Научная статья на тему 'OLIY TA’LIMDA RATSIONAL KO’RINISHDAGI ANIQMAS INTEGRALLARNI HISOBLASH USULLARI'

OLIY TA’LIMDA RATSIONAL KO’RINISHDAGI ANIQMAS INTEGRALLARNI HISOBLASH USULLARI Текст научной статьи по специальности «Строительство и архитектура»

568
187
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Boshlang’ich funksiya / aniqmas integral / ostragradskiy usuli / hosila / ratsional funksiya / karrali ildiz / ko’phadning EKUBi / ayniyat / rekurent formula / noma’lum koeffitsientlar usuli

Аннотация научной статьи по строительству и архитектуре, автор научной работы — S. Vafoyev, X. Ubaydullayeva

Hozirgi kunda nafaqat umumiy oʼrta taʼlim maktablarini yuqori sinflarida, balki pedagogika instituti matematika yoʼnalishi talabalarini matematik tahlil fanini oʼqitish dolzarb masalalardan biri hisoblanadi. Shuningdek, hosila va integlarni chuqurlashtirilgan holda oʼrgatish talab qilingan muammolardan biri hisoblanadi. Jumladan, karrali ildizga ega bo’lgan yuqori darajali ratsional funksiyalarni integrallash.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «OLIY TA’LIMDA RATSIONAL KO’RINISHDAGI ANIQMAS INTEGRALLARNI HISOBLASH USULLARI»

OLIY TA'LIMDA RATSIONAL KO'RINISHDAGI ANIQMAS INTEGRALLARNI HISOBLASH USULLARI

S. Vafoyev X. Ubaydullayeva

Toshkent viloyat Chirchiq Davlat Pedagogika Instituti sunatillovafoyev@gmail.com, xalimaubaydullayeva718@gmail.com

ANNOTATSIYA

Hozirgi kunda nafaqat umumiy o'rta ta'lim maktablarini yuqori sinflarida, balki pedagogika instituti matematika yo'nalishi talabalarini matematik tahlil fanini o'qitish dolzarb masalalardan biri hisoblanadi. Shuningdek, hosila va integlarni chuqurlashtirilgan holda o'rgatish talab qilingan muammolardan biri hisoblanadi. Jumladan, karrali ildizga ega bo'lgan yuqori darajali ratsional funksiyalarni integrallash.

Kalit so'zlar: Boshlang'ich funksiya, aniqmas integral, ostragradskiy usuli, hosila, ratsional funksiya, karrali ildiz, ko'phadning EKUBi, ayniyat, rekurent formula, noma'lum koeffitsientlar usuli.

KIRISH

Mamlakatimizda matematika 2020 yildagi ilm-fanni rivojlantirishning ustuvor yo'nalishlaridan biri sifatida belgilandi. O'tgan davr ichida matematika ilm-fanni va ta'limini yangi sifat bosqichiga olib chiqishga qaratilgan qator tizimli ishlar amalga oshirildi. O'zbekiston Respublikasi Prezidentining 2020 yil 7- maydagi «Matematika sohasidagi ta'lim sifatini oshirish va ilmiy-tadqiqotlarni rivojlantirish chora-tadbirlari to'g'risida»gi PQ-4708-sonli qarori, 2020 yil 9- iyuldagi « Matematika ta'limi va fanlarni yanada rivojlantirishni davlat tomonidan qo'llab quvvatlash, shuningdek O'zbekiston Respublikasi fanlar akademiyasining V.I. Romonovskiy nomidagi matematika Instituti faoliyatini tubdan takomillashtirish chora-tadbirlari to'g'risidagi»gi PQ-4387-sonli qarorlari hamda Muhammad Al-Xorazmiy, Ahmad Al-Farg'oniy, Abu Rayhon Beruniy, Mirzo Ulug'bek singari ulug' ajdodlarimiz tamal toshini qo'ygan matematika fani ilm-fan va texnikaning zamonaviy tarmoqlari jadal rivojlanishi munosabati bilan hozirgi kunda oliy ta'limdagi asosiy mavzular, ya'ni integrallarni chuqurlashtirilgan holda o'qitish muhim masalalardan biri hisoblanadi. Ushbu maqola yuqorida keltirilgan qarorlarning hamda oldimizga qo'yilgan masalalarni yechishda muayyan darajada xizmat qiladi.

