Научная статья на тему 'Однореакторный метод синтеза производных 5-(пиразол-1-ил)-тетразола из 5-аминотетразола'

Однореакторный метод синтеза производных 5-(пиразол-1-ил)-тетразола из 5-аминотетразола Текст научной статьи по специальности «Химические науки»

CC BY
220
44
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕТРАЗОЛ / ПИРАЗОЛ / НИТРОВАНИЕ / БРОМИРОВАНИЕ / ДЕБРОМИРОВАНИЕ / ГИДРИРОВАНИЕ / TETRAZOLE / PYRAZOLE / NITRATION / BROMINATION / DEBROMINATION / HYDROGENATION

Аннотация научной статьи по химическим наукам, автор научной работы — Степанова Елена В., Степанов Андрей И.

Рассмотрены реакции конденсации 5-гидразинотетразола с β-дикарбонильными соединениями (малоновый диальдегид и ацетилацетон). Синтезировано и описано 12 новых соединений. Для получения 5-гидразинотетразола использована реакция окисления коммерчески доступного 5-аминотетразола перманганатом калия в водно-щелочном растворе до пентагидрата 5,5'-азотетразолата с последующим проведением реакции разложения полученного соединения в кислой среде до 5-гидразинотетразола. Предложен однореакторный метод проведения стадии получения производных 5-(пиразол-1-ил)тетразолов из 5-аминотетразола. Согласно предложенному методу после проведения реакции конденсации с β-дикарбонильным соединением реакционная масса обрабатывалась эквимолекулярным количеством брома, целевые соединения выделялись из реакционной массы в виде соответствующих малорастворимых в воде 4-бромпроизводных 5-(пиразол-1-ил)тетразола. Наличие атома брома в полученных соединениях существенно облегчает процессы их выделения, перекристаллизации и проведения реакций алкилирования тетразольного цикла. Дебромирование осуществлялось гидрированием водородом с использованием палладиевого катализатора при умеренных давлениях. Для получения 4-нитропроизводных 5-(пиразол-1-ил)тетразола использовано нитрование в системе HNO3/H2SO4. Восстановлением нитрогруппы гидрированием над палладиевым катализатором получены соответствующие 4-аминопроиз-водные5-(пиразол-1-ил)тетразола.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Степанова Елена В., Степанов Андрей И.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ONE-POT SYNTHESIS OF 5-(4-PYRAZOLE-1-YL)TETRAZOLEDERIVATIVES FROM 5-AMINOTETRAZOLE

Condensation reactions of 5-hydrazinotetrazole with malonic dialdehyde and acetylacetone are considered. 12 new derivatives of 5-(pyrazole-1-yl)tetrazoles were synthesized and characterized. Commercially available 5-aminotetrazole was oxidized by potassium permanganate in aqueous alkaline solution yielding 5,5'-azotetrazolate pentahydrate which was decomposed in acidic media to 5-hydrazinotetrazole. One-pot procedure is suggested to prepare the 5(pyrazole-1-yl)tetrazole derivatives from 5-aminotetrazole. According to introduced method after carrying out condensation with β-carbonyl compounds reaction mixture was treated by an equivalent amount of bromine. Target products were separated from the reaction mixture as corresponding 4-bromoderivatives of 5-(pyrazole-1-yl)tetrazoles. The presence of a bromine atom in structure of synthesized compounds greatly facilitates processes of their isolation, purification and further alkylation of tetrazole ring. Debromination was realized by hydrogenation over palladium catalyst by hydrogen at moderate pressure. For synthesis of 4-nitroderivatives of 5-(pyrazole-1-yl)tetrazoles nitration in system HNO3/H2SO4 was used. 5-(4-amino-3,5-dimethylpyrazole-1-yl)tetrazole was prepared by the reduction of 5-(4-nitro-3,5-dimethylpyrazole-1-yl)tetrazole.

Текст научной работы на тему «Однореакторный метод синтеза производных 5-(пиразол-1-ил)-тетразола из 5-аминотетразола»

ИЗВЕСТИЯ ВУЗОВ. ПРИКЛАДНАЯ ХИМИЯ И БИОТЕХНОЛОГИЯ Том 7 N 1 2017

ХИМИЧЕСКИЕ НАУКИ / CHEMICAL SCIENCES Оригинальная статья / Original article УДК 547.796.1, 547.772.1 DOI: 10.21285/2227-2925-2017-7-1 -9-18

ОДНОРЕАКТОРНЫЙ МЕТОД СИНТЕЗА ПРОИЗВОДНЫХ 5-(ПИРАЗОЛ-1-ИЛ)-ТЕТРАЗОЛА ИЗ 5-АМИНОТЕТРАЗОЛА

© Е.В. Степанова*, А.И. Степанов***

* Российский государственный гидрометеорологический университет, Российская Федерация, 195196, г. Санкт-Петербург, Малоохтинский пр., 98. ** Специальное конструкторско-технологическое бюро «Технолог», Российская Федерация, 192076, г. Санкт-Петербург, Советский пр., 33A.

Рассмотрены реакции конденсации 5-гидразинотетразола с в-дикарбонильными соединениями (малоновый диальдегид и ацетилацетон). Синтезировано и описано 12 новых соединений. Для получения 5-гидразинотетразола использована реакция окисления коммерчески доступного 5-аминотетразола перманганатом калия в водно-щелочном растворе до пентагидрата 5,5'-азотетразолата с последующим проведением реакции разложения полученного соединения в кислой среде до 5-гидразинотетразола. Предложен однореакторный метод проведения стадии получения производных 5-(пиразол-1-ил)тетразолов из 5-аминотетразола. Согласно предложенному методу после проведения реакции конденсации с в-дикарбонильным соединением реакционная масса обрабатывалась эквимолекулярным количеством брома, целевые соединения выделялись из реакционной массы в виде соответствующих малорастворимых в воде 4-бромпроизводных 5-(пиразол-1-ил)тетразола. Наличие атома брома в полученных соединениях существенно облегчает процессы их выделения, перекристаллизации и проведения реакций алкилирования тетра-зольного цикла. Дебромирование осуществлялось гидрированием водородом с использованием палладиевого катализатора при умеренных давлениях. Для получения 4-нитропроизводных 5-(пиразол-1-ил)тетразола использовано нитрование в системе HNO3/H2SO4. Восстановлением нитрогруппы гидрированием над палладиевым катализатором получены соответствующие

4-аминопроиз-водные5-(пиразол-1-ил)тетразола.

Ключевые слова: тетразол, пиразол, нитрование, бромирование, дебромирование, гидрирование.

