 0.1, 0.2, 0.3, 0.4, 0.5 1/cm,

R = 103 cm and obtain tables of v = v (k) or CD = k+\-----------------------v(&). Results are

v p

brought in table 1.

Table 1

h = 0.1, R = 103

k2 - — 1 300 k

0.1 0.2 0.3 0.4 0.5

n=4 0.0145 0.0102 0.0083 0.0072 0.0064

«=50 0.0299 0.02118 0.0173 0.0149 0.0134

«=100 0.0366 0.0259 0.0211 0.0183 0.0164

2. The case of elastic cylindrical shell

For elastic shell one must put

e3i = 0, £33 = 0, ei5 = 0, 9 = 0. (2.1)

and take place (1.4) for ur, uz. (1.7) yields

aii«22 - a22 = 0, (2.2)

where atk are done by (1.8) and there are two roots X^. The relations (1.11)

yield

yield (2.3)

aj (Xj) = -«i3«22, Pj (Xj) = -ai2aB, j = i, 2.

Then one has equations (1.17) on boundary of shell in which yj and n* are given by (1.13).

In (1.17) unknown functions are . The determinant equation will give as in (1.19) for first four lines the same form without third and sixth columns

n+ n+ M+ M+

n- n- M- M2-

P+ P+ n+ n+

P- P- n- n-

are done in (1.20)

= 0,

where n±2, M±2, P±2, ^±2 are done in (1.20), where ^5 = 0, ^ = 0.

3. Solution for cylindrical shell based on Kirchhoff hypothesis

For comparison with results of Kirchhoff hypothesis for piezoelectric shells one can assume that

arz ~ 0, arr ~ 0, ur = A sin kz, 9 = ^0(r)cos kz. (3.1)

where multiplier e~imt is omitted.

Then one obtains using (1.1)

duz dur ei5 89 dr dz C44 dr ’

uz = (R-r)^ - ^-qp + u(z), (3.2)

dz C44

dur Ci2 ur Ci3 duz e3i d9

dr C\\ r Cn dz Cn dz'

Equations of motion are

dorr dorz orr — d2ur

dr dz r P dt2 ’

d°rz dozz orz d uz

+ — + — = p-

(3.3)

dr dz r dt2

From (1.1), (3.2) one obtains

ur Ci2Ci3\ duz

a’: = 7[c'3-—) + i;

dy j e3iCi3\

+ dz V33 Cn ’

C2

i3

L33 -

Cii

+

ur

0» = —

r

C2

i2

C11 - JT-Cii

duz ( C12C13 ,

+ c”-—l+

(3.4)

e33Ci2\

dz V31 Cn )'

Integrating (3.3) on r from R -h to R + h , using that on r = R ± h, orr = 0, orz = = 0 ,and multiplying of second equation (3.3) by R - h and integrating, one obtains equations

R+h R+h

dQ i P , d2u,

/Onadr = pd Ur2h, Q = f arzdr, m dt J

R-h R-h

R++h (3.5)

d Ozzdr R+h

R-h n dM C

-------^------= 0, — = Q, M = I (r-R) ozzdr,

R-h

where small terms it one obtains

d2uz

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Q

as well as — in third equation are neglected, and from dt2 R

du

dz

Ci3 i -

i2

ii

ei3

£31

Cn

£il

C 44

C33 -

C2

i3

C

ii

R

C33 -

C2

C

C33 -

C2

-k(0 sin kz.

C

Substituting (3.1), (3.2), (3.6) in last equation (1.3) one obtains

3 kA kA

£33 k A(r - R) + e 31-£33—C13

rR

i

i2

ii

4>o + ~y - vo^o =

C33 -

C2

- 1'

C

C

'11

44

+ eii

where

ei5

£33 + ^33-pr- +

C44

e33

e3i

C33 -

C2

i3

C

C\2 ~ e\5~

C

ii

ii

C

44

C33 -

i5

C

+ eii

44

(3.6)

(3.7)

(3.8)

To simplify (3.7) one can assume that in terms with piezoelectric effects one can neglect terms with — and one obtains equations

R

A." 2 j. e33PA(r-R)

^0 - V0^0 = ---2-------•

e

(3.9)

i5

C

+ eii

44

For solution of (3.9) one obtains

(0 (r) = Cichv0 (r - R) + C2shv0 (r - R) - %A (r - R).