ADABIYOTLAR TAHLILI VA METODOLOGIYA

Yuqoridagilarni hisobga olib, biz quyidagi ko'rinishdagi ratsional integralni integrallashni bir necha hil usullarini o'rganamiz.

r dx

J = i71—? [11]

J( x3 +1)

1-usul: Sodda kasrlarni integrallash.

f(x) = [1.2]

f () Qn (x) [ ]

Kasr ratsional funksiyaning integralini hisoblash,

w ( x) = c0 xk + c1 xk _ +... + cn _x x + cn [1.3]

ko'rinishdagi ko'phadni integrallashga hamda sodda kasrlar deb ataluvchi quyidagi

, , m. Mx + N IV. Mx + N

' / \r ' 2 ' /„ \r LJ

x _ a (x _ a) x + Px + q (x2 + px + q)

( P2 I

r > 1,B,M,N,P,q_haqiqiy sonlar,q_—> 0 ko'rinishdagi sodda kasrlarni integral-

V 4 J

lashga keltiriladi. Bu sodda kasrlarning integrallari quyidagicha hisoblanadi:I va II ko'rinishdagi kasrlar t = x _ a almashtirish yordamida integrallanadi:

J B^dx = b J — = Bln\t\ + C = Bln\x _ a\ + C, [1.5]

J x _ a J t 11 11

= B\dt = _T^- + C =--B-r + C [1.6]

J(x _ a) J f (r _ 1) tr_1 (r _ 1)(x _ a)r_1

III ko'rinishdagi kasrni integrallash uchun x2 + px+q - kvadrat uch hadni ushbu

\2 f ^V „2 N

2------ p 1 , „ p q _ P_ > o [1.7]

x + px + q = 1 x + ~\ +

P

q _

V 4 J

V 4 j

,2

ko'rinishga keltirib, t = x + p almshtirish va a = ^q_P- belgilash yordamida

,, (Ar MP I J t

Mt + N----j(+2 , 2\ , x d

Mt + 1 N--I ^(<2 , 2\ s N

Mx + N , f V 2 M rd (t +a ),L MP I 1f V a

J f V 2 J J M ™ / ( MP | 1 f dx = I-V---Jdt = — -T± + \ N--I--I

J t2 ±n2 "> J t2 ±n2 1 9 ) T1

— vi<»/v I — — vi- v I — — i \ ^ Y II ry

x + px + q J t + a 2 J t + a V 2 J aJ (t ]

a

p

x +

[1.8]

M, / 2 n 2N_MP ^ M, .2 , 2N_MP A 1 2

= — In 11 + a )+--arctg — + C =— ln(x + px + q) +--, arctg—¡= + C

2 20 0 2 Jq_p2 Jq- p2

4 V 4

munosabatga ega bo'lamiz.

IV ko'rinishdagi kasrni integrallashda yuqoridagi t = x + p, a ^q_p-

belgilashlar yordamida

A MPA

J Mx + N dx = J-^-^ dt = M J + | n-

J(x2 + px + q) J (t2 + a2 )" 2 J(t2 + a2 )" I

dt 1 1 f MP V dt

Mt + N —

M f d (t2 + a2)

MP

[19]

= --^T + | N - MP If.

J(t2 + a2)r (r-1)(t2 + a2)r—1 I 2 Jf(t2 + a2)

[1.10]

ni hosil qilamiz. Keyingi integral rekurent formula orqali hisoblanadi:

I - t +2n - 1j r+ " 2na2 (t2 + a2) + 2nZ r

Bunda r = 1 bo'lganida

r dt 1 t „

71 =\T2-2 ^arctg- + C [1.11]

J t + a a a

Shunday qilib, har qanday haqiqiy koeffisiyentli, haqiqiy o'zgaruvchili ratsional

funksiyaning boshlang'ich funksiyasi logarifim, arctangens va ratsional funksiya

orqali ifoda qilinar ekan.