Формат цитирования: Степанова Е.В., Степанов А.И. Однореакторный метод синтеза производных

5-(пиразол-1-ил)тетразола из 5-аминотетразола // Известия вузов. Прикладная химия и биотехнология. 2017. Т. 7, N 1. С. 9-18. DOI:10.21285/2227-2925-2017-7-1-9-18

ONE-POT SYNTHESIS OF 5-(4-PYRAZOLE-1-YL)TETRAZOLE DERIVATIVES FROM 5-AMINOTETRAZOLE

© E.V. Stepanova*, A.I. Stepanov**

* Russian State Hydrometeorological University,

98, Malookhtinskii Ave., St. Peters-burg,195196, Russian Federation.

** Special Design-Technological Bureau «Tekhnolog»,

33A, Sovetskii Ave., St. Petersburg, 192076, Russian Federation.

Condensation reactions of 5-hydrazinotetrazole with malonic dialdehyde and acetylacetone are considered. 12 new derivatives of 5-(pyrazole-1-yl)tetrazoles were synthesized and characterized. Commercially available 5-aminotetrazole was oxidized by potassium permanganate in aqueous alkaline solution yielding 5,5'-azotetrazolate pentahydrate which was decomposed in acidic media to 5-hydrazinotetrazole. One-pot procedure is suggested to prepare the 5(pyrazole-1-yl)tetrazole derivatives from 5-aminotetrazole. According to introduced method after carrying out condensation with в-carbonyl compounds reaction mixture was treated by an equivalent amount of bromine. Target products were separated from the reaction mixture as corresponding 4-bromoderivatives of 5-(pyrazole-1-yl)tetrazoles. The presence of a bromine atom in structure of synthesized compounds greatly facilitates processes of their isolation, purification and further alkylation of

Е.В. Степанова, А.И. Степанов

tetrazole ring. Debromination was realized by hydrogenation over palladium catalyst by hydrogen at moderate pressure. For synthesis of 4-nitroderivatives of 5-(pyrazole-1-yl)tetrazoles nitration in system HNO3/H2SO4 was used. 5-(4-amino-3,5-dimethylpyrazole-1-yl)tetrazole was prepared by the reduction of 5-(4-nitro-3,5-dimethylpyrazole-1-yl)tetrazole.

Keywords: tetrazole, pyrazole, nitration, bromination, debromination, hydrogenation

For citation: Stepanova E.V., Stepanov A.I. One-pot synthesis of 5-(4-pyrazole-1-yl)tetrazole derivatives from 5-aminotetrazole. Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology]. 2017, vol. 7, no. 1, pp. 9-18. DOI: 10.21285/2227-2925-2017-7-1-9-18 (in English).

INTRODUCTION

For the first time chemical compounds with terazole ring were synthesized in 1885 [1]. At the present time interest in tetrazole chemistry is called forth due to the possibility of widespread usage of these compounds as corrosion inhibitors, plant protection products, analytical reagents, materials for photochemistry [2], or as components of gas generating compositions and as energetic materials [3, 4].

Nevertheless analysis of the current chemical literature shows certain lack of attention for the studying of the chemical properties of 5-hyd-razinotetrazole (1), which is largely restricted by the works of the close of 19th century. Thus, in papers by Thiele there were described hydrazones formation reactions of compound 1 with benzaldehyde

[5], acetophenone and acetone [6], acetoacetic ester [5], preparation of 1-(tetrazol-5-yl)semicar-bazide, triacetyl derivative of 5-hydrazinotetrazole

[6], 5-azidotetrazole [6] (see also ref. [7]). In latter works, the condensation of hydrazinotetrazole 1 with formaldehyde [8], some carbonyl compounds [9-14] as well as the reaction with dicyandiamide

.N

R N

-NH / N—N

nAR' h

N ^ W N-N H

RR'CO

2

(DCADA) [15] were discussed (Fig.1).

Now 5-hydrazinotetrazole (1) is considered mainly as a constituent of energy rich high enthalpy compounds, for example, as a cationic constituent in a number nitrogen rich energetic salts [16], as a ligand in complex salts for priming explosives with heavy metals [17-19].

Condensation reactions of 5-aminotetrazole with ^-dialdehydes and ^-diketones result in pyrazole ring formation have not previously been considered. The aim of present work is to develop on the basis of chemistry of 5-aminotetrazole accessible methods for the synthesis of derivatives of 5-(pyrazol-1-yl)tetrazole.

RESULTS AND DISCUSSION

For the synthesis of 5-(pyrazol-1-yl)tetrazoles we used condensation reaction of 5-hydrazino-tetrazole 1 with ^-dicarbonyl compounds: acety-lacetone and malonic dialdehyde (Scheme 2). Due to a low stability of malonic dialdehyde we used in the condensation reaction its diacetal - 1,1,3,3-tetramethoxypropane (Scheme 2).

NAc NAc

3

2

N

W

N-N

H

O

'NH X

H

NH

Ac O

KCNO/ H+

N ^ W N-N H

N

NaNO2/ HCl

N' ^ W

N-N H

N ^

W

N-N H

NH

NH

DCDA

O

MeCOCH2COOEt

6

HN

Me

N ^

N-N H

N

N

4 ^

N

NH

Fig. 1. Compounds derived from 5-hydrazinotetrazole (1) — ХИМИЧЕСКИЕ НАУКИ -

4

5

7

N

W N— N H

NH

NH

i; il

N

EtOH,H+

N

W N

R N

N H

N

8, 9

R

1

Fig. 2. Reaction of 5-hydrazinotetrazole (1) with ß-dicarbonyl compounds (8, i (MeO)2CH2(OMe)2; 9, ii MeCOCH2COMe)

It should be noted, that in praesenti the only acceptable synthetic route for 5-hydrazinotetrazole is based on Thiele method [20] from 5-amino-tetrazole (10) (Fig. 3). Due to high water solubility, the procedure for isolation of target product 1 from

reaction mass is quite laborious and includes distillation of water from the reaction mixture in vacuo followed by separation of the target product by extraction of solid residual with hot methanol.

Since the main byproducts in the synthesis of

N ^

N-N H

10

-NH- KMnO,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

NaOH

N

II N

N

N Na

N=N

■ 5H2O

N-

\r

Na

HCl

HO

N ^ W N —N H

11 1 Fig. 3. Preparation of 5-hydrazinotetrazole (1)

NH

NH+Cl-

+ 2N2 + HCOOH

5-hydrazinotetrazole (1) includes only inorganic salts and formic acid we considered the possibility of involving compound 1 in synthesis without its isolation from reaction mixture. As a result of our studies it was found that pyrazoles 8, 9 could be obtained with good preparative yields directly from 5-aminotetrazole and corresponding ^-dicarbonyl compounds bypassing the steps of 5-hydrazinotetrazole (1) isolation and purification. The stages of 5-aminotetrazole oxidation, hydrolysis of intermediate azobistetrazole 11 and the cou-

pling reaction were carried out by one-pot synthesis. However, rather high water solubility of thus prepared pyrazoles 8, 9 sets up certain difficulties in their separation from reaction mixture. In this case, addition of one mole of bromine to the reaction mixture allows isolating the corresponding py-razoles in a form of sparingly soluble in water 4-bromoderivatives 12, 13 with near quantitative yields (Fig. 4). In the sequel pyrazoles 8, 9 may be recovered from 4-bromoderivatives 12, 13 by catalytic hydrogenation by hydrogen in an alcohol (Fig. 5).