(3.10)

For solution out of shell for potential 9 one obtains

r > R + h, 9 = cos kzK0 (kr) (j)+e ,mt + c.c., r < R - h, 9 = cos kzI0 (kr) (-e-,mt + c.c.

For induction in shell Dr in (1.1) one obtain

Dr = -(0 (r)

2

e

i5

C

+ eii

44

cos kz + c.c.

u

r

+

2

2

2

— dffi

From continuity conditions for r = R + h of qp = qp , Dr = — one obtains

dr

Ci = 0, C2 =

Vo

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

xA

cj)o = —shv0 (r-R)- %A (r-R), <4>0 Vo

From (3.4), (3.5), (3.6), (3.12) one obtains

2/ m2

—v0(r-R) .

(3.12)

(3.13)

M = C33 -

R+h

J' Oftftdr =

R-h

C2 ^ ^13

C11 sin kz

sin kzk2 A—

- IC13 -

R

C13C12 1

1 -

C2

- 1'

12

C2

11

C11 A2h-

1

C11 R

—A smkz2hC\T,-

12

11

C33 -

C2

^13

Cn

(3.14)

where is used that function ^0 is add with respect to r — R, and values of highly order smallness on are dropped out. Substituting of (3.14) in (3.5) one obtains

2

pm2 =

C33 -

C2

^13

Cn

k4— + — 3 R2

C11 -

C13 - C13

12

11

2 \

C33 -

C2

- 1 •

C

(3.15)

and using also values (1.21)

1

2 1

= -k2^ + —-4 3R2

(3.16)

which in the main order coincides with dispersion relation for elastic anisotropic shell. The numerical results by (3.16) are given in table 2 calculated by Kirchhoff hypothesis

Table 2

k 0.1 0.2 0.3 0.4 0.5

0.000957427 0.00216025 0.00457347 0.00804156 0.0125266

The comparison of table 1 and table 2 shows that the results by space treatment are quite different form those obtained by hypothesis.

2

2

2

V

4. Calculations of frequencies by exact solution for piezoelectric plate

For piezoelectric strip equations of motion

dux d2ux 2 d2uz d29

--— + Ui---— + £ Ux + f-l?--- ---- — 0,

dx2 dz2 dxdz dxdz

d2uz d2uz d2uz 2 d2(p d2(p_

M-2T—+ M-l + + e uz + + [16TT - 0, (4.1)

dxdz dx2 dz2 dz2 dx2

(,ad2ux d2uz d2uz\ 2<92qp d2<$

i^+fc^+feu)+^ + u = 0'

For considered antisymmetric problem one has

ux (x, z) = Uj-skkj-pz cos px,

uz (x, z) = Vjchkjpz sin px, (4.2)

9 (x, z) = (chkjpz sin px,

where is carried out on j summation from 1 to 3, Substituting of (4.2) in (4.1) for Uj, Vj, ( one obtain homogeneous system, where determinant

det ||a;-j|| = 0 (4.3)

determining k,

«11 = 1 - ^k2 - V2, «12 = -M-2k «21 = «12, «13 = -k,

«22 = -^1 + ^4k2 + v2, «23 = ^5k2 - ^6, «31 = k2k,

«32 = k2 - k3k2, «33 = k2 -One can write (4.2) in form [11]

ux (x, z) = ajshkjpzUj cos px,

uz (x, z) = |3jchkjpzUj sin px, (4.4)

9 (x, z) = yjchkjpzUj sin px, where is carried out summation on j from to 3,

aj (kj) = «12«23 - «13 «22,

|3j (kj) = «21 «13 - «11 «23,

Yj (kj) = «11 «22 - «12, potential of electric field 9 in region out of plate |z| > h can be written as

9 = (j)e+pz sin px, (4.5)

d2p d2p

which satisfy the equation —- H--------------------r = 0. The stress components in plate are

J H dx2 dz2 F F

[11]

oxx = C11 pt*Ujshkjpz sin px,

ozz = C33pm* Ujshkjpz sin px, (4.6)

oxz = C44pnjUjchkjpz cos px, where there is summation on j from 1 to 3,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

fj = -aj + (^2 - M-0 pjkj + 0 - Mtf) Yjkj,

* ■s C M-6 C13

n = ajlj + |3y + —YJ, [J-8 = 7—,

M-1 C33

mj = -^aj + fjjlj + fijlj.