MUHOKAMA VA NATIJALAR

Algebra kursidan bizga ma'lumki karrali ildizga ega bo'lgan ratsional ko'rinishdagi ifodalarni noma'lum koeffitsientlar usulidan foydalanib bir nechta to'g'ri kasrlar yig'indisi shaklida ifodalash mumkin.

[1.1] integral ostida turgan karrali ildizga ega bo'lgan ratsional ifodani ham to'g'ri kasrlar yig'indisi shaklida ifodalash mumkin. r dx _ r dx dx

f(x3 +1)2 =J((x +1)(x2 — x +1))2 =J (x + 1)2(x2-x +1)2 [112]

1 A B Cx + D Ex + K

(x +1)2 (x2 - x +1)2 x +1 + (x +1)2 + x2 - x +1 + (x2 x +1)2 [113]

Ushbu tenglikni umumiy maxrajga keltirib,keyingi

1 = A (x +1)( x2 - x +1)2 + B (x2 - x +1) + ( Cx + D)(x +1)2( x2 - x +1) + ( Ex + K)(x +1)2 1 = A (x5 - x4 + x3 + x2 - x +1) + B (x4 - 2x3 + 3x2 - 2x +1) + C (x5 + x4 + x2 + x) + +D (x4 + x3 + x +1) + E (x3 + 2 x2 + x) + K (x2 + 2 x +1)

tenglikni hosil qilamiz.Tenglikni o'ng tomonidagi qavslarni ochib,ko'pxadlarning o'zaro tengligi haqidagi xossadan foydalanib, x ning bir xil darajalari oldidagi ko-effitsientlarni teglashtiramiz.

x5| A + C = 0 x41 -A + B + C + D = 0 x3| A - 2B + D + E = 0

x 2|

A + 3B + C + 2E + K = 0

x11 -A - 2B + C + D + E + 2K = 0

x0| A + B + D + K = 1

Natijada, A,B,C,D,E,K noma'lumlarga nisbatan oltita chiziqli algebraik tenglamalar sistemasi hosil qilindi. Bu sistemani yechib, noma'lum koeffitsient- larni

2 1 2 111

A = 2 B =1 C = -2 D =1 E = -1 K =1 9 9 9 3 3 3

ga teng ekanligini topamiz. Demak,koeffitsientlarni [1.12] tenglika olib borib qo'yib

integralni hisoblaymiz/.

c dx r

J( x3 +1)2 =J( x +1)2 (x2 - x +

2 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ex + K

dx

—r = f dx + f—^—r dx + f 1)2 J x + 1 J(x +1)2 J

B . f Cx + D . dx + —-dx +

x - x +1

21

— x + -9 3

+ f-T dx = f —— dx + f—dx + f t9-3 dx + f

J(x2-x +1)2 J x + 1 J(x +1)2 J x2 - x + 1 J

x-1

= 2 f_dL+1 f M -1 tJx-^ dx -1 f

9Jx +1 9J ( x 1V 9J x -x +1 3J

+

9J x +1 9J (x +1)2 9J x2 - x +1 1 f d (x +1) 1 f2x-1 - 2

dx = — f J

11

— x + -3 3

( x2- x +1)' 2 f d (x +1)

dx =

+

(x2 - x +1)2 9J x +1 2 x-1 -1 , 2r d (x + 1) 1f d (x + 1)

1|.d(x +1) 1 r2x-1 -2__1 r 2x-1 -1 dx_2[d(x + 1) Ud(x + 1

9J (x +1)2 " 9J x2 - x +1 - J( x2 - x + 1)2 x = 9J x +1 +9J (x + 1 )

f

d

1 .d(x2 -x +1) 2 -

-1 J-1 + 2 J-

9J x2 - x +1 9J/ 1

x 2 ^ 1 j- d (x2-x + 1) 1

2 f +

= - ln (x +1)--

9 v ' 9 (x +1) 9

>/3

1 ln (x2 - x +1)