N ^

W

N-N H

R N

R

N

8, 9

R

Br2/H2O

5-10oC

Br

N ^

W

N-N H

\ B

NS. Дч

NR 12, 13

Fig. 4. Bromination of 5-(pyrazole-1-yl)tetrazoles 8, 9 (8, 12 R = H; 9, 13 R = Me)

R

N

W

N —N H

R N

Br

N R 12, 13

H2/Pd/C

5 atm, 50oC 95%

^N

N

W

N — N H

N

8, 9

R

Fig. 5. Hydrogenation of 5-(4-bromopyrazole-1-yl)tetrazoles 12, 13 (8, 12 R = H; 9, 13 R = Me)

ХИМИЧЕСКИЕ НАУКИ "

N ^

N —N H

R N

HNO,

N ^ W / N — N H

R N

NO

H2, Pd/C

N

N W N — N

N ~R h «r» 'N7 ^n'^ "R EtOH 8, 9 H 14, 15 (R = Me) 16

Fig. 6. Nitration of 5-(pyrazole-1-yl)tetrazoles 8, 9 (8, 14 R = H; 9, 15, 16 R = Me)

Me4 NH+

W 3

s^Me

Compounds 8, 9 readily undergo electrophilic nitration reactions at position C-4 of the pyrazole ring. Reduction of nitro group in compound 15 was used in the synthesis of 5-(4-amino-3,5-dimethylpyrazole-1-yl)tetrazole 16. According NMR data compound 16 forms internal salt (Fig. 6). We did not succeed isolation from reaction mixture hydrogenation product of compound 14 because of its rapid oxidation by atmospheric oxygen.

It is well known that alkylation of tetrazoles passes through N-1 and N-2 atoms of tetrazole ring [21]. Alkylation of compounds 8, 9 proved certain difficulties in the separation of alkylated isomeric compounds by crystallization. Contrariwise, the alkylation of bromoderivative 13 by chloroacetam-ide, ethylene chlorohydrin proceeds relatively selectively on N-2 atom of tetrazole ring (Fig. 7). The content of isomeric alkylation byproducts according to 1H NMR spectroscopy data was 3-5%. Protons signals of N1-CH2 group of the second regioisomer

are shifted in a strong field at 0.15-0.20 ppm.

Hydrogenation of compound 17 results in replacement of bromine atom by hydrogen one. It should be noted that the presence in its structure bromine atom greatly facilitates the process of isolation from reaction mixture and carrying out further purification by recrystallisation due to decreasing the solubility of parent compound 17 in common organic solvents, and this way is probably more convenient method for the synthesis of N-alkylated derivatives of tetrazolylpyrazoles 8, 9 in comparison with their direct alkylation. Similarly, the separation of initial pyrazoles 8, 9 through the steps of bromination and subsequent hydrogenation of bromoderivatives 12, 13 increases the yield by 1015% in comparison of their direct isolation from the reaction mixture after condensation of 5-hydrazinotetrazole with dicarbonyl compounds.

Spectral data of the obtained compounds are presented in Table.

Me Br

К

h+, ho

N.

"N

Л

W / N-N

N

Me

17

ch2conh2

ClCH2CONH2 K2CO3, DMF

13

ClCH CH OH

K2CO3, DMF

Me

Br

к —

N Me MeOH, 19

H2, Pd/C

HO

N

W / N-N

N

CH COOH

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Me Br

b(

Л

w / N-N

N

Me

18

CH CH OH

Me

< « N

Л

Me

N V N on

W / 20 N-N

CH COOH

HNO

H2SO4

Me

NO

2

< * N

Л

N

W / N-N

Me

^N 21

CH COOH

Fig. 7. Alkylation of 5-(4-bromo-3,5-dimethylpyrazole-1-yl)tetrazole 13 - ХИМИЧЕСКИЕ НАУКИ -

NMR and MS spectral data of 5-hydrazinotetrazole derivatives

Compound, No NMR-13C, 5, ppm, NMR-1 H, 5, ppm. MS, m/z (/rel, %)

tetrazole ring pyrazole ring (C3, C4, C5) R, R (pyrazole ring) N2-R (tetrazole ring)

1 158.8 - - - 8.29 -

8 155.2 144.4; 110.0; 131.0 - - 8.53 (1Н, d, J2.51 Hz, С5Н); 8.00 (1Н, d, J2.51 Hz, С3Н); 6.70 (1Н, m, С4Н) 108 (3) [M - N2]+; 79 (15); 54 (11); 53 (100); 52 (99); 51 (52); 41(45); 40 (40); 39 (74); 38 (85); 37 (29); 28 (100) [N2]+

9 153.8 152.7; 110.0; 142.9 13.62; 12.90 - 6.24 (1 H, s, C4H); 2.56 (3H, s, C5CH3); 2.24(3H, s, C3CH3) 165 (0.6) [M + 1]+; 164 (7) [M]+; 136(1) [M - N2]+; 95 (52.4) [3,5-diMe-pyrazole]+; 93 (12); 67(16); 66(53); 65 (20); 52 (15); 51 (13); 42 (44); 41 (49); 40 (44); 39 (100); 38 (21); 29 (37)

12 155.9 144.5; 97.35; 131.1 - - 8.82 (1Н, s, С5Н); 8.14 (1Н, s, С3Н) 216 (9) [M(81Br)]+; 214 (9) [M('aBr)]+; 188 (5) [M(Br) - N2]+; 186 (4) [M(79Br) - N2]+; 106 (25); 104 (24); 81 (12); 79 (28); 53 (30); 52 (70); 51 (90); 41 (35); 39 (30); 38 (100); 37 (25); 28 (73) [N2]+

13 154.5 150.9; 99.01; 140.6 12.60; 12.25 - 2.55 (3H, s, C5CH3); 2.24 (3H, s, C3CH3) 175 (5) [4-Br-3,5-Me2-pyrazole]+; 135 (10); 95 (18); 67 (13); 66 (20); 65 (54); 64 (24); 63 (19); 52 (16); 51 (14); 42 (36); 41 (42); 40 (27); 39 (100); 38 (26); 29 (76); 28 (17) [N2]+

14 157.3 139.1; 137.9; 131.0 - - 13.2-12.2, 12.110.7 (0.3H + 0.7H, br.s, NH); 9.56, 9.55 (0.7 + 0.3H, s, C5H); 8.72, 8.71 (0.7H + 0.3Н, s., С3Н) 182 (5) [M + 1]+; 181 (42) [M]+; 153 (100) [M - N2]+; 79 (10); 52 (14); 51 (10); 30 (22); 29 (31)