Here there is no summation.

Boundary conditions ozz (x, ±h) = 0, axz (x, ±h) = 0 are satisfied by Uj = AjU0, A1 = m2n3 - m3n2

A2 = m3n1 - m1n3, A1 = m1n2 - m2n1, mj = mjshkjph, nj = njchkjph.

From (4.4)-(4.7) and conditions z = ±h, p = p one obtains

(4.7)

e ph(j> = y*AjUo, Y* = Yjchk}ph.

Using also conditions of continuity z component of induction z = ±h

DZ = DZ, z = ±h, DZ = S^,

Dz = pqjAjShkjpzU0 sin px,

Dz = ±pYj AjU0e+z sin px.

One obtains the dispersion equation

s

R21 (p, v) = 0, R21 = R2 ~ —Ri,

s 33

A j,

where is carried out summation on j from 1 to 3,

Yj = Yjchkjph, q* = qjshkjph,

qj = -yjkj - e31^9aj + e33jkjj e31 + e15

(4.8)

(4.9)

I Yj 1

2 V ^ qj

(4.10)

^9 =

CUS

11s 33

5”33 is dielectric constant for plate ^ < 1.

5. Piezoelectric case based on Kirchhoff hypothesis

One can obtain solution for piezoelectric plate with normal polarization based on Kirchhoff hypothesis. Equations of motion and of elastic induction are

doxx doxz d2Hx

+ = P

dx dz dt2

daxz dazz _ d2uz

dx dz ^ dt2 ’

dDx dD^ _

dx dz '

From [11] these equations can be written as

d2Ux d2Ux 2 d2Uz d2p

------ + Ui------- + £ Ux + U? ”—“ + “—” — 0,

dx2 dz2 dxdz dxdz

-

d2ux d2uz d2uz\ 2 d2p d2p

+ ^-2------o” ^-3-------T" I M*7------T ----------T" — 0,

dxdz dx2 dz2 ) dx2 dz2

C44 C13 + C44 C33 e33

- 7^> M*2 - —t;---------------------------------, M-4 - M-5 - -;-;

C11 C11 C11 e31 + e15

Comparison of (5.1), (5.3) yields

dux duz dp e31

Oxx - L11 —----------1- C13 —------1- C11 -

dz C\\S33 dx C^S33 dz

11s 33 dx C11s 33

x duz ^

(5.1)

d2uz d2uz d2uz 2 d2p d2p ^

\Xi------ + 111--- + \Xa + £ Uz + U5 + U-6-------------- = 0, id.2)

dxdz dx2 ^ dz2 ^ dz2 ^ dx2 1

e15 2 ^11 a (e31+ei5) , fx o\

^6 =-------;------, M-7 = , kt = n „----------, h = \i6lq, (5.3)

e31 + e15 s 33 C11s 33

2

7 7 2 2 “ P

k3 = \i5k\, e = ——.

C11

13 11

dx dz dz e31 + e15

duz dux dp

®zz ~ ^33^“ + ^13^— +

dz dx dz

(dux duz\ dp

ax=-cu\~ik+ml + c'mai’ (54)

dp e31 + e15 dux e31 + e15 duz

Dz = + e3i-——,------— + e33-

2 dp e31 + e15 dux du:

D* - ~^Tx + ‘’15"c^7 (if + to

e31 + e15 _

p is connected with electrical potential by p = ——-----------------------p. Due to Kirchhoff

C11

hypothesis one has

uz ~ uz (x) , 0xz ~ 0 0zz ~ 0. (5.5)

From (5.4), (5.5) one can obtain relations

dux duz dz dx

d(f

duz C13 dux C11

£n

C44 d x ’

dz C33 dx C33

,2 \

\ly

dux dz ’

0* = -^

d x

Dz = -^ dz

^7 + # C44

„2 V

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 +

33

C

33

C13 \ e31 + e15 dux

One can look for uz and p in form

uz = A cos px, p = cos px^0 (z).