-1 i 6J

1 f J

dx

(x2 - x +1)2 6 J(x2 - x +1)2

2 4 2 x -1 x -x + 1)+--;= arctg-T=- +

9yß

V3 6(x2 -x +1)2

■ +

1J J

dx 2 1 -2 ^ln (x +1)

+ - I-7 = - ln (x

6 J(x2 - x +1)2 9

1 — -

9(x+1) 9

1 ln (x2 - x +1)

2 a 4 2 x -1 |x -x + 1)+--;= arctg-T=- +

9VT 6 V3

[1.15]

+ ■

1

,2 +712

6 (x2 - x +1) 6

/2 ushbu integralni yechish rekurent formuladan foydalanishga olib keladi.

Belgilash kiritamiz.

2

' 2 = i

dx

( x2 - x +1)

[116]

Ushbu integralni integrallash uchun, avval quyidagi ko'rinishdagi integralni hisoblab olamiz.

dx 1 x

2—2 = " arCtS~

h =/

a f x a

a

h =/

dx

22 a f x

1

u =

о 0

a f x

dx = dv

—2 x

du =-- dx x = v

+2|~2~~T -2a2 j

J n2 4- r2 j

( a2 + x2 ) dx

x

22 a f x

+

2j

x

( a2 + x2 )

dx =

x

о 0

a f x

+

a f x

x

( a2 f x2 )

I1 2,2 a f x

1 '

f 21 - 2a212

L =

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

L =

2a2 1

x

.2—T + I1

y a f x

r

2a2

x 1 x 2—2 arCtg -

a f x a

a

Hosil qilingan natijani [1.10] integralni hisoblash uchun qo'llaymiz.

r \

12 =j

dx

(x2 - x f 1)2

2 •

v 2 у

1

x — 2

vv 2 j

f

v

1

x--

2 у

2

Ix

2

f—arctg

V3 2

V3 2

2

3

2x -1 2 2x -1

f —¡= arctg ■

2(x2 -x + l) V3 л/3 I 3(x2-x + l) 3л/3

2 x -1 4

f--;= arctg

J

2 x -1

V3

Demak, rekurent formuladan foydalanib integralini yechimini topib oldik endi [1.15] tenglikka olib borib qo'yamiz va soddalashtiramiz.

2

2ln(x f 1)---1—- - ^ln(x2 - x f 1)f ._

9 y ' 9 (x f 1) 9 v ' 9yf3

Л 4 2 x -1

1)4---¡= arctg ———f

-v/3 6(x2 - x f 1)2

f1Д = 2 ln ( x f 1)---1—- -1 ln (

6 2 9 v 7 9 ( x f 1) 9 v

1

9 (x f 1) 9

2 4 2x -1 x - x f 1 ) f---j= arctg-f=—f

9yJ3

6(

\2

x2 - X f 1 ) x

f

f

3 (x3 f l) 3J3 & S

2-usul: Ostrogradiskiy usuli:

2 x-1 4 2x-1

—7-\ f--т= arctg —j=—

33X2 -Xf 1) 3л/3 V3

2 x -1 _

arctg —j=—h C

V3

1 ( x f 1)2

= - ln^----h

9 x2 - x f 1

[1.17]

CP ( x ) P ( x ) ( x )

f -Ц dx = ff dx,

J п(у\ П J ,

Q (x) ~ Q\ (x) J Ö2 (x)^ [21]

formula Ostrogradskiy formulasi bo'lib, bunda Q(x) funksiya karrali ildizga ega P ( x )

bo'lib, -to'g'ri kasr ratsional fuksiya, Q (x) esa Q(x) va Q'(x) larning eng katta

umumiy bo'luvchisi, Q (x)= Q(x^, - (x) va — (x) koeffitsientlar noma'lum darajalari

Q1( x )

esa mos holda Q (x) va Q (x) darajalaridan bitta kam. Noma'lum koeffitsientlar

-( x) Q( x)

f—(x) —2(x)

[2.2]

v Qi( x) J Q2 ( x)

ayniyatdan noma'lum koeffitsientlar usuli yordamida topiladi.