15 155.9 148.5; 133.2; 144.4 14.25; 12.86 - 12.0-9.50 (1H, br.s, NH); 2.86 (3H, s, C5CH3); 2.52 (3H, s, C3CH3) 209 (2) [M]+; 192(3); 181(3) [M - N2]+; 67 (15); 66 (18); 65 (57); 64 (16); 63 (18); 53 (19); 52 (22); 51 (15); 46(29) [N02]+; 43 (21); 42 (69); 41 (52); 40 (31); 39 (100); 38 (23); 30 (96); 28 (20) [N2]+

16 155.3 144.4; 127.3; 124.7 - 11.43; 10.47 8.30-5.5 (3H, s, NH3+); 2.41(3H, s, C5CH3); 2.18 (3H, s, C3CH3) 180 (1.3) [M + 1]+; 179(14) [M]+; 111 (13); 110 (24) [4-NH2-3,5-Me2-pyrazole]+; 109 (26); 70 (20); 54 (27); 53 (19); 43 (24); 42 (100); 41 (28); 29 (21); 28 (51) [N2]+

17 160.8 150.1; 98.24; 140.3 11.62; 11.97 166.1 (C=O); 55.72 (CH2) 7.88, 7.59 (2H, s, NH2); 5.50 (2H, s, CH2); 2.48 (3H, s, C5CH3); 2.24 (3H, s, C3CH3) 302 (3) [M(ö'Br)+1]+; 301 (23) [M(ö1Br)]+; 300 (3) [M(79Br)+1]+; 299 (20) [M(81Br]+; 229 (11 ); 227 (13); 201 (19); 199 (18); 176 (35) [4-81Br-3,5-Me2-pyrazole)]+; 174 (35) [4-81Br-3,5-Me2-pyrazole)]+; 65 (20); 44 (100) [H2NC0]+; 42 (33) [CH2C0]+; 39 (31); 30 (40)

18 160.8 149.9; 98.11; 140.2 12.59; 11.93 59.39 (CH2); 57.01 (CH2) 4.76 (2Н, t, J5.27 Hz, CH2); 3.96 (2Н, d, J5.14 Hz, СН2); 2.48 (3H, s, C5CH3); 2.23 (3H, s, C3CH3) 289 (3) [M(ö'Br) + 1]+; 288 (26)[M(ö1Br)]+; 287 (3) [M(Br) + 1]+; 286 (25) [M(79Br)]+; 229 (22); 227 (20); 201 (34); 199 (30); 176 (85); 174 (87); 148 (20); 120 (19); 80 (20); 67 (39); 66 (20); 65 (24); 45 (60); 43 (32); 42 (41); 39 (70); 31 (100) [CH20H]+; 29 (53); 27 (67)

19 160.9 150.2; 98.35; 140.3 12.62; 11.97 167.5 (COOH); 54.71 (CH2) 5.78 (2H, s, CH2); 2.49 (3H, s, C5CH3); 2.24 (3H, s, C3CH3) 303 (2) [M(81Br) + 1]+; 302 (27) [M(81Br)]+; 301 (3) [M(Br) + 1]+; 300 (27) [M(79Br)]+; 201 (22); 199 (23); 176 (77) [4-Br-3,5-Me2-pyrazole]+; 174 (83) [4-79Br-3,5-diMe-pyrazole]+; 95 (17); 79 (16); 67 (57); 65 (22); 64 (21); 59 (28); 45 (65); 43 (20); 42 (44);

___y-r-W,_

ХИМИЧЕСКИЕ НАУКИ

40 (22); 39 (71); 38 (20); 31 (100) [CH2OH]+; 29 (20); 28 (29); 27 (30)

20 161.3 151.6; 109.2; 142.3 13.68; 12.57 167.6 (COOH); 54.59 (CH2) 6.21 (1 H, s, C4H); 5.74 (2H, s, CH2); 2.46 (3H, s, C5CH3); 2.21 (3H, s, C3CHa) 223 (3) [M + 1]+; 222 (23) [M]+; 149 (20); 122 (28); 96 (100); 95 (33) [3,5-Me2-pyrazole]+; 81 (18); 67 (50); 66 (20); 45 (37); 42 (46); 40 (18); 39 (54); 31 (54); 28 (31)

21 159.7 148.4; 133.1; 144.4 14.23; 12.71 167.4 (COOH); 55.97 (CH2) 5.85 (2H, s, CH2); 2.80 (3H, s, C5CHa); 2.51 (3H, s, C3CHa) 268(1) [M + 1]+; 267(7) [M]+; 141 (29); 124 (61); 80 (39); 67 (35); 45 (33); 44 (24); 43 (100) [CH3CO]+; 42 (45); 39 (25); 31 (46); 30 (45) [NO]+; 28 (31 )

CONCLUSIONS

Thus, we have suggested one pot procedure for the preparation of 5-(4-bromopyrazole-1-yl)tetrazoles from commercially accessible 5-aminotetrazole. The presence of a bromine atom in structure of thus synthesized compounds greatly facilitates the process of their isolation from the reaction mixture and carrying out further chemical transformations. Hydrogenation reaction was used for the replacement of the bromine atom by hydrogen one.

Thus, we have shown that the condensation of 5-hydrazinotetrazole with malonic dialdehyde and acetylacetone and affords the corresponding derivatives of 5-(pyrazol-1-yl)tetrazole. The readiness of pyrazole ring bromination, and further separation of thus obtained bromoderivatives allows to map out one-pot synthesis strategy of 5-(4-bromopyrazole-1-yl) tetrazoles from commercially available 5-aminotetrazole. The hydrogenation by hydrogen at 5-10 atm in the presence of a palladium catalyst was used for debromination.

EXPERIMENTAL

1. Materials and Methods

All the reagents and chemicals were procured from commercial sources (Acros Organics, Belgium; Alfa Aesar, Germany; Sigma-Aldrich, USA) and used without any further purification. 5-Hydrazinotetrazole 1 was prepared from 5-amino-tetrazole according to [20]. The IR spectra were recorded in pellets with KBr on FSM-1201 Fourier

1 13

spectrometer. The 1H and 13C NMR spectra were recorded in DMSO-d6 on a Bruker DRX-400 spectrometer (400 and 100 MHz, respectively). The 1H and 13C chemical shifts were determined with reference to the solvent signal (5 2.51 and 39.96 ppm, respectively). The mass spectra were recorded on a Finnigan MAT INCOS 50 spectrometer (EI, 70 eV). Elemental analysis was performed on a Perkin-Elmer 2400 elemental analyzer. The melting points were determined on a Kofler hot bench.

