Научная статья на тему 'On cyclotron damping of longitudinal wave'

On cyclotron damping of longitudinal wave Текст научной статьи по специальности «Физика»

CC BY
3
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
Electric drift velocity / damping / relativistic charged particles / strong electric field / longitudinal waves / high frequency wave packets / cyclotron resonance / Скорость электрического дрейфа / затухание / релятивистские заряженные частицы / сильное электрическое поле / продольные волны / высокочастотные волновые пакеты / циклотронный резонанс

Аннотация научной статьи по физике, автор научной работы — Sergey P. Karnilovich, Konstantin P. Lovetskiy, Leonid A. Sevastianov, Svetlana B. Strashnova, Yahya N. Shaar

Average equations of motion of relativistic charged particles in the field of HF (high frequency) wave packets are obtained in the range of cyclotron resonance in the case of strong LF (low frequency) electric field. Strong electric field means that the characteristic velocity of the particle comparable with the electric drift velocity (𝑣 ∼ 𝑣𝐸). It is shown that with taking into account the electric drift velocity, new mechanisms of damping of longitudinal waves become possible. The effect of a strong electrostatic field on the resonant interaction of relativistic particles with high-frequency waves, as well as the relativistic effect, on cyclotron resonance for a longitudinal wave, is analyzed. The analytical solution of the averaged system of equations in the quasi-relativistic approximation is analyzed, as well as a numerical experiment for the Langmuir wave under the condition of cyclotron resonance in the case of a strong electric field.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

О циклотронном затухании продольной волны

Выведены усредненные уравнения движения для релятивистских заряженных частиц в ВЧ поле (высокочастотных) волновых пакетов в диапазоне циклотронного резонанса в случае НЧ (низкочастотного) сильного электрического поля, где сильное электрическое поле означает, что характерная скорость частицы сравнима со скоростью электрического дрейфа (𝑣 ∼ 𝑣𝐸). Показано, что при учете скорости электрического дрейфа становятся возможными новые механизмы затухания продольных волн. Проведен анализ влияния сильного электростатического поля на резонансное взаимодействие релятивистских частиц с высокочастотными волнами, а также влияние релятивизма на циклотронный резонанс для продольной волны. Получено аналитическое решение усредненной системы уравнений в квазирелятивистском приближении, а также проведен численный эксперимент для Ленгмюровской волны в случае циклотронного резонанса с учетом сильного электрического поля.

Текст научной работы на тему «On cyclotron damping of longitudinal wave»

Discrete & Continuous Models & Applied Computational Science

ISSN 2658-7149 (Online), 2658-4670 (Print)

2024, 32(1) 122-127

http://journals.rudn.ru/miph

Research article

UDC 519.21 PACS 52.25.Fi

DOI: 10.22363/2658-4670-2024-32-1-122-127

EDN: BBLNGK

On cyclotron damping of longitudinal wave

Sergey P. Karnilovich1, Konstantin P. Lovetskiy1, Leonid A. Sevastianov1,2, Svetlana B. Strashnova1, Yahya N. Shaar1

1RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation 2 Joint Institute for Nuclear Research, 6 Joliot-Curie St, Dubna, 141980, Russian Federation

(received: February 28, 2024;revised: March 20, 2024;accepted: March 30, 2024)

Abstract. Average equations of motion of relativistic charged particles in the field of HF (high frequency) wave packets are obtained in the range of cyclotron resonance in the case of strong LF (low frequency) electric field. Strong electric field means that the characteristic velocity of the particle comparable with the electric drift velocity (v ~ vE). It is shown that with taking into account the electric drift velocity, new mechanisms of damping of longitudinal waves become possible. The effect of a strong electrostatic field on the resonant interaction of relativistic particles with high-frequency waves, as well as the relativistic effect, on cyclotron resonance for a longitudinal wave, is analyzed. The analytical solution of the averaged system of equations in the quasi-relativistic approximation is analyzed, as well as a numerical experiment for the Langmuir wave under the condition of cyclotron resonance in the case of a strong electric field.

Key words and phrases: Electric drift velocity, damping, relativistic charged particles, strong electric field, longitudinal waves, high frequency wave packets, cyclotron resonance

1. Introduction

In the drift theory of the motion of charged particles in electromagnetic fields, two cases are distinguished: a "weak" electric field, when the velocity of electric drift is VE ~ zV, and a "strong" electric field, when VE ~ V. Here V is the characteristic velocity of the particle, z is a small parameter equal to the ratio of the gyroradius of the particle to the characteristic scale of inhomogeneity of a strong magnetic field. The case of a strong electrostatic field is fraught with certain difficulties even in the non-relativistic approximation [1]. In [1-4], a theory of the motion of charged particles in the field of wave packets in crossed electric and magnetic fields was constructed taking into account weakly relativistic effects.