Ushbu usulda [1.1] integralni hisoblashni ko'raylik. U holda,

P (x) = 1, Q (x) = (x3 f 1)2, Q1 (x) = x3 f 1, Q2 (x) = x3 f 1

formulaga asosan

i

dx Ax2 f Bx f C cDx2 f Ex f F

( x3 f 1)2

x3 f 1

f

i-

x3 f 1

dx,

[2.3]

[2.4]

deb yozib olamiz. A,B,C,D,E,F noma'lum koeffitsientlarni topish uchun, yuqoridagi [2.4] tenglikni ikkala tomonini differensiallaymiz

f Л v2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(^ f 1)2

Ax2 f Bx f C

Л

v x f 1 J

Dx2 f Ex f F x3 f 1

1 (2Ax f B)(x3 f 1)-(Ax2 f Bx f C)3x2 Dx2 f Ex f F

(xJ f 1 )2

( x5 f 1 )2

x3 f 1

bundan

1 = (2Ax f B) (x3 f 1) - ( Ax2 f Bx f C) 3x2 f (Dx2 f Ex f F) (x3 f 1) 1 = Dx5 f(-A f E) x4 f (-2B f F) x3 f (-3C f D) x2 f (2A f E) x f B f F

1

1

1

tenglikni o'ng tomonidagi qavslarni ochib,ko'pxadlaming o'zaro tengligi haqidagi xossadan foydalanib, x ning bir xil darajalari oldidagi koeffitsientlarni teglashtiramiz:

x4| - A + E = 0

x3| -2B + F = 0

x 2| -3C + D = 0

x!| 2 A + E = 0

x0| B + F = -1

bo'lsa,

D = A = C = E = 0, F = 2, B =1

3 3

ekanligini topamiz. Noma'lum koeffitsientlarni [2.4]tenglikka olib borib qo'yamiz

dx

J

x 2 r dx + 3 J x3 +1

x

(x3 +1)2 3( x3 +1)

r dx

=J 77!

2/

3( x3 +1) 3

[2.5]

[2.6]

Ushbu integralni hisoblab

j _ f dx _ r dx

= J 'TT! = J(x +1)(x2 -x +1)

A Bx + C , - + ^-= 1

x +1 x - x +1

a = 1b = - 1c = 2

3 3 3

i x -1 - 31 dx 1f dx 1 «■ (x - 2) dx _ l, dx 1 «■ V 2 2)

3 j x + 1 3 j x2 - x +1 = 3 j ~x + 1 3 j"

W1«.d(x2 -x +1) 1«. 3 J x +1 6 J x2 - x + 1 + 2 J,

dx

2 i.RX 3

x - x +1

1 ln (x +1)- 1ln (x2 - x + l) +

,x - 2 J +

V3

V 2 )

1 2 x-1 1, (x +1)2 1 (2x -1)

+T3 arc'g "TT=6ln +T3 arcts^T

topib olganimzdan so'ng [2.5] tenglikka olib borib o'rniga qo'yamiz.

dx x 2 r dx x

- + -

J

(x3 +1)2 3( x3 +1) 3

+ C

dx

J 77!

-+2/ = .

x 1, (x +1)

3(x3 +1) 3 3(x3 +1) 9 (x2 - x +1)

2 ( 2 x -1)

[2.7]

+--;= arctg ._

3^3 V3

Demak [1.17] va [2.7] natijalar bir xil ko'rinishga ega bo'lganini ko'ramiz. Har ikki usul ham to'g'ri natijaga olib keldi.