2. Synthesis of tetrazole derivatives

5-(Pyrazole-1-yl)tetrazole (8) and 5-(3,5-

dimethylpyrazole-1 -yl)tetrazole (9)

a) Preparation from solid 5-hydrazinotetrazole hydrochloride. To 50 ml of acetic acid sequentially with stirring were added 12.5 g (0.1 mol) of 5-hydrazinotetrazole hydrochloride, 22.0 g (0.1 mol) of 1,1,3,3-tetraethoxypropane (for pyrazole 8) or 12.5 g (0.1 mol) of acetylacetone (for pyrazole 9); the resulting mixture was heated to 90 oC and stirred at this temperature for 1 h. The solvent was distilled off in vacuo and 25 ml of hot water were added to the residue, the mixture was cooled to room temperature, the precipitate was filtered off and recrystallized from methanol.

Pyrazole 8. Yield 8.4 r (68%), m.p. 172-173 0C (MeOH). IR spectrum, v, cm-1: 3438; 3328; 3154; 3135; 2933; 2791; 1621; 1401; 1289; 1209; 1099; 1066; 1010; 941; 795; 725; 690; 595; 568; 498. Calculated, %: C 35.30, H 2.96, N 61.74. C4H4N6. Found, %: C 35.11, H 3.08, N 61.89.

Pyrazole 9. Yield 13.1 r (80%), m.p. 164-165 0C (MeOH). IR spectrum, v, cm-1: 2923; 1624 1573; 1444; 1402; 1302; 1264; 1185; 1135; 1097 1001; 796; 755; 726; 569; 535; 442. Calculated, % C 43.90, H 4.91, N 51.19. C6Ha^. Found, %: C 43.63, H 4.76, N 51.38.

b) Hydrogenation of bromopyrazoles 12 and 13

In a 100 cm3 autoclave 70 ml of ethanol, 10 g

(0.046 mol) of (4-bromopyrazole-1-yl)tetrazole (12) or 10 g (0.041 mol) (4-bromo-3,5-dimethylpyrazole-1-yl)tetrazole (13) and 0.1 g of 10%-Pd/C catalyst were filled. The reaction mass was hydrogenated at 50-60 °C at a pressure of 5-10 atm until the end of hydrogen absorption (3-4 h). The reaction mass was filtered hot, neutralized by adding crumbled NaHCO3 to pH 5 and filtered from inorganic salts. The solvent was distilled off in vacuo and the residue was recrystallized from methanol. Yield 5.9 g (95%) of pyrazole 8 and 6.5 g (97%) of pyrazole 9.

5-(4-Bromopyrazole-1-yl)tetrazole (12) and the 5-(4-bromo-3,5-dimethylpyrazole-1 -yl)tet-razole (13)

a) Preparation by bromination of compounds 8 and 9. To 10 ml of AcOH 2.0 g (0.016 mol) of pyrazole 8 or 2.6 g (0.016 g) pyrazole 9 were added. To thus obtained solutions at temperature 10-15 °C a solution of 2.6 g (0.016 mol) Br2 in 5 ml of AcOH

was added dropwise. Then the mixture was diluted with 30 ml of cold water, neutralized to pH 5 by adding a crystalline sodium acetate; the precipitate was separated by filtration and recrystallized from methanol.

Bromopyrazole 12. Yield 3.1 g (90%), m.p 172-173 °C (MeOH). IR spectrum, v, cm-1: 3138 3108; 2923; 2854; 1585; 1489; 1386; 1200; 1170 1137; 1037; 1010; 960; 895; 818; 743; 599; 523 419. Calculated, %: C 22.34, H 1.41, N 39.09. C4HaBrN6. Found, %: C 22.55, H 1.68, N 38.85.

Bromopyrazol 13. Yield 91%, m.p. 216-217 °C (i-PrOH). IR spectrum, v, cm-1: 3151; 2923; 1572; 1454; 1316; 1225; 1171; 1136; 1102; 1065; 1035; 1019; 855; 779; 746; 572; 481. Calculated, %: C 29.65, H 2.90, N 34.58. C6H7BrN6. Found, %: C 29.92, H 3.01, N 34.04.

b) One-pot synthesis from 5,5'-azobistetrazole (11). To 200 ml (0.66 mol) of vigorously stirred 3.3N hydrochloric acid aqueous solution 50 g (0.167 mol) disodium salt of 5,5'-azobistetrazole pentahydrate [20] (11) were added by 2-3 g portions maintaining the temperature in the reaction mixture below 50 °C. The resulting solution was heated to 80 °C, kept at this temperature for 30 minutes and cooled to 30 °C. At this temperature 10.5 g (0.064 mol) of 1,1,3,3-tetramethoxypropane (for compound 12) or 6.5 g (0.065 mol) pentane-2,4-dione (for compound 13) were added dropwise. Then the mixture was slowly heated to 90-100 °C, maintained at this temperature for 30 min and cooled to 10-15 °C. At this temperature 12 g of Br2 (0.075 mol) were added dropwise. The mixture was allowed to stand at room temperature overnight, cooled to 10 °C, the precipitate was filtered off and washed by 100 ml of cold water. Yield of bromopyrazole 12 11.5 g (64%) and of bromoprazole 13 12.4 g (61%).

c) One pot synthesis from 5-aminotetrazole (10). In 500 ml of 3.0N water solution of KOH (1.5 mol) 51.5 g (0.5 mol) of 5-aminotetrazole (10) were dissolved. The solution was heated to 90-95 oC and at 95-100 oC 79 g (0.5 mol) of KMnO4 were added in portions by 5-6 g. An excess of permanganate was removed by adding of 2-3 g of oxalic acid. The reaction mass was filtered hot from precipitated MnO2. The residue was washed by 2x100 ml of hot water, cooled to room temperature and added dropwise to 1 l of 8N solution of hydrochloric acid (8 mol) maintaining the temperature of reaction mixture below 50 oC. The resulting solution was heated to 80 °C, kept at this temperature for 30 minutes and cooled to 30 °C. Thus obtained solution of 5-hydrazinotetrazole was divided into two equal portions. The first portion was subsequently treated by 14.8 g (0.09 mol) of 1,1,3,3-tetra-methoxypropane and then by 14.4 g (0.09 mol) of bromine as described above. Analogously the second part of the solution was treated by 9 g (0.09

mol) of pentane-2,4-dione and then by 14.4 g (0.09 mol) of bromine. The precipitates were filtered off and washed by 100 ml of cold water and recrystallized from propanol-2. Yield of bromopyrazole 12 16.1 g (60%) and of bromopyrazole 13 17.9 g (59%).

5-(4-Nitropyrazole-1 -yl)tetrazole (14)

In 5 ml of HNO3 (d1.5) 1.35 g (0.01 mol) of pyrazole 8 were dissolved by cooling to the temperature below 5 oC. To the obtained solution 5 ml of H2SO4 (d1.86) were added dropwise by an external cooling to 5-10 oC. Reaction mixture was kept at room temperature for 8 h and poured into 20 g of crushed ice. The precipitate was filtered off and recrystallized from methanol. Yield 1.4 g (79%), m.p. 184-185 oC (MeOH). IR spectrum, v, cm-1: 2920; 2852; 1626; 1510; 1426; 1408; 1346; 1295; 1236; 1075; 1033; 948; 857; 818; 754; 502; 481; 420. Calculated, %: C 26.53, H 1.67, N 54.14. C4H3N7O2. Found, %: C 26.91, H 1.82, N 54.68.