In this paper, the interaction of cyclotron resonance for longitudinal waves propagating along a strong magnetic field is considered. It is assumed that the rate of electric drift is small compared to the speed of light in vacuum. Such a proposal is quite sufficient for solving many applied problems. The equations of motion of an advertising charged particle averaged over fast oscillations are obtained, taking into account the effects of quasi-stationary electric drift under the condition of cyclotron resonance.

2. Basic equations

The motion of a particle with charge q and rest mass m under the influence of HF (high frequency) electromagnetic field E„,B„ and LF fields E0,B0 is described by the equations [1]

© Karnilovich S. P., Lovetskiy K. P., Sevastianov L. A., Strashnova S. B., Shaar Y. N., 2024

This work is licensed under a Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by-nc/4.0/legalcode

where F0^s = = , &=1- 2^2, ^ = + 'EES, O = O0 + £ Qs, c - the speed of light.

The velocity vector has the form

v' = U|\e1 + vE + v±(e2 cos 90 + e3 sin 90), (2)

where &0 is the gyrophase, e1(r, t) = B0/B0, e2(r, t), e3(r, t) are the unit vectors. vE = c[E0 ■ e1]/B0 is the electric drift velocity. The electromagnetic fields E„,B„, are considered in eikonal approximation as:

Es = 2 £sei@s + c.c., Bs =2 %sei@s + c.c., l^s^m. (3)

Here £s,Ss are slowly varying complex amplitudes and &s is the fast phase (eikonal) of the sth wave packets (s = 1,2,3,...,M). Phases &s are considered as the independent variables which are described by the equations:

d®s dr ¡a m"* ->

~df = us + = vs + ~t0_e 0 + c.°.)ks + ksvE. (4)

The quantities

us(r,t) = - ^, ks(r,t) = W0s, (5)

are the local frequency and the wave vector of the sth wave packets, respectively.

Equations (1)-(4) together with Eq. (3) constitute a multi-periodic system, which can be simplified by smoothing over fast and nonresonant phases [1].

3. Average equations

In the range of cyclotron resonance, the corresponding combination of the phases Wres = &0 + &s, shold be corresponded as an "semifast" variable and an equation for resonant phases Wres should be added to the equations for slow dynamic variables of particles. Smoothed equations of motion for a single particle interacting with the arbitrary sth wave packet at the condition of the cyclotron resonance v + m ^0 have the form:

dR - - - /.X

d; = vE + e'vll (6)

dull , —11 = vEe'1 + dive1 + dt b 1 2 1

(r-i )«.-

-{2V^ + £ (^ll + e'[0S'VE])vE + V-2^ Fs}e_ei*-es + c.c., (7)

= f (divuo - (e'(e'W)uo)) + ^Fon +

+ {1r{Ps + ^ (Ull^ + 1 N^]])) - ¿2 {v±FS + (uoFs)vE)}e-ei^'es + c.c., (8)

d^res 1 ^ -> -*, „ vl - _

—■ M0 + v--e' ■ rotu0--e- ■ e'+ - u^—^ + ks ■ vE +

dt ~o — 2 1 0 2 - + 0 2c2

^ l[e',ks]+i^o\p^^El^-ei^res + c.c., (9)

' {^ frfi + i + ' fa^]))) - ft (^ + ^'■

Vu + i>i + v|

where

Шо =ГОо, Г=1- —-2~2--> Fs,0\\ =Fs,0 1, ks\\ =ksêi,

vs = -ms + ks\|U||, e+ = e2 ±ie3, (...)' = + v\\êi • V + vE •V^j(...)

note, that Eqs. (6)-(9) take place only in the case of quasilongitudinal propagation of the wave with respect to B0.

