AZ9RBAYCAN KIMYA JURNALI № 1 2013
23
UDC 547.236;547.722
OBTAINING OF SUBSTITUTED IMIDES AND FURANS FROM BENZOIC ACID, 1,1,3,3-TETRAMETHYLBUTYL ISOCYANIDE AND ACETYLENIC ESTERS THROUGH
VINYLPHOSPHONIUM SALT
A.M.Maharramov, M.Valizadeh, L.A.Djavadova, M.A.Allahverdiyev
Baku State University
mirze_a@mail. ru Received 23.10.2012
Protonation of the reactive intermediates produced in the reaction between triphenylphosphine and dialkyl acetylenedicarboxylates by benzoic acid leads to vinyltriphenylphosphonium salts, which undergo complex reactions with 1,1,3,3-tetramethylbutyl isocyanide to produce corresponding substituted furans and imides in fairly good yields and stereoselective manner.
Keywords: acetylenic ester, densely functionalized furan, electron-poor imide, phosphorus ylide, triphenylphosphine.
Organophosphorus compounds [1, 2] have been extensively employed in organic synthesis as useful reagents as well as ligands in a number of transition metal catalysts [3]. Phosphorus ylides are a class of a special type of zwitterions, which bear strongly nucleophilic electron-rich carbanions. The electron distribution around the P-C- bond and its consequent chemical implications has been probed and assessed through theoretical, spectroscopic, and crystallographic investigations [4]. They are excellent ligands and excel in their ligating functions with the unstabilized ylides because of their ambidentate and chemically differentiating character. Proton affinity of these ylides can be used as a molecular guide to assess their utility as synthetic reagents and their function as ligands in coordination and organometallic chemistry [3-5]. The nucleophilicity at the ylidic carbon is a factor of essential mechanistic importance in the use of these ylides as Wittig reagents. Phosphorus ylides are important reagents in synthetic organic chemistry, especially in the synthesis of naturally occurring products, and compounds with biological and pharmacological activity [1, 2]. In recent years, we have established a one-pot method for the synthesis of stabilized ylides [6-15]. For several years acetylenic esters have attracted the attention of organic chemists and are reactive systems that can take part in many chemical syntheses [16-18], almost as a Michael acceptor in the organic reactions [16]. In recent years, there has been increasing interest in the applications of acetylenic esters in the multicomponent [19-21] synthesis. Due to the atom economy, convergent character, and simplicity of one-pot procedures, multicomponent condensation reactions (MCRs) have an advantageous position among other reactions. The development of novel MCRs is receiving growing interest from industrial chemistry research groups and represents a challenge for organic chemists [22-25]. As part of our ongoing program to develop efficient and robust methods for the preparation of heterocyclic compounds [25-36], we sought to develop a convenient preparation of densely functionalized furans V and imides IV in fairly good yields in neutral conditions.
EXPERIMENTAL
(250.13 MHz) and 13C (62.90 MHz) NMR measurements were recorded on a Brucker 250 spectrometer in CDCl3 with tetramethylsilane as internal standard. IR spectra were measured on a Mattson-1000 FTIR spectrophotometer. Starting materials and solvents were obtained from Merck (Germany) and Fluka (Switzerland) and were used without further purification. Flash chromatography columns were prepared from Merck silica gel powder.
General Procedure for the Preparation of Compounds IVa-b and Va-b. To a magnetically stirred solution of triphenylphosphine (0.262 g, 1 mmol) and benzoic acid III (0.28 g, 2 mmol) in dry CH2Cl2 (1 ml) was added drop wise a solution of II (2 mmol) in CH2Cl2 (2 ml) at -100C over 15 min. The mixture was allowed to warm to room temperature and to it was added dropwise a solution of 1,1,3,3-tet-ramethylbutyl isocyanide I (3 mmol) in CH2Cl2 (1 ml) over 10 min. The mixture was stirred for 48 h. The solvent was removed under reduced pressure, and the viscous residue was purified by flash column chromatography (silica gel; light petroleum ether-ethyl acetate). Characterization data are given in the next section.