5-(2,5-Dimethyl-4-mtropyrazole-1-yl)tetrazole (15)

Nitropyrazole 15 was prepared similar to compound 14 by nitration of 1.6 g (0.01 mol) of pyrazole 8. Yield 1.7 g (82%), m.p. 196-197 0C (MeOH) IR spectrum, v, cm-1: 3081; 2920; 2853; 1577 1504; 1469; 1411; 1378; 1359; 1313; 1227; 1164 1029; 844; 789; 763; 745; 446. Calculated, % C 34.45., H 3.37, N 46.88. C6H7N7O2. Found, % C 34.19, H 3.51, N 46.53.

5-(4-Amino-3,5-dimethylpyrazole-1-yl)tetrazole (16)

In a 100 cm3 autoclave 70 ml of ethanol, 10 g (0.48 mol) of 5-(3,5-dimethyl-4-nitropyrazole-1-yl)tetrazole (15) and 0.1 g of 10% -Pd/C catalyst were filled. The reaction mass was hydrogenated at 50-60 °C at a pressure of 5-10 atm until the end of hydrogen absorption (3-4 h). The reaction mass was cooled to room temperature, filtered and the precipitate was extracted with 30 ml of hot (90100 °C) DMF. The mother liquor was poured into 100 ml of cold water; the precipitate was separated by filtration and recrystallized from DMF//-PrOH (1 : 1 V/V). Yield 7.9 g (92%), m.p. 284-286 oC (dec.) (DMF//-PrOH). IR spectrum, v, cm-1: 3076; 2920 2852; 2744; 2585; 1645; 1611; 1585; 1550 1504 1401; 1238 1201; 1146; 1111; 1086; 1041; 1029 798; 719; 668; 571; 465; 408. Calculated, %: C 40.22, H 5.06, N 54.72. C6H9N7. Found, %: C 39.97, H 5.19, N 54.46.

2-(5-(4-Bromo-3,5-dimethylpyrazole-1-yl)-2-tetrazol-2-yl)acetamide (17)

To 30 ml of DMF 5.8 g (0.02 mol) bromopyrazole 13, 2.1 g (0.022 mol) of chloroacetamide and 4.1 g (0.03 mole) of anhydrous finely grinded K2CO3 were added. The mixture was stirred at 60 °C for 8 h, poured into 100 ml of cold water; the precipitate was separated by filtration and recrystal-lized from AcOH. Yield 4.7 g (79%), m.p. 252-

253 °C (AcOH). IR spectrum, v, cm"1: 3351; 3175; 3006; 2957; 2922; 2852; 1707; 1570; 1455; 1408; 1377; 1323; 1303; 1203; 1157; 1073; 1045; 1020; 824; 782; 743; 643; 626; 542; 480; 413. Calculated, %: C 32.02, H 3.36, N 32.67. C8H10BrN7O. Found, %: C 32.41, H 3.42, N 32.38.

2-(5-(4-Bromo-3,5-dimethylpyrazole-1-yl)-2-tetrazol-2-yl)ethanol (18)

To 20 ml of DMF 3.0 g (0.012 mol) bromopy-razole 13, 2.0 g, (0.025 mol) ethylenechlorohydrine and 2.8 g (0.02 mole) of anhydrous finely grinded K2CO3 were added. The mixture was stirred at 5060 °C for 10 h. After cooling to a room temperature the solvent was distilled off in vacuo. The dry residue was extracted 2x20 ml of boiling ethanol and the filtrate was poured into 50 ml of cold water, the precipitate was separated by filtration and recrystal-lized from methanol. Yield 21 g (62%), m.p. 9899 °C. IR spectrum, v, cm-1: 2920; 1632; 1576 1450; 1413; 1319; 1080; 1051; 1019; 781; 739 570; 512; 469; 442; 416; 405. Calculated, % C 33.47, H 3.86, N 29.27. CaHuBr^O. Found, % C 33.83, H 4.01, N 29.02.

2-(5-(4-Bromo-3,5-dimethylpyrazole-1-yl)-2-tetrazol-2-yl)acetic acid (19)

To 50 ml of 1% water solution of NaOH 2.9 g (0.01 mol) of acetamide 17 were added. Reaction mass was stirred at 90-95 oC for 5 h. Then the solution was acidified to pH 1 by conc. HCl and cooled to 5-10 oC. The precipitate was separated by filtration and recrystallized from AcOH-H2O (1 : 1 V/V). Yield 2.5 g (86%), m.p. 186-187 °C (AcOH/H2O). IR spectrum, v, cm-1: 2920; 1576; 1450; 1413; 1319; 1171; 1151; 1079; 1051; 1019; 960; 865; 781; 740; 586; 570; 513; 467. Calculated,

%: C 31.91, H 3.01, N 27.91. C8HgBrN6O2. Found, %: C 31.69, H 3.42, N 27.72.

(5-(3,5-Dimethylpyrazol-1-yl)-2-tetrazol-2-yl)acetic acid (20)

In a 50 cm3 autoclave 30 ml of ethanol, 2.2 g (7.6 mmol) of bromoderivative 19 and 0.05 g of 10% Pd/C were filled The reaction mass was hy-drogenated at 50-60 °C at a pressure of 5-10 atm until the end of hydrogen absorption (3-4 h). The reaction mixture was cooled to room temperature, alkalized by addition of 6 ml of 10% NaOH water solution and filtered from catalyst. The solvent was removed in vacuo. The residue was dissolved in 10 ml of water and acidified with conc. HCl to pH1. The precipitate was separated by filtration and re-crystallized from water. Yield 1.4 g (88%), m.p 182-183 oC (H2O). IR spectrum, v, cm-1: 3018; 2921 2852; 1737; 1573; 1410; 1320; 1224; 1052; 828; 623 569. Calculated, %: C 43.24, H 4.54, N 37.82. Cf^oNfA. Found, %: C 43.55, H 4.83, N 37.59.

2-(5-(3,5-Dimethyl-4-nitropyrazole-1-yl)-2-tetrazol-2-yl)acetic acid (21)

In 5 ml of HNO3 (d1.5) 2.22 g (0.01 mol) of py-razole 20 were dissolved at temperature below 5 oC. To obtained solution by external cooling to 510 oC 5 ml of H2SO4 (d1.86) were added. Reaction mixture was kept at room temperature 8 h and poured into 20 g of crushed ice. The precipitate was filtered of and recrystallized from methanol. Yield 2.3 g (85%), m.p. 184-185 oC (MeOH). IR spectrum, v, cm-1: 3536; 3508; 3464; 3442; 3415 3401; 1737; 1725; 1568; 1504; 1417; 1383; 1361 1232; 1189; 825; 797; 663; 416. Calculated, % C 35.96, H 3.39, N 36.69. C8H9N7O4. Found, % C 36.12, H 3.48, N 36.33.