4. Cyclotron resonance for a longitudinal wave

For simplicity let us consider Eqs. (6)-(9) in the case of the cyclotron resonance Wres = 0о + 0S for a longitudinal wave £s||fcs||B0, = в0 — 9S, B0 = const, E0 = const, k0 = const, £s = £ela, £ = (0,0, £). Then

dR ^ d^\\ e£vEvi . . dui e£vEv\\

ti=u0, -Ж = -W- sin(<Pr + «), -j- = ^r sin(<Pr + «),

d^Pr „ (r, vE\ , ule£

System (10) shows that the cyclotron resonance is possible, when the relativistic effects and the drift velocity are taken into account, such a resonance is impossible in the case of a weak electric field v » vE. To explain physical mechanism of this resonance it is necessary to use a new system, which is moving with a drift velocity. One can get the energy integral from Eqs. (10):

о 1 1

x-2 = (Ç2z2 + sin2 Ç)-2, ï=2(4r + a), (11)

where

,-2 = ™ 1 = 2Ut

H+U x 2mc2 0i

is an initial velocity of the transversal velocity vi,H is the Hamilton function of the system (10).

If M > 1, the particle is trapped by the wave and if Ixl < 1, the particle is untrapped by the wave. The sign of x is chosen to coincide with the sign of

The equation (11) has the same form as the equation for resonant particles in the case of electrostatic wave [2].

Then by standard methods [1-6] one can calculate the coefficient of cyclotron damping of the longitudinal wave under consideration:

64 ,i f -2ЖП-sin ( ™ ) (2Ш + 1)ж2 sin ( ^^ ))

v(t) = vY—l Hri_X-xkt) I \ xkt ) } (12)

ПЧ iLlj n J0 xsk2(i — q2„)(i + q-2„)Т Щ1 + q2n+1)(i + q-2.n-1) } , ^

where

q = exp K = K(x)(1 — x2)1, K(x) = f(2,x)

is the complete of elliptic integral of the first kind, yL is Landau damping coefficient.

5. Conclusion

Numerical solving the equation system with initial conditions and parameters match the ones in works [7-11], Langmuir wave was selected with frequency in the range from ш = 1.38 x 109s-1 to 2.39 x 10ns-1 and girophase O0 = 4.60 x 109s-1 to 4.60 x 10ns-1 with a wavelength of X = 2.28 cm to 2.5 cm. The electric drift velocity between the values vE = 3.0 x 105 — and 5.0 x 108 —.

ss

The results of the numerical solutions of the averaged equations for cyclotron resonance confirm the possibility of cyclotron resonance in longitudinal wave in the case of a relativistic particle. The

development of energy the graph in figure 1, shows the resonant leg with growth of energy (|^| > 1), which is unstable so the particle goes shortly out of resonance (|^| < 1) with partly retention of the gained energy.

V

)

Figure 1. The graphs show the behavior of the particle's energy (bright green line), as well as the longitudinal and transverse velocities of the particle along the x axes (green and blue lines, respectively). The phase ipr is shown in graph by red line. The X-axis for velocity, energy, and resonant phase has dimension too. The Y-axis for velocity has dimension v/c and for

energy has dimension v2/c2

Funding: This research was funded by the RUDN University Scientific Projects Grant System, project No. 021934-0-000 (K.P. Lovet-skiy, L.A. Sevastianov). This research was supported by the RUDN University Strategic Academic Leadership Program (S.P. Karnilovich, S.B. Strashnova, Yahya N. Shaar).

References

1. Karnilovich, S. P. & Milantiev, V. P. Effect of strong electric-field on resonance interaction between particles and HF waves. Journal of Experimental and Theoretical Physics 94, 537-545 (1989).

2. Karnilovich, S. P. & Milantiev, V. P. On cyclotron damping of longitudinal wave in XIX International Conference on Phenomena in Ionized Gases 4 (1989), 810-811.

3. O'Neil, T. Collisionless Damping of Nonlinear Plasma Oscillations. The Physics of Fluids 8, 22552262. doi:10.1063/1.1761193 (Dec. 1965).

4. Karnilovich, S. P. & Milantiev, V. P. The effect of a strong quasi-stationary electric field on the resonant wave-particle interaction in a magnetized plasma in Mat. of the 6th All-Union Conference on the interaction of electromagnetic radiation with plasma, Dushanbe (1991).

5. Karnilovich, S. P. & Milantiev, V. P. Collection of scientific papers "Problems of quantum. and the stat. Physics" in. Chap. Dynamics of resonant particles in RF fields in the MHD approximation (UDN, Moscow, 1989).

6. Karnilovich, S. P., Milantiev, V. P. & Bespalov, S. V. Effects of the electric drift on the resonant wave-particle interaction in Proc. XXIV Int. Conf. On Phenomena in Ionized Gases — ICPIG-99, Warsaw 2 (1999), 81-82.