Dimethyl-(E)-2-{[benzoyl(1,1,3,3-tetramethylbutyl)amino]carbonyl}-2-butenedioate (IVa). Viscous yellow oil, IR (KBr) (Vmax, cm-1): 1738 (OCNCO), 1669 (COOMe), 1600 (C=C), 1546 and 1454 (Ph), 1369, 1253, 1200 and 1123 (C-O). 1H NMR (250.13 MHz, CDCl3): Sh 0.99 (9 H, s, CMe3), 1.55 (6 H, s, CMe2), 2.30 (2 H, s, CH2), 3.54 (3 H, OMe), 3.70 (3 H, s, OMe), 6.28 (1 H, NH), 7.30 (2 H, d.d, 3Jh = 7.5 Hz, 2 CHmeta- of C6H5), 7.45 (1 H, t, Jhh = 7.7 Hz, CH^. of C6H5), 7.68 (2 H, d, Jhh = 7.7 Hz, 2 CHortho_ of C6H5). 13C NMR (62.90 MHz, CDCl3): Sc 22.59 (CMe3), 28.23 (CH3 of CMe2), 31.66 (CH3 of CMe3), 50.44 (CH2), 52.21 (OMe), 52.53 (OMe), 64.91 (C of CMe2), 128.15 (2 CHmeta- of C6H5), 128.43 (2 CHorth0-of C6H5 ), 130.38 (C-CH), 134.03 (CH^a- of C6H5), 136.04 (Cipso. of C6H5), 140.99 (CCH), 161.68 (PhCONCO), 162.77 (COOMe), 163.53 (COOMe), 175.11 (PhCON).
Diethyl-(E)-2-{[benzoyl(1,1,3,3-tetramethylbutyl)amino]carbonyl}-2-butenedioate (IVè). Viscous yellow oil, IR (KBr) (Vmax, cm-1): 1730 (OCNCO), 1676 (COOMe), 1610 (C=C), 1553 and 1469 (Ph), 1376, 1261, 1200 and 1161 (CO).1H NMR (250.13 MHz, CDC^ ): Sh 1.07 (9 H, s, CMe3), 1.25 (3 H, t, 3Jh = 7.2 Hz, CH3), 1.28 (3 H, t, Jhh = 7.2 Hz, CH3), 1.65 (6 H, s, CMe2), 2.38 (2 H, s, CH2), 4.11 (2 H, q, 3Jh = 7.2 Hz, OCH2CH3), 4.22 (2 H, q, 3Jh = 7.2 Hz, OCH2CH3), 6.33 (1 H, s, NH), 7.40 (2 H, d.d, 3Jh = 7.5 Hz, Jhh = 7.5 Hz, 2CHmeta- of C6H5), 7.54 (1 H, t, Jhh = 7.4 Hz, CHpara- of CH5), 7.78 (2 H, d, 3Jh = 7.4 Hz, 2 CHoriho- of C6H5).13C NMR (62.90 MHz, CDC^): Sc 13.76 (CH3CH2), 14.08 (CH3CH2), 28.59 (CMe3), 31.58 (CH3 of CMe2), 31.77 (CH3 of CMe3), 50.41(CH2), 61.49 (OCH2), 62.18 (OCH2), 65.12 (C of CMe2), 128.45 (2 CHmeta- of C6H5), 128.77 (2 CHrho- of C6H5), 130.41 (C-CH), 134.00 (CHpara- of C6H5), 136.40 {C^ of C6H5), 141.74 (C-CH), 162.15 (PhCONCO), 162.63 (COOMe), 163.41 (COOMe), 175.39 (PhCON).