Then (5.6) yields

C

ux = zAp sin px + ~^-\ieP sin px cj>o (z), C44

du

C1

C13 C,

C1

—z -13, 2 C13 C11 2 1 C11

— = -—zAp cospx-——\i6p cospxfyo - — ^5cos^xct)0, dz C33 C33 C44 C33

Dz = - cos px§0

1 +

2

e2

33

C33 e31 + e15

I 13

+ le3i - 7^e33n n c

C33 / \ C11s 33

z^+ ei5

C44S

44s 33

^0 (zn p cos px.

Substituting (5.7), (5.8) into (5.2) gives

-klp2A - k2p2^-\i6<\>'0 + Ap2k2 +Ap2k3-Cl3

44

C

33

C C C

+ 7^7^W2q№ + ^5^3 - ^P2¥o + C =

C33 C44 C33

or denoting =0

O" - v^O = AZp2,

C

C

^7+ -^377-

C44 C33 2

kj - ^2 - li3

1 7 11

1 +^3^5 C33

The general solution of (5.9) yields

p2, Z =

13

33

1 7 CH

1 +£37^5

C33

O = C1chv1 z -

Zp2A

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

+

2

2

v

Substituting (5.10) in (5.8) gives

Dz = -C1 v1 cos px

1 +

2

33

C33 e31 + e15

shv1z+

I C13 + le3i - 7^33

C33 C11S33

zAp2 cos px+

i I3

+ le3i - 7^e33 C33

shv1z Z2 pA C i-----------------—z

v1

el5 2

p cos px.

C44S

44S33

Boundary conditions on z = h give

p = p, Dz = Dz. Where for dielectric out of plate

S

qp = C3e~p(z~h^ cos px, Dz = -C3 ——pe

-p(z-h)

S

33

cos px.

On account of (5.7), (5.8) and (5.10)—(5.13) one obtains z = h,

r b b ^plA r L\cnv\n-------- — — C3,

-C1V1

1 +

v21

2

e2

33

C

33

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 13

+ le3i - 7^e33 C33

C

£

C.

shv1h Zp2A

, , I “13 \ e31 + e15 , , 2

shv]_h + \e3i - —e33 ———hAp +

C33 ) C11s 33

v1

From (5.14) it follows that C1 shv1 h {-v1

1 +

2

e2

33

e15 2 n S

r P = ~C3—p.

C44S33 S33

I ^13

+ e31 ~ 7; ^33

e15 p

2

+hAp2\e3i - ^e33

C33

C33) \ C33 ) C44S 33 v1

e31 + e15 e15 Zp2

S

S

33

C1chv1h -

„ C11s33

Zp2 A'

C44S

44s 33 V

2

1

1

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

C, = -

hApl\e31 - ^-e33

C33

£31_+_fl5 ei5 ^

CuS

11S33

C44S33 v2

2^ + S t,p3A

1

S33 v

shv1h < -v1

1 +

2

e2

33

C

33

e15 p

1 I3

+ le31 - 7^33 I n c

C33 C44S33 v1

d2ux

+ -^—pchvih S33

(5.16)

From (5.1), neglecting of p—— and multiplying on z, after integration on

dt2

z, one obtains

d f zoxxdz h

-h I doxz , n

-dz = 0

d x

+ /z

-h

dz

v

h

2

v

+

2

and after integrating on z by part in second term one obtains

h h

r dM r

Q = I a^dz, — = Q, M = I zaxxdz.

hh

(5.17)

One account boundary conditions oxz = oxx = 0 one obtains after integration of second equation in (5.1)

d2M dQ ^ d2uz dx2 ~ dx ~ s dt2'

(5.18)

From (5.4), (5.6) one obtains

oxx =

C11 -

C2

- 1'

C

dux Cii / ^ £33^13 \ <9qp

dx + e31 + e15 T31 C33 / dz

and substituting of (5.7), (5.8), (5.10) one obtains

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

°rr — C11

xp cos px +

C2

^13

C33

C3311

zA +

C\\ 215

C44 e31 + e15

Cl , lp2A

—snv\z-----------—

v1

1

e31

^33^13

e31 + e15 \ C33

Substituting (5.19) in (5.17) one obtains

(5.19)

C1v1 shv1z cos px.