БИБЛИОГРАФИЧЕСКИМ СПИСОК

1. Bladin J.A. Uber Verbindungen, welche sich vom Dicyanphenylhydrazin ableiten. II // Brechte der deutschen chemischen Gesellschaft. 1885. V. 18, N.

2. P. 2907-2912. DOI: 10.1002/cber.188501802212.

2. Островский В.А., Колдобский Г.И. Тетра-золы // Успехи химии. 1994. Т. 63, N 10. С. 847865. DOI: 10.1070/RC1994v063n10ABEH000119.

3. Островский В.А., Колдобский Г.И. Энергоемкие тетразолы // Российский химический журнал. 1997. Т. 2. С. 84-97.

4. Matyas R., Pachman J. Primary Explosives. Springer Science & Business Media, 2013. P.187-252.

5. Thiele J., Marais J.T. II. Tetrazolderivate aus Diazotetrazotsaure // Justus Liebigs Annalen der Chemie. 1893. V. 273, N. 2-3. P. 144-160. DOI: 10.1002/jlac. 18932730203

6. Thiele J., Ingle H. Uber einige Derivate des Tetrazols // Justus Liebigs Annalen der Chemie. 1895. V. 287, N 3. P. 233-265. DOI: 10.1002/jlac. 18952870302.

7. Steinhauser G. CHN7 - A Molecule Like Almost Solid Nitrogen // Sitzungsberichte und Anzei-

ger der mathematisch-naturwissenschaftlichen Klasse. Abt. II. 2008. V. 217. P. 3-11. DC>I:10.1553/SundA2008sSII3

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

8. Маянц А.Г., Тищенко Л.М., Владимиров В.Н., Шляпошников В.А. Образование тетразол-и азидосодержащих олигомеров при взаимодействии 5-гидразинотетразола с формальдегидом в кислых средах // Химия гетероциклических соединений 1993. Т. 29, N 8. С. 1068-1078.

9. Scott F.L., Morrish W.N., Reilly J. Polynitro-gen systems from the hydrazino-carbonic acids. Part IX. The synthesis and bromination of some 5-tetrazolyl-and related hydrazones // J. Crg. Chem. 1957. V. 22. P. 692-694.

10. Шипанов В.П., Заболоцкая А.И., Бадруз-лова Р.А. Производные тетразола. XII. Синтез и некоторые химические свойства 5-тетразолгидразонов // Химия гетероциклических соединений. 1975. Т.11, N 6. С. 850-854.

11. Reddy G.C. , Mohan V.K., Murali B.M., Chatterjee A.K. Thermal studies on tetrazole derivatives using a differential scanning calorimeter // Thermochimica Acta. 1981. Vol. 43, N. 1. P. 61-73.

12. Holzer W., Györgydeak Z. On the structure of guanylhydrazones derived from aromatic aldehydes // Monatshefte für Chemie. 1992. V. 123,

N. 12. P.1163-1173

13. Duron S.G., Chapman J., Sydserff S.G., Rao S.G., Stein G., Wade W. Cystathionine-Y-lyase (CSE) Inhibitors. Patent WO no 2014018570 A125. 2012.

14. Сысоев А.В., Мороженко Ю.В. Модификация 5-гидразинотетразола ацетальными производными // Ползуновский вестник. 2014. Т. 2. С. 102-106.

15. Aboudi J., Bayat Y., Abedi Y., Nabati M., Mahkam M. 3-Nitro, 1-Amino Guanidine and 5-Hydrazino-1H-Tetrazole Derivatives as New Energetic Materials // Iranian Journal of Chemical Engineering, Engl. Edn. 2015. V. 34, N 2. P. 1-16.

16. Lin.-H., Li.-Ch., Qi., Liu., Wang Y, Pang S.-P. Nitrogen-rich salts based on 5-hydrazino-1H-tetrazole: a new family of high-density energetic materials // Journal of Materials Chemistry A. 2013. V. 1. P. 6776-6785. DOI: 10.1039/C3TA10503B.

17. Ilyushin M.A., Tselinsky I.V., Ugryumov I.A., Dolmatov V.Yu., Shugalei I.V. Study of Submicron

Structured Energetic Coordination Metal Complexes for Laser Initiation Systems Condensed Phase Leading Reaction // Central European Journal of Energetic Materials. 2005. V. 2, N 1. P. 21-33.

18. Zhu Y., Sheng D., Chen L., Ma F. Synthesis and Properties of Laser Sensitivity Primary Explosive 5-Hydrazinotetrazol Mercury Perchlo-rate // Chinese Journal of Energetic Materials. 2009. V. 17, N 2. P. 169-172 (on Chinese). DOI: 10.3969/j .issn.1006-9941.2009.02.010

19. Zhang Z., Zhang J., Xu C., Yin X., He P. Synthesis, Characterization and Properties of Per-chlorate Complexis with 5-Hydrazinotetrazole as Ligand. Chinese Journal of Energetic Materials. 2016. V. 24, N 1. P. 53-59 (on Chinese). DOI: 10.11943/j.issn.1006-9941.2016.01.008.

20. Thiele J. Über Nitro- und Amidoguanidin // Justus Liebigs Annalen der Chemie. 1892. V. 270, N 1-2. P. 1-63. DOI: 10.1002/jlac.18922700102.

21. Einberg F. Alkylation of 5-substituted te-trazoles with alpha-chlorocarbonyl compounds // Journal of Organic Chemistry. 1970. V. 35, N 11. P. 3978-3980. DOI: 10.1021/jo00836a095.

1. Bladin J.A. Üeber Verbindungen, welche sich vom Dicyanphenylhydrazin ableiten. II. Berichte der deutschen chemischen Gesellschaft. 1885, vol. 18, no. 2, pp. 2907-2912. DOI: 10.1002/cber. 188501802212.

2. Ostrovskii V.A., Koldobskii G.I. Tetrazoles. Uspekhi khimii [Russian Chemical Review]. 1994, vol. 63, no. 10, pp. 847-865. (in Russian)

DOI: 10.1070/RC1994v063n10ABEH000119.

3. Ostrovskii V.A., Koldobskii G.I. Energetic Tetrazoles. Rossiiskii khimicheskii zhurnal [Russian Chemical Journal]. 1997, vol. 2, pp. 84-97 (in Russian).

4. Matyas R., Pachman J. Primary Explosives. Springer Science & Business Media, 2013. 338 p.

5. Thiele J., Marais J.T. II. Tetrazolderivate aus Diazotetrazotsaure. Justus Liebigs Annalen der Chemie. 1893, vol. 273, no. 2-3, pp. 144-160. DOI: 10.1002/jlac. 18932730203

6. Thiele J., Ingle H. Über einige Derivate des Tetrazols. Justus Liebigs Annalen der Chemie. 1895, vol. 287, no. 3, pp. 233-265. DOI: 10.1002/jlac. 18952870302.