Dimethyl-2-[benzoyl(1,1,3,3-tetramethylbutyl)amino]-5-(1,1,3,3-tetramethylbutylamino)-3,4-fu-randicarboxylate (Va). Viscous yellow oil, IR (KBr) (Vmax, cm-1 ): 3485 (NH), 1730 (COOMe), 1669 (COOMe), 1576 (CON), 1215 (C-O). 1H NMR (250.13 MHz, CDC^): Sh 1.04 (9 H, s, CMe3), 1.11 (9 H, s, CMe3), 1.40 (3 H, s, CMe2), 1.50 (3 H, s, CMe2), 1.52 (3 H, s, CMe2), 1.54 (3 H, s, CMe2), 1.60 (2 H, s, CH2), 1.90 (1 H, d, 2Jhh = 15.0 Hz, CH2), 1.75 (1 H, d, Jhh = 15.0 Hz, CH2), 3.63 (3 H, s, OMe), 3.75 (3 H, s, OMe), 7.07 (1 H, s, NH), 7.22 (2 H, d, 3Jh = 7.0 Hz, 2 CHortho- of C6H5), 7.27 (1 H, t, Jhh = 7.0 Hz, CHpara- of C6H5), 7.44 (2 H, t, Jhh = 7.5 Hz, 2 CHmeta- of C6H5).13C NMR (62.90 MHz, CDCl3 ): Sc 28.11 (CMe3), 28.79 (CMe3), 30.01 (CH3 of CMe2 ), 30.18 (CH3 of CMe2), 31.44 (CH3 of CMe3), 31.66 (CH3 of CMe3), 31.73 (CH2), 49.33 (CMe2), 50.90 (CMe2), 51.80 (OMe), 53.01 (OMe), 56.18 (CH2), 65.69 (CH2), 85.59 (C4 of furan), 114.76 (C3 of furan), 127.28 (CHpara- of C6H5), 127.62 (2 CHortho- of C6H5), 129.83 (2 CHmeta- of C6H5), 138.32 (Cipso- of C6H5), 139.89 (C5 of furan), 159.02 (C2 of furan), 163.62 (COOMe), 165.13 (COOMe), 172.20 (NCO).
Diethyl-2- [benzoyl(1,1,3,3-tetramethylbutyl)amino] -5-(1,1,3,3-tetramethylbutylamino)-3,4-furandi-carboxylate (Vè). Viscous yellow oil, IR (KBr) (Vmx, cm-1): 3492 (NH), 1746 (COOMe), 1684 (COOMe), 1569 (CON), 1230 (C-O). 1H NMR (250.13 MHz, CDC^): Sh 1.03 (9 H, s, CMe3), 1.10 (9 H, s, CMe3), 1.18 (3 H, t, Jhh = 7.0 Hz, CH3), 1.29 (3 H, t, Jhh = 7.0 Hz, CH3), 1.40 (3 H, s, CMe2), 1.51 (3 H, s, CMe2), 1.55 (6 H, s, CMe2), 1.60 (2 H, m, CH2), 1.71 (2 H, d, J= 15.0 Hz, CH2), 1.86 (2 H, d, 1J = 15.0 Hz, CH2), 4.11 (3 H, m, OEt), 4.32 (3 H, m, OEt), 7.02 (1 H, s, NH), 7.12 (2 H, d, Jhh = 7 Hz, 2 CHortho- of C6H5), 7.26 (1 H, t, Jhh = 7 Hz , CH para- of C6H5), 7.46 (2 H, t, Jhh = 7.5 Hz , 2 CHmeta- of C6H5). 13C NMR (62.90 MHz, CDQ3): Sc 14.04 (CH3), 14.17 (CH3), 28.12 (CMe3), 28.94 (CMe3), 30.03 (CH3 of CMe2), 30.20 (CH3 of CMe2), 31.45 (CH3 of CMe3), 31.62 (CH3 of CMe3), 31.65 (CH2), 49.35 (CMe2), 52.98 (CMe2), 56.11 (OEt), 59.57 (OEt), 61.17 (CH2), 65.67 (CH2 ), 85.91 (C4 of furan), 115.2 (C3 of furan), 127.42 (CHpara- of C6H5), 127.59 (2 CHortho- of C6H5), 129.77 (2 CHmeta- of C6H5), 138.22 (C,pSo- of C6H5 ), 139.07 (C5 of furan), 158.88 (C2 of furan), 164.75 (COOMe), 165.13 (COOMe), 172.13 (NCO).
