UDC 547-327
OBTAINING UREA COMPLEX FERTILIZER WITH PHYSIOLOGICALLY ACTIVE
SUBSTANCES Ibrohimjon Abidov
Ph.D., Associate Professor, Namangan Institute of Engineering and Technology
E-mail: [email protected] Farhod Fayzullaevich Hoshimov Ph.D., Associate Professor, Namangan Institute of Engineering and Technology
E-mail: [email protected] https://doi.org/10.5281/zenodo.10566126
Abstract: The possibility of obtaining urea with physiologically active substances (PAS) has been studied. The studies used spectrophotometry methods of determination and statistical processing of results. A method for monitoring PAS in the composition of modified urea, as well as a technology for producing fertilizer, has been developed. A developed method for determining PAS in modified urea with an accuracy of at least 0.026%, which makes it possible to control the technological process of large-scale production of modified urea.
Keywords: physiologically active substances, urea, N-oxide-2,6-dimethylpyridine, benzimidazolin-2-one and 5-chlorobenzimidazolin-2-one, spectrophotometer, method, spectra, statistical processing of results, peak, maximum, bathochromic shift, compound.
ПОЛУЧЕНИЕ КАРБАМИДНОГО КОМПЛЕКСНОГО УДОБРЕНИЯ С ФИЗИОЛОГИЧЕСКИ АКТИВНЫМИ ВЕЩЕСТВАМИ
Аннотация: Изучена возможность получения мочевины с физиологически активными веществами (ПАВ). В исследованиях использовались спектрофотометрические методы определения и статистической обработки результатов. Разработан метод мониторинга ПАВ в составе модифицированного карбамида, а также технология получения удобрения. Разработан метод определения ПАС в модифицированном карбамиде с точностью не менее 0,026 %, позволяющий контролировать технологический процесс крупнотоннажного производства модифицированного карбамида.
Ключевые слова: физиологически активные вещества, мочевина, №оксид-2,6-диметилпиридин, бензимидазолин -2-он и 5-хлорбензимидазолин -2-он, спектрофотометр, метод, спектры, статистическая обработка результатов, пик, максимум, батохромный сдвиг, сложный.
INTRODUCTION
The introduction of physiologically active substances into fertilizers, despite their relatively high cost, gives a positive effect at their low (from 0.03 to 0.05 wt.%) concentrations in a complex fertilizer. Based on the studies carried out, it was shown that a number of stable compositions were obtained, the study of which showed their effectiveness in agriculture as plant growth stimulants, in addition to the main function [1, 2].
Based on urea, modification of prilled magnesium-containing urea granules was obtained and a technology for producing complex NK and NMg-fertilizers based on it was developed, and the possibility of modifying urea with formaldehyde for use in light industry was shown [3, 4].
Using a solid-phase method, polymer complexes containing physiologically active substances are obtained [5-9].
The production of fertilizers containing physiologically active substances (PAS) is not associated with significant specific capital investments for the reconstruction of existing technological schemes, however, it is necessary to solve a number of technological problems associated with the organization of PAS dosage units, mixing PAS with large fertilizer flow, analytical quality control of the finished product. In this regard, issues were considered and research was carried out on the development of methods for introducing PAS into fertilizers and obtaining urea modified with PAS. To develop technical conditions and put products into production, reliable methods for monitoring and determining the content of the studied PAS in the finished product are required. We have developed methods for determining PAS in urea using the spectrophotometry method [10-14].
The following compounds were selected as the active substances - N-oxide-2,6-dimethylpyridine (IVIN), benzimidazolin-2-one (BION) and 5-chlorobenzimidazolin-2-one (5 CBIONE) whose structural formula is as follows:
METHODS
In laboratory conditions, samples of fertilizers were obtained by evaporating urea solutions containing various amounts of IVIN at 100°C. When carrying out the research, recrystallized salts of analytical grade were used. and "h.ch." and laboratory-synthesized BION, 5-CBION, IVIN.
UV spectra were recorded using a Hitachi-EPS-3T spectrometer (solvent - ethanol) and an SF-4A spectrometer (solvent - methanol).