7. Steinhauser G. CHN7 - A Molecule Like Almost Solid Nitrogen. Sitzungsberichte und Anzeiger der mathematisch-naturwissenschaftlichen Klasse. Abt. II 2008, vol. 217, pp. 3-11. DOI:10.1553/SundA2008sSII3

8. Mayants A.G., Tishchenko L.M., Vladimirov V.N., Shlyapochnikov V.A. The formation of tetrazo-le and azido oligomers by the reaction of 5-hydrazinotetrazole with formaldehyde in acid media Khimiya geterotsiklicheskikh soedinenii [Chemistry of Heterocyclic Compounds]. 1993, vol. 29, no. 8, pp. 906-908. (in Russian)

9. Scott F.L., Morrish W.N., Reilly J. Polynitro-

gen systems from the hydrazino-carbonic acids. Part IX. The synthesis and bromination of some 5-tetrazolyl and related hydrazones. J. Org. Chem. 1957, vol. 22, pp. 692-694.

10. Shchipanov V.P., Zabolotskaya A.I., Badryzlova R.A. Tetrazole derivatives. XII. Synthesis and some properties of 5-tetrazolylhydrazones. Khimiya geterotsiklicheskikh soedinenii [Chemistry of Heterocyclic Compounds]. 1975, vol. 11, no. 6, pp.746-750.

11. Reddy G.O., Mohan V.K., Murali B.M., Chatterjee A.K. Thermal studies on tetrazole derivatives using a differential scanning calorimeter. Thermochimica Acta. 1981, vol. 43, no. 1, pp. 6173.

12. Holzer W., Gyorgydeak Z. On the structure of guanylhydrazones derived from aromatic aldehydes. Monatshefte fur Chemie. 1992, vol. 123, no. 12, pp. 1163-1173.

13. Duron S.G., Chapman J., Sydserff S.G., Rao S.G., Stein G., Wade W. Cystathionine-Y-lyase (CSE) Inhibitors. Patent WO no. 2014018570 A125, 2012.

14. Sysoev A.V., Moroshenko Yu.V. Modification of 5-hydrazinitetrazoles by acetyl derivatives. Polzunovskii vestnik [Polzunovsky vestnik]. 2014, vol. 2, pp. 102-106. (in Russian)

15. Aboudi J., Bayat Y., Abedi Y., Nabati M., Mahkam M. 3-Nitro, 1-Amino Guanidine and 5-Hydrazino-1H-Tetrazole Derivatives as New Energetic Materials. Iranian Journal of Chemical Engineering (Engl. Edn.) 2015, vol. 34, no. 2, pp. 1-16.

16. Lin Q.-H., Li Y.-Ch., Qi C., Liu W., Wang Y., Pang S.-P. Nitrogen-rich salts based on 5-hydrazino-1H-tetrazole: a new family of high-density

energetic materials. Journal of Materials Chemistry A. 2013, vol. 1, pp. 6776-6785. DOI: 10.1039/C3TA10503B.

17. Ilyushin M.A., Tselinsky I.V., Ugryumov I.A., Dolmatov V.Yu., Shugalei I.V. Study of Submicron Structured Energetic Coordination Metal Complexes for Laser Initiation Systems Condensed Phase Leading Reaction. Central European Journal of Energetic Materials. 2005, vol. 2, no. 1, pp. 21-33.

18. Zhu Y., Sheng D., Chen L., Ma F. Synthesis and Properties of Laser Sensitivity Primary Explosive 5-Hydrazinotetrazol Mercury Perchlo-rate. Chinese Journal of Energetic Materials. 2009, vol. 17, no. 2, pp.,169-172 (in Chinese). DOI : 10.3969/j.issn.1006-9941.2009.02.010

Критерии авторства

Степанова Е.В., Степанов А.И. выполнили экспериментальную работу, на основании полученных результатов провели обобщение и написали рукопись. Степанова Е.В., Степанов А.И. имеют на статью равные авторские права и несут равную ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

СВЕДЕНИЯ ОБ АВТОРАХ Принадлежность к организации

Елена В. Степанова

Российский государственный гидрометеорологический университет, Российская Федерация, 195196, г. Санкт-Петербург, Малоохтинский пр., 98 К.г.н., доцент, заведующий кафедрой химии природной среды stepan offev@yandex.ru

Андрей И. Степанов

Российский государственный гидрометеорологический университет, Российская Федерация, 195196, г. Санкт-Петербург, Малоохтинский пр., 98 К.х.н., ст. преподаватель кафедры химии природной среды

Специальное конструкторско-технологическое

бюро «Технолог»,

Российская Федерация, 192076,

г. Санкт-Петербург, Советский пр., 33A

Начальник технологической лаборатории

stepanoffai@yandex.ru

Поступила 18.10.2016

19. Zhang Z., Zhang J., Xu C., Yin X., He P. Synthesis, Characterization and Properties of Perchlorate Complexis with 5-Hydrazinotetrazole as Ligand. Chinese Journal of Energetic Materials. 2016, vol. 24, no. 1, pp. 53-59 (in Chinese). DOI : 10.11943/j.iss_n.1006-9941.2016.01.008.

20. Thiele J. Üeber Azo- und Hydrazoverbin-dungen des Tetrazols. Justus Liebigs Annalen der Chemie. 1898, vol. 303, no. 1-2, pp. 57-75. DOI: 10.1002/jlac. 18983030104

21. Einberg F. Alkylation of 5-substituted te-trazoles with alpha-chlorocarbonyl compounds. Journal of Organic Chemistry. 1970, vol. 35, no. 11, pp. 3978-3980. DOI: 10.1021/jo00836a095

Contribution

Stepanova E.V., Stepanov A.I. carried out the experimental work, on the basis of the results summarized the material and wrote the manuscript. Stepanova E.V., Stepanov A.I. have equal author's rights and bear equal responsibility for plagiarism.

Conflict of interest

The authors declare no conflict of interests regarding the publication of this article.

AUTHORS' INDEX Affiliations

Elena V. Stepanova

Russian State Hydrometeorological University, 98, Malookhtinskii Ave., St. Petersburg,195196, Russian Federation Ph.D. (Geography), Associated Professor, Head of the Chair of Chemistry of Natural Environment

e-mail stepanoffev@yandex.ru Andrei I. Stepanov

Russian State Hydrometeorological University,

98, Malookhtinskii Ave.,

St. Petersburg,195196, Russian Federation

Ph.D. (Chemistry), Senior Teacher

Chair of Chemistry of Natural Environment

Special Design-Technological Bureau

«Tekhnolog»

33A, Sovetskii Ave., St. Petersburg, 192076,

Russian Federation

Head of Technological Laboratory

stepanoffai@yandex.ru

Received 18.10.2016

i Надоели баннеры? Вы всегда можете отключить рекламу.