RESULTS AND DISCUSSION
Protonation of the reactive intermediates produced in the reaction between triphenylphosphine and dialkylacetylenedicarboxylates II by benzoic acid III leads to vinyltriphenylphosphonium salts VII, which undergo complex reactions with 1,1,3,3-tetramethylbutyl isocyanide I to produce corresponding densely functionalized furans V and imides IV in fairly good yields in neutral conditions (Schemes 1, 2). The reaction proceeds smoothly and cleanly under reaction conditions, and no side reactions were observed. The reactions were completed in 48 h, and densely functionalized furans V were observed as major products (Table).
In this reaction triphenylphosphine acts as a catalyst. In the absence of the triphenylphosphine [25, 26] the reactions were completed after 72 h in CH2Cl2 at room temperature with imides IV observed as major products (Table) [25, 26].
A.M.MAHARRAMOV et al.
25
Scheme 1
C III N I
CH3-C-CH3 3 I 3 CH2
C / CH3
I 4 CH3 CH3
I
COO /4 PPh3
1 C + И CH2CI2
III V r.t., 48 h
COO
COO
III
O
CHC3/CH3
v3 / CH2
I
CH3
O=C/COO C
O
ROCO-CH
IV
RO'
/
C
'/ V
O
H
+ H3C-C-CH3 CH2 H3C-C-CH3
3 I
CH3
COR O
■NT
H3C-C-CH3 3 \ 3 CH2
H3C-C-CH3
I
CH3
V
IVa: R=Me IVb: R=Et
Va: R=Me Vb: R=Et
Scheme 2
ROOC
-COOR
ROOC
Ph3P
COOR
О
VI
II
ph^^oh
III
ROOC
Ph3P '
PhCOO-
COOR
o ©
:c=nr'
H
VII
ROOC ©
Ph3P
COOR
VIII
PhCOO-
ROOC COOR
Ч© /
\
©
Ph3P
H
O
У
Ph
IX
ROOC H COOR
©У
-Cf'
O
ROOC
O
^NR'
A
O
Ph
XI
-pph,
COOR \
H
O
NR' Ph
A
IV +
X ROOC
H'
COOR
NR' O J O^Ph
XII
ROOC
COOR
R'-
-^C
C S ^NR'
O O^Ph
XIII
ROOC H
H
R'N=Cs4 /
XIV
COOR
C
NR' O^Ph
V
R=CH3, C2H5; R'=1,1,3,3-tetramethylbuthyl
+
II
o
II
The 1H NMR (CDCl3) spectra of compounds IV show the presence of one estereoisomer (E) for each imides IV. Z isomers of the imides IV were not isolated. It seems that Z isomers XII are more reactive than E isomers toward formation of adduct XIII with 1,1,3,3-tetramethylbutylisocyanide I and act as intermediate in the formation of furans V (Scheme 2). The reaction is stereoselective.
Synthesis of imides IV and furans V (see Scheme 1)
In the presence of PPh3 (r. t., 48 h.): total In the absence of PPh3 (r. t., 72 h):
Entry Products isolated yield, % total isolated yield, %
IV+V IV:V IV+V IV:V
1 IVa/Va 91 31/69 80 90/10
2 IVb/Vb 85 30/70 75 83/17
The mechanism of the reaction between the triphenylphosphine, 1,1,3,3-tetramethylbutyl isocyanide I dialkylacetylenedicarboxylates II, and benzoic acid III has not been established experimentally. However, a possible explanation is proposed in Scheme 2. The structures of the products were deduced from their IR, 1H NMR, and 13C NMR spectra (see the Experimental section).