The essence of the method is that the optical densities of the standard PAS solution (Ast) and the test solution of the composition (Ax) are determined. Taking into account the dilution of the studied solutions and the weighed portions of the studied composition samples according to the well-known formula:
We find the percentage of PAS in the compositions, where: Cx is the desired concentration of the PAS, mg/ml, AX is the optical density of the test solution of the composition, Cst -concentration of standard solution of PAS, mg/ml, Ast is the optical density of the standard PAS solution.
The UV spectra of IVIN and urea were studied (Fig. 1). It can be seen from the figure that at X = 260 nm the influence of urea on the absorption band of IVIN is practically absent and therefore this band was chosen as characteristic for the quantitative determination of IVIN in IVIN containing urea.
The study of polythermal systems and spectrophotometry analysis showed that IVIN is not subject to physical and chemical changes. The IVIN content in the samples was at the same level as similar "dry compositions".
Cx=(Cst*Ax)/Ast
RESULTS
DISCUSSIONS
When fusing urea and IVIN for 10 - 15 minutes at a temperature 135°C and stirring followed by cooling, it was found that in the selected range of variation of parameters IVIN did not undergo changes and retains all the properties of a physiologically active compound (Fig. 1 and 2, Table 1).
The IVIN content in IVIN-containing urea is determined with an accuracy of 0.003%.
i i_i_i_i-1—».
m 220 2*<Q 360 2(0 300 320 HO
J.,MM
Fig. 1. UV spectra: 1-urea, 2-C7H9NO
Due to the fact that BION and 5-CBION are insoluble in aqueous solutions of urea, they were introduced into a hot melt of urea having a temperature of 135°C.
A method for monitoring the content of PAS in urea has been developed.
Table 1. Statistical processing of IVIN analysis results in IVIN-containing urea
№ Taken, % Found,% AX AXi-AX+ (AXi-AX+)2 S Sx
1 0.050 0.049 0.001 -0.0054 2.916*10-5
2 0.070 0.071 0.001 -0.0054 2.916*10-5
3 0.100 0.105 0.005 -0.0014 0.20*10-5
4 0.300 0.298 0.002 -0.0044 1.94*10-5
5 0.500 0.503 0.003 -0.0034 1.16*10-5
6 0.700 0.702 0.002 -0.0044 1.94*10-5 4.64*10-3 1.4*10-5 0.003
7 1.0 0.989 0.011 0.0046 2.12*10-5
8 2.0 2.013 0.013 0.0066 4.36*10-5
9 3.0 2.988 0.012 0.0056 3.14*10-5
10 4.0 3.989 0.011 0.0046 2.12*10-5
11 5.0 5.009 0.009 0.0026 0.68*10-5
We have studied the UV spectra of urea, BION (1) and 5-CBION (2). Spectra (1) and (2) are characterized by the corresponding three maxima.
¿oo ¿zo <?«? eso eso ioo szo wo
A,um
Fig.2. UV spectra: 1-urea; 2-C7H6N2O
Analysis of the absorption curves clearly shows the bathochromic shift of all three bands (2) compared to (1), which is explained by the presence of a substituent for the electronegative chlorine atom in position "5" of compound (2).
Table 2. Statistical processing of the results of the analysis of BION in BION-
containing urea
№ Taken,% Found,% AX AXi-AX+ (AXi-AX+)2 S Sx
1 0.010 0.013 0.003 -0.005 0.000025
2 0.030 0.028 0.002 -0.006 0.000036
3 0.050 0.048 0.002 -0.006 0.000036
4 0.10 0.083 0.017 0.009 0.000081 0.0065 0.0025 0.0061
5 0.30 0.314 0.014 0.006 0.000036
6 1.0 1.076 0.0014 0.006 0.000036
7 2.0 2.010 0.010 0.002 0.000004
Content (1) has the following absorption bands: X=206nm (log^=3.57), X=225nm (log^=2.08) and X=280nm (log^=1.89), while (2): X=208 nm (log^=2.43 ), X=227nm (log^=1.83) and X=288nm (log^=1.68).
The most optimal for spectrophotometry determination (1) and (2) in the composition of urea are for (1) X=280 nm (Table 2, Fig. 2) and for (2) X=288 nm (Fig. 3, Table 3), where the influence of urea absorption is minimal.