7. Karnilovich, S. P., Milantiev, V. P. & Konovalseva, L. V. The influence of the electric drift on resonant wave-particle interaction in Proc. 1992ICPP Innsdruck. Austria (1992).

8. Karpman, V. I., Istomin, J. N. & Shklyar, D. Nonlinear theory of a quasi-monochromatic whistler mode packet in inhomogeneous plasma. Plasma Physics 16, 685-692. doi:l0 . 1088/00321028/16/8/001 (1974).

9. Pocobelli, G. Damping of an electron plasma wave with detrapping of the electrons. The Physics of Fluids 24, 2177-2182. doi:10.1063/1.863334 (1981).

10. Nishida, Y. & Sato, N. Observation of high-energy electrons accelerated by electrostatic waves propagating obliquely to a magnetic field. Physical Review Letters 59, 653-656. doi:10.1103/ PhysRevLett.59.653 (1987).

11. Sugawa, M. & Sugaya, R. Nonlinear Interaction between Electrostatic Electron Cyclotron Harmonic Waves and Electrons. Journal of the Physical Society of Japan 54,1339-1347. doi:10. 1143/JPSJ.54.1339 (1985).

To cite: Karnilovich S. P., Lovetskiy K. P., Sevastianov L. A., Strashnova S. B., Shaar Y. N., On cyclotron damping of longitudinal wave, Discrete and Continuous Models and Applied Computational Science 32 (1)(2024)122-127.D01:10.22363/2658-4670-2024-32-1-122-127.

Information about the authors

Karnilovich, Sergey P.—Candidate of Sciences in Physics and Mathematics, Assistant professor of Institute of Physical Research and Technology of Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University) (e-mail: karnilovich-sp@rudn.ru, ORCID: https://orcid.org/0000-0002-7669-7030)

Lovetskiy, Konstantin P.—Candidate of Sciences in Physics and Mathematics, Associate Professor of Department of Computational Mathematics and Artificial Intelligence of Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University) (e-mail: lovetskiy-kp@rudn.ru, phone: +7(495)952-25-72, ORCID: https://orcid.org/0000-0002-3645-1060)

Sevastianov, Leonid A.—Professor, Doctor of Sciences in Physics and Mathematics, Professor at the Department of Computational Mathematics and Artificial Intelligence of Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University), Leading Researcher of Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (e-mail: sevastianov-la@rudn.ru, phone: +7(495)952-25-72, ORCID: https://orcid.org/0000-0002-1856-4643) Strashnova, Svetlana B.—Candidate of Chemical Sciences, Associate Professor at the Department of General and Inorganic Chemistry of Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University) (e-mail: strashnova-sb@rudn.ru, ORCID: https://orcid.org/0000-0002-2588-504X)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Yahya N. Shaar—PhD in Physics and Mathematics, Assistant professor of Institute of Physical Research and Technology of Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University) (e-mail: al-shaar-ya@rudn.ru, ORCID: https://orcid.org/0000-0003-4951-5657)

УДК 519.21 PACS 52.25.Fi

DOI: 10.22363/2658-4670-2024-32-1-122-127 EDN: BBLNGK

0 циклотронном затухании продольной волны

С. П. Карнилович1, К. П. Ловецкий1, Л. А. Севастьянов1,2, С. Б. Страшнова1, Я. Н. Шаар1

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

2 Объединённый институт ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская Федерация

Аннотация. Выведены усредненные уравнения движения для релятивистских заряженных частиц в ВЧ поле (высокочастотных) волновых пакетов в диапазоне циклотронного резонанса в случае НЧ (низкочастотного) сильного электрического поля, где сильное электрическое поле означает, что характерная скорость частицы сравнима со скоростью электрического дрейфа (и ~ Показано, что при учете скорости электрического дрейфа становятся возможными новые механизмы затухания продольных волн. Проведен анализ влияния сильного электростатического поля на резонансное взаимодействие релятивистских частиц с высокочастотными волнами, а также влияние релятивизма на циклотронный резонанс для продольной волны. Получено аналитическое решение усредненной системы уравнений в квазирелятивистском приближении, а также проведен численный эксперимент для Ленгмюровской волны в случае циклотронного резонанса с учетом сильного электрического поля.

Ключевые слова: Скорость электрического дрейфа, затухание, релятивистские заряженные частицы, сильное электрическое поле, продольные волны, высокочастотные волновые пакеты, циклотронный резонанс

i Надоели баннеры? Вы всегда можете отключить рекламу.