CONCLUSIONS
Therefore, we have found a new and efficient method for preparing electron-poor imides IV and fully substituted furans V from triphenylphosphine, 1,1,3,3-tetramethylbutyl isocyanide I dialkyl acetylenedicarboxylates II, and benzoic acid III in neutral conditions (Scheme 1, 2 and Table). We believe the reported method offers a simple and efficient route for the preparation of electron-poor methodologies. Other aspects of this process are under investigation imides IV and fully substituted furans V (Scheme 1). Its ease of work up and fairly good yields make it a useful addition to modern synthetic methodologies. Other aspects of this process are under investigation.
REFERENCES
1. Kolodiazhnyi O. I. Phosphorus ylides: Chemistry and Application in Organic Synthesis. Wiley. New York, 1999. 767 p.
2. Cobridge D.E.C. Phosphorus: An Outline of its Chemistry Biochemistry and Technology. 5th ed. Amsterdam: Elsevier, 1995. 1208 p.
3. Kaska W.C. // Coord. Chem. Rev. 1983. V. 48. P. 1.
4. Ramazani A., Kazemizadeh A.R., Ahmadi E. et al. // Naturforsch. 2006. V. 61b. P.1128.
5. Maryanoff B.E., Reitz A.B. // Chem. Rev.1989. V. 89. P. 863.
6. Yavari I., Ramazani A. // Synth. Commun. 1996. V. 26. P. 4495.
7. Yavari I., Ramazani A. // Phosphourus, Sulfur, and Silicon. 1997. V. 130. P. 73.
8. Ramazani A., Bodaghi A. // Tetrahedron Lett. 2000. V. 41. P. 567.
9. Pakravan P., Ramazani A., Noshiranzadeh N. et al. // Phosphourus, Sulfur, and Silicon. 2007. V. 182. P. 545.
10. Ramazani A., Rahimifard M., Souldozi A. // Phosphourus, Sulfur, and Silicon. 2007. V. 182. P. 1.
11. Ramazani A., Rahimifard M., Noshiranzadeh N. et al. // Phosphourus, Sulfur, and Silicon. 2007. V. 182. P. 413.
12. Yavari I., Ramazani A., Yahya-Zadeh A. // Synth. Commun. 1996. V. 26. P. 4495.
13. Ramazani A., Ahmadi E., Kazemizadeh A. R. et al. // Phosphourus, Sulfur, and Silicon. 2005. V. 180. P. 2419.
14. Ramazani A., Mohammadi-Vala M. // Phosphorus, Sulfur, and Silicon. 2001. V. 176. P. 223.
15. Ramazani A., Amini I., Massoudi A. // Phosphorus, Sulfur, and Silicon 2006. V. 181. P. 2225.
16. Ramazani A., Kazemizadeh A. R., Ahmadi E. et al. // Org. Chem. 2008. V. 12. P. 59.
17. Keglevich G. // Curr. Org. Chem. 2002. V. 6. P. 891.
18. Keglevich G., Forintos H., Koertvelyesi T. // Curr. Org. Chem. 2004. V. 8. P. 1245.
19. Shaabani A., Soleimani E., Khavasi H. R. Et al. // Tetrahedron Lett. 2006. V. 47. P. 5493.
20. Alizadeh A.. Rostamnia S., Zhu L. G. // Tetrahedron Lett. 2006. V. 62. P. 5641.
21. Shaabani A., Soleimani E., Maleki A. // Tetrahedron Lett. 2006. V. 47. P. 3031.
22. Shaabani A., Teimouri M.B., Bijanzadeh H.R. // Tetrahedron Lett. 2002. V. 43. P. 9151.
A.M.MAHARRAMOV et al.