Fig. 3. UV spectra: 1-urea; 2-C7H5N2OCI
Table 3. Statistical processing of the results of the analysis of 5-CBION and 5-
CBION-containing urea
№ Taken,% Found,% АХ AXi-AX+ (AXi-AX+)2 S Sx
1 0.010 0.013 0.003 -0.0055 0.003025
2 0.030 0.032 0.002 -0.0060 0.003600
3 0.050 0.056 0.006 -0.0025 0.000625
4 0.10 0.099 0.001 0.0075 0.005625 0.072 0.026 0.026
5 0.30 0.314 0.014 0.0055 0.003025
6 0.50 0.515 0.015 0.0065 0.004225
7 1.0 1.018 0.018 0.0950 0.009025
8 2.0 1.983 0.017 0.0085 0.007225
CONCLUSIONS
Thus, the developed method for determining PAS in modified urea makes it possible to
control the technological process. The content of BION and 5 -CBION in the compositions "urea -
1" and "urea-2" was determined with an accuracy of 0.0061 and 0.026%, respectively. The
conducted studies show that organizing large-scale production of urea containing IVIN, BION, 5-
CBION does not present any particular difficulties.
REFERENCES
1. И.Абидов, Ф.Хошимов, А.Охундадаев. Технология азотно-фосфорных удобрений содержащих физиологически активных веществ. Монография, Наманган. НамИТИ 2019.
2. И.Абидов, Т.Ботиров, А.Охундадаев. Разработка технологии аммофоса и карбамида, содержаших физиологически активные вещества. Вестник Таджикскского педагогического института, 2019 №2.
3. Farhod F.Hoshimov, Marifat H.Urinboyeva, Akmal U.Ismadiyorov, Shavkat V.Abdullayev. Solid-phase method for producing polymer complex of routine. International journal of engineering sciences & research technology. 4(4): April, 2015 Indiya
4. Ф.Ф.Хошимов, Р.К.Каримов. Твердофазная технология получения полимерного комплекса рутина. Узбекский химический журнал.Ташкент 2015, №2.
5. Хошимов Ф.Ф., С.М.Собиров, Ж.Хабибуллаев. Рутипол субстанциясининг катти; фазали технологияси. Фаргона политехника институти илмий-техника журнали 2019.том 23, №1.
6. И.Абидов, Ф.Хошимов, А.Охундадаев. Технология азотно-фосфорных удобрений содержащих физиологически активных веществ .-Наманган: изд. НамИТИ. 2019 год, 164 стр.
7. I.Abidov, F.Hoshimov. Study of interaction in systems consisting of N-oxide-2,6-dimethylpyridine and ammonium dihydro-, hydro-orthophosphates. Scientific and technical journal of Namangan Institute of Engineering and Technology. Namangan, 2020, №3.
8. Абидов Иброхимжон, Хошимов Фарход Файзуллаевич. Технология получения аммофоса, модифицированного физиологически активными веществами. Universum: химия и биология: научный журнал. - № 11(77)., 2020., 85 стр.
9. Абидов И., Хошимов Ф. Технология карбамида, модифицированного физиологически активными веществами. International scientific and technical journal Innovation Technical and Technology. Vol.1, №.3. 2020.р.15 -20.
10. Абидов И., Хошимов Ф. Технология модифицированного аммофоса. International scientific-methodical journal UzACADEMIA Volume 1. Issue 8, December 2020.
11. И.Абидов, Ф.Хошимов, А.Охундадаев, М.Солиев. Технология получения минеральных удобрений с БАВ. Монография. Lambert Academic Publishing 2020, 153 р.
12. I.Abidov, F.Hoshimov. Obtaining a complex fertilizer of carbamide with physiologically active substances. Scientific and technical journal of Namangan Institute of Engineering and Technology. Namangan, 2020, №4.
13. I.Abidov, F.Hoshimov. Obtaining a complex fertilizer of ammophos containing physiologically active substances. Scientific and technical journal of Namangan Institute of Engineering and Technology. Namangan, 2020, №4.
14. Абидов И., Хошимов Ф.Ф. Спектрофотометрический метод определения физиологически активных веществ в комплексных NP удобрениях. "Фан ва технологиялар тараккиёти" БухМТИ Илмий-техникавий журнал 2020 йил, №5