M=

h

I

C11 -

C2

- 1 '

C

C44 e31 + e15

C1 h ZP2A 2

—zshv\z-----------—zr

v1 v2

-h v

+------—U31 - e3?,-^\CiVishviz\dz,

e31 + e1^ C33,

h

and on account that | zshv\zdz = ^vi^3 one obtains

2/?3 I

M = cos px < p

2

C11 -

C2

C

1

^P2 Cn ei5

V2 C44 £31 + e\5

A +

C\\ C iei5

C44 e31 + e15

+

e31 + e15

C

33

In elastic case from (5.16) one obtains C1 = 0 ,

2h3p2 M = —-—A cos px

C11 -

C2

13

C

33

Dispersion relation can be obtained from (5.18), thus one has

h2 p4

C11 -

C2

13

C

33

_£u_ti%p4 £31 + ^15 3

e31 - e33

13

33

= pm

(5.20)

X

z

+

v

+

3

Values of constants for BaTiO3 are

C11 = 1,5 * 1011 N/m2, C13 = 6,6 * 1010N/m2, C33 = 1,4 * 1011 N/m2,

C44 = 4,5 * 1010N/m2, S33 = 10-9<fy/m, e31 = -4K/m2,

e33 = UK/m2, e15 = 11K/m2.

Then

1 n.. 1 n.. n..

2

C13 1 C13 1 Cn = 3, £n _

Cn “ 2’ C33 2 C44 c33

£15 _ e31 -3, ^ e31 = -4, ^6 3 “ 2’ ^5 = 2,

n

300’

And from (5.20) one has

1

3k2

1 +-------(5.21)

1 + 4k2 V J

The results of calculations by the exact treatment, made by (4.10), are brought in (4.3) tables 3,4 and by hypothesis are done by (5.21) and are done by table 5.

Table 3

¥=10

n

k2 - — 1 300 P

0.1 0.2 0.3 0.4 0.5

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

«=0.1 0.660153 0.660142 0.660132 0.660121 0.660111

n=1 0.696237 0.664531 0.716595 0.716833 0.717054

n=2 0.588632 0.588632 0.588632 0.588632 0.588632i

n=3 0.594389 0.503435 0.594389 0.594389 0.594389

n=4 0.720844 0.703199 0.733194 0.73344 0.733659

n=5 0.693198 0.693535 0.693854 0.694158 0.694447

«=10 0.720122 0.720582 0.720998 0.748948 0.72173

S 33

5

Table 4

=1

kj = — 1 300 P

0.1 0.2 0.3 0.4 0.5

«=0.1 0.588 0.57 0.5888 0.5889 0.589002

«=1 0.71 0.73 0.7369 0.782 0.782102

«=2 0.58 0.588 0.58863 0.58 0.5886

«=3 0.594 0.59 0.594 0.59 0.5943

«=4 0.73 0.73 0.736 0.73 0.0.7371

«=5 0.6 0.6i 0.6053 0.605 0.6054

«=10 0.63 0.63 0.630 0.6307i 0.63072

Table 5

S33

The Kirchhoff case table —- = 10

_______________________________________________O_______________________________

k2 - — 1 300 P

0.1 0.2 0.3 0.4 0.5

«=0 0.005 0.01 0.015 0.02 0.025

«=0.1 0.00500416 0.0100083 0.0150125 0.0200166 0.0250208

«=1 0.00504095 0.0100819 0.0151229 0.0201638 0.0252048

«=2 0.00508052 0.010161 0.0152416 0.0203221 0.0254026

«=3 0.00511878 0.0102376 0.0153563 0.0204751 0.0255939

«=4 0.0051558 0.0103116 0.0154674 0.0206232 0.025779

«=5 0.00519164 0.0103833 0.0155749 0.0207666 0.0259582

«=10 0.00535504 0.0107101 0.0160651 0.0214202 0.0267752

Comparision of tables 3 and 5 shows that the solution by exact space treatment essentially is distinguished from solution obtained due to Kirchhoff hypothesis.

Conclusion

The derivation of disspersion relation for free bending vibrations of thin piezoelastic cylindrical shells with longitudinal polarization and for plates with normal polarization by exact space treatment, proposed at first for elastic plates by V. Novatski, is given. It is done numerical solutions of obtained transcendent equations. Also the same considerations are made by treatment based on Kirchhoff hypothesis.