27
23. Shaabani A., Yavari I., Teimouri M. B. et al. // Tetrahedron Lett. 2001. V. 57. P. 1375.
24. Zhu J., Bienayme H. // Multicomponent Reactions. Wiley-VCH, Weinheim, 2005. 310 p.
25. Alizadeh A., Rostania S., Hu M L. // Synlett. 2006. No 10. P. 1592.
26. Souldozi A., Ramazani A., Bouslimani N. // Tetrahedron Lett. 2007. V. 48. P. 2617.
27. Souldozi A., Ramazani A. // Tetrahedron Lett. 2007. V. 48. P. 1549.
28. Ramazani A., Morsali A., Ganjeie B. et al. // Naturforsch. 2005. V. 60b. P. 569.
29. Ramazani A., Kardan M., Noshiranzadeh N. // Synth. Commun. 2008. V. 38. P. 383.
30. Noshiranzadeh N., Ramazani A., Tofangchi Mahyari A. et al. // Naturforsch. 2008. V. 63b. P. 65.
31. Kazemizadeh A. R., Ahmadi E., Marandi F. et al. // Phosphorus, Sulfur and Silicon. 2007. V. 182. P. 2855.
32. Soulsozi A., Slepokura K., Lis, T., Ramazani A. Z. // Naturforsch. 2007. V. 62b. P. 835.
33. Noshiranzadeh N., Ramazani A. // Phosphorus, Sulfur and Silicon. 2008. V. 183. P. 144.
34. Tofangchi Mahyari A., Shajari N. // Naturforsch. 2007. V. 62b. P. 829.
35. Ganjeie B., Ramazani A., Kazemizadeh A.R. // Phosphorus, Sulfur, and Silicon. 2007. V. 182. P. 1703.
36. Noshiranzadeh N., Ramazani A. // Synth. Commun. 2007. V. 37. P. 3181.
OVaZEDiLMiS iMiDLORiN VO FURANLARIN ViNiLFOSFONiUM DUZU VASiTOSiLO BENZOY TURSUSU 1,1,3,3-TETRAMETiLBUTiLiZOSiANiD VO ASETiLEN EFIRLORINDON
ALINMASI
A.M.M3h3rr3mov, M.Valizada, L.A.Cavadova, M.O.Allahverdiyev
Trifenilfosfinin dialkil asetilendikarboksilatlar ila benzoy tur§usunun i§tiraki ila protonla§an intermediatlan vinil-fosfonium duzlarin эшэ1э gatirir. 1,1,3,3-Tetrametilbutilizosianidin vinilfosfonium duzu ila reaksiyasindan alinan kompleksdan sterosegici olaraq avazedilmi§ imidlar va furanlar yax§i giximla alinir.
Agar sözlzr: asetilen efiri, six funksionaüa§mi§ furan, elektron gatmayan imid, fosforla§mi§ ilid, ügfenilfosfm.
ПОЛУЧЕНИЕ ЗАМЕЩЕННЫХ ИМИДОВ И ФУРАНОВ ИЗ БЕНЗОЙНОЙ КИСЛОТЫ, 1,1,3,3-ТЕТРАМЕТИЛБУТИЛИЗОЦИАНИДА И АЦЕТИЛЕНОВЫХ ЭФИРОВ ЧЕРЕЗ ВИНИЛФОСФОНИЕВУЮ СОЛЬ
А.М.Магеррамов, М.Вализаде, Л.А.Джавадова, М.А.Аллахвердиев
Протонирование реакционн^1х интермедиатов, полученных реакцией между трифенилфосфином и диалкил-ацетилендикарбоксилатом бензойной кислоты, приводит к образованию винилфосфониевой соли, которая при взаимодействии с 1,1,3,3-тетраметилбутилизоцианидом ведет к получению комплекса соответствующих замещенных фуранов и имидов с достаточно хорошими выходами и стереоселективностью.
Ключевые слова: ацетиленовый эфир, плотнофункционализированный фуран, электрондефицитный имид, фосфорилированный илид, трифенилфосфин.