>

XULOSA

Oliy ta'limda ratsional ko'rinishdagi integrallarni hisoblash usullari turli ko'rinishga ega bo'lib,biz ulardan ikkita usulni sodda kasrlarga keltirib integrallash va Ostragradiskiy usulini ko'rib chiqdik.Ushbu ikki usulda yuqori darajali, karrali ildizga ega bo'lgan ratsional ko'rinishdagi integralni hisoblashda qulayligi va integralning qisqa yo'l bilan hisoblash mumkinligini ko'rish mumkin.Yuqoridagi integralni Ostragradiskiy va sodda kasrlarga keltirib hisoblashda rekurrent formula va noma'lum koeffisiyentlar usulidan foydalanilgan holda integral yechimi ko'rsatilgan.Yuqori darajali karrali ildizga ega bo'lgan ratsional ko'rinishdagi integrallarni hisoblashda nafaqat sodda kasrlarga keltirib hisoblash balki Ostragradiskiy uslini ham keng qo'llaniladigan va samarali usullar qatoriga kiritish va bu usulda ko'pgina integrallarni hisoblashda foydalanish mumkin.

REFERENCES

1. A.Gaziyev.Matematik analiz.l-qism.Darslik.-Samarqand: «SamDU», 2020.

2. Azlarov T.,Mansurov X. Matematik analiz.l-qism.Toshkent «O'qituvchi»,1994.

3. T.Sharifova,E.Yuldashev.Matematik analizdan misol va masalalar yechish.Toshkent «O'qituvchi»,1996.

4. A.Sadullaev, G.Hudoyberganov, A.Vorisov, X.Mansurov, B.Shoimqulov, T.To'ychiyev, N.Sultanov. Matematik analizdan masalalar to'plami. 1-qism.Toshkent.2008.

5. S. Rakhimov, A. Seytov, N. Rakhimova and B. Xonimqulov, "Mathematical models of optimal distribution of water in main channels," 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT), Tashkent, Uzbekistan, 2020, pp. 1-4, doi: 10.1109/AICT50176.2020.9368798.

6. A. Kabulov, I. Normatov, A. Seytov and A. Kudaybergenov, "Optimal Management of Water Resources in Large Main Canals with Cascade Pumping Stations," 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 2020, pp. 1-4, DOI: 10.1109/IEMTRONICS51293.2020.9216402

7. Sh Rakhimov, A Seytov, B Nazarov and B Buvabekov, "Optimal control of unstable water movement in channels of irrigation systems under conditions of discontinuity of water delivery to consumers" 2020 IOP Conference Series (CONMECHYDRO), Materials Science and Engineering 883 (2020), Tashkent, 2020, pp. 1-4, DOI:10.1088/ /1757-899X/883/1/012065

8. A.V. Kabulov, A.J. Seytov, A.A. Kudaybergenov, "Classification of mathematical models of unsteady water movement in the main canals of irrigation systems" International Journal of Advanced Research in Science, Engineering and Technology Vol. 7, Issue 4 , April 2020, ISSN: 2350- 0328 India, pp. 13392-13401

9. A. V. Kabulov, A. J. Seytov and A. A. Kudaybergenov, "Mathematical models of the optimal distribution of water in the channels of irrigation systems" International Journal of Mechanical and Production Engineering Research and Development

(IJMPERD) ISSN(P): 2249-6890; ISSN(E): 2249-8001 Vol. 10, Issue 3, Jun 2020, pp.14193-14202, IJMPERD JUN 2020 1355, India, 2020.

10. SH. KH. Rakhimov, A. J. Seytov, D. K. Jumamuratov and N. K. Rakhimova, " Optimal control of water distribution in a typical element of a cascade of structures of a machine canal pump station, hydraulic structure and pump station", International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN (P): 2249-6890; ISSN (E): 2249-8001 Vol. 10, Issue 3, Jun 2020, 11103-11120, IJMPERDJUN20201065, India, 2020.

11. Sh.Kh.Rakhimov, A.J. Seytov, A.A. Kudaybergenov, "Optimal control of unsteady water movement in the main canals" International Journal of Advanced Research in Science, Engineering and Technology Vol. 7, Issue 4 , April 2020, ISSN: 2350-0328, pp. 13380- 13391, India, 2020.

12. Salaeva, M., Eshkaraev, K., & Seytov, A. Solving mathematical problems in unusual ways with excellent limits. In European Scientific Conference Penza, 2020, pp. 254-257.

i Надоели баннеры? Вы всегда можете отключить рекламу.