The table 1 corresponds to shell with radius R = 103cm calculated by space treatment, and table 2 by hypothesis, in the last in main order frequency does not depend from piezoelectric properties. The results of table 1 and table 2 are quite different. Also are constructed by space treatment tables 3, 4 for piezoelectric plates and table 5 by averaged method based on hypothesis. The tables 3 and 5 are distinguished by several times. Thus in considered problem as in magnetoelastic plates and shells in piezoelectricity Kirchhoff hypothesis not applicable.

Literature

[1] Ambartsumyan, S.A. Magnetoelastocity of thin shells and plates / S.A. Ambartsumyan G.E. Bagdasaryan, M.V. Belubekyan. - M.: Nauka, 1977. (In Russian).

[2] Ambartsumyan, S.A. Some problems of electromagnetoelasticity of plates / S.A. Ambartsumyan, M.V. Belubekyan. Yerevan State University. - 1991. - 143 p.

[3] Ambartsumyan, S.A. Electroconducting plates and shells in the magnetic field / S.A. Ambartsumyan, G.E. Bagdasaryan. - M.: Phys.-Math. Literature, 1996. - 286 p.

[4] Bagdoev, A.G. Nonlinear vibrations of plates in longitudinal magnetic field / A.G. Bagdoev L.A. Movsisyan // Izv. AN Arm SSR. Mekanika. -V. 35. - No.1. - 1982.

[5] Bagdasaryan, G.E. Vibrations and stability of magnetoelsatic system / G.E. Bagdasaryan // Yerevan State University. - 1999. - 439 p. (In Russian).

[6] Novatski, V. Elasticity / V. Novatski M.: Mir. 1975. 863 p. (In Russian)

[7] Bagdoev, A.G. The stability of nonlinear modulation waves in magnetic field for space and averaged problems / A.G. Bagdoev, S.G. Sahakyan // Izv RAS MTT. - 2001. - No.5. - P. 35-42 (In Russian)

[8] Safaryan, Yu.S. The investigation of vibrations of magnetoelastic plates in space and averaged statement / Yu.S. Safaryan // Information technologies and management. - 2001. - No.2.

[9] Bardzokas, D.I. The propagations of waves in electromagnetoelastic media / D.I. Bardzokas, B.A. Kudryavcev, N.A. Sennik. - M.: 2003. - 336 p.

[10] Bardzokas, D.I. Electroelasticity of piece-homogeneous bodies / D.I. Bardzokas, M.L. Filshtinski. Universitetskaia kniga. Sumi. - 2000. - 309 p.

[11] Bagdoev, A.G. Linear bending vibrations frequencies determination in magnetoelastic cylindrical shells / A.G. Bagdoev, A.V. Vardanyan, S.V. Vardanyan // Reports of National Academy of Sciences of Armenia. - 2006. - V.106. - No.3. - P. 227-237.

Paper received 13/X///2006. Paper accepted 13/X///2006.

ОПРЕДЕЛЕНИЕ ЛИНЕЙНЫХ ЧАСТОТ ИЗГИБНЫХ КОЛЕБАНИЙ ПЬЕЗОЭЛЕКТРИЧЕСКИХ ОБОЛОЧЕК И ПЛАСТИН ПО ТОЧНОМУ И ОСРЕДНЕННОМУ ПОДХОДАМ

© 2007 А.Г. Багдоев, А.В. Варданян, С.В. Варданян2

В работе рссматривается вывод и численное решение диссперсионных соотношений для частот изгибных свободных колебаний пьезоэлектрических цилиндрических тонких оболочек с продольной поляризацией и тонких пластин с поперечной поляризацией. Решение дается по точному пространственному подходу и по гипотезе Кирхгоффа. Сравнение полученных таблиц показывает, что частоты по точному и основанному на гипотезе Кирхгоффа подходам значительно различаются.

Поступила в редакцию 13jXT7j2006; в окончательном варианте — 13jX//j2006.

2 Багдоев Александер Георгиевич, Варданян Анна Ваниковна, Варданян Седрак Ваникович, Институт механики, Армения, Ереван, ул. Маршала Баграмяна, 24б.

i Надоели баннеры? Вы всегда можете отключить рекламу.