CHEMICAL PROBLEMS 2019 no. 2 (17) ISSN 2221-8688
275
UOT 547.97+535.37
RESEARCH INTO ONE-STEP THREE COMPONENT REACTION OF SOME YLIDENECYANOACETAMIDES (OR YLIDENEMALONONITRILES), MALONONITRILE AND 1,3-DIAMINOPROPANE
F.N. Naghiyev
Baku State University, Chemical Faculty Z. Khalilov 23, Baku, Azerbaijan, e-mail: farid.orgchemist@gmail.com
Received 21.04.2019
Abstract: The one-step interaction of substituted ylidenecyanoacetamides (or ylidenema-lononitriles), malononitrile and 1,3-diaminopropane was carried out in methanol environment at room temperature and it established the formation of new substituted dihydropyridopyrimidine derivatives. It also revealed that under the same conditions through the use of one-step three-component reaction of pyridylidenecyanoacetamide (or pyridylidenemalononitrile), 2-chloro-5-nitrobenzylidenecyanoacetamide (or 2-chloro-5-nitrobenzylidenemalononitrile), 2,6-dichlorobenzylidenecyanoacetamide (or 2,6-dichlorobenzylidenemalononitrile), malononitrile and 1,3-diaminopropane there formed substituted derivatives not of dihydropyridopyrimidine but tetrahydropyridopyrimidine. Structures of all synthesized compounds were verified by NMR and X-Ray spectroscopy.
Keywords: ylidenecyanoacetamides, pyridylidenecyanoacetamide, malononitrile,
1,3-diaminopropane, NMR
DOI: 10.32737/2221-8688-2019-2-275-281
Introduction
The literature refers to new methods of theirv ibhibiting properties in respect of production of pyrimidine derivatives and various disease-producing factors [1-12].
Results and discussion
We carried out the one-step three component interaction of various ylidenecyanoacetamides (or ylidenema-lononitriles), malononitrile and 1,3-diaminopropane in methanol environment and
at room temperature, for 24-28 hours and established the possibility of production of substituted new dihydropyrido[1,2-a]pyrimidines (4a-j) irrespective of the nature of polarized double bond.
CN CN R-CH=^ + / +
\
h2n"
vnh2
CH3OH r.t., 48 h
= a) C6H5, b) 4-CH,C6H4, c) 4-CH,OC6H4, d) 4-F-C6H„, e) 3-Cl-CH f) 4-Br-C6H„, g) 4-CF3C6H4, h) 3-CH3O-4-OH-C6H3, j) thiophenyl
X = CONH,, CN
3
1
R
A plausible mechanism of the reaction is presented below:
(NC)2CH2 + H2N(CH2)3NH2
(NC)2CH + H3N(CH2)3NH2
NC
CN
NC
+ NH3(CH2)3NH2 ^
^^^ " NH2(CH2)3NH2 -
CN
//
^ V
N NH2
R = a) C6H4, b) 4-CH3C6H„, c) 4-CH3OC6H4, d) 4-F-C6H4, e) 3-Cl-C6H4, f) 4-Br-C6H4, g) 4-CF3C6H4, h) 3-CH3O-4-OH-C6H3,
CN NC
H^
CN
H2N
\
NH2
j) thiophenyl
NC
CN
NH2
Through the use of similar one-step three-component reaction of pyridylidene cyano acetamide (or pyridylidenemalononitrile) as compound with polarized double-bond,2,6-dichlorobenzylidenecyanoacetamide (or 2,6-dichlorobenzylidene malononitrile),
malononitrile and 1,3-diaminopropane at the same conditions, it became possible to establish the formation of corresponding substituted tetrahydropyrido[1,2-a]pyrimidine derivatives (6, 8, 10), not dihydropyrido[1,2-a]pyrimidines.
CN CN
R1-CH=^ + / +
^ CN
NC
NH
1 2 r t 48 h. ^^^^
3 ' HN ^N^ NH2
CN
R1 = pyridyl (5), 2-Cl-5-NO2-C6H3 (6), 2,6-Cl-C6H3 (7)
8, 9, 10
X = CONH CN
A plausible reaction mechanism and 13C NMR spectra (fig.1, fig.2) of compound 4e is presented below.
(nc)2CH2 + H2n(ch2)3NH2
r,
(nc)2CH + H3n(ch2)3NH2
cn
nc
+ NH3(CH2>NH2
cn
h,n
nh,
R1 = pyridyl, 2-Cl-5-NO2-C6H,, 2,6-Cl-C6H3
r.
cn
nc
nh2
cn nc
-NH3*
h2n h
nc
CNch Ov ^ - "H«™"3NH- c
c ^ c^nh c#
# ......"
cn
nh2
cn
nh2 ^n^ ^nh-
8, 9, 10
R
R
R
R
NH
R
R
R
H
R
CHOH
H2N
r
r
r
r
Fig. 1. NMR spectrum of 6-amino-8-(3-chlorophenyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidi-ne-7,9-dicarbonitrile (4e).
Fig. 2. 13C NMR spectrum of 6-amino-8-(3-chlorophenyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidi-ne-7,9-dicarbonitrile (4e).
Experimental part. General remarks
All commercially available chemicals were obtained from Merck and Fluka (Sigma Aldrich) companies and used without further purification. Melting points were measured on Stuart SMP30 apparatus without correction.
13C NMR spectra were recorded on Bruker Avance 300-MHz spectrometer at 300 and 75 MHz, respectively. Thin-layer chromatography (TLC) on commercial aluminum-backed plates of silica gel (60 F254) was used to mo
nitor the course of reactions.
General experimental procedure
6-Amino-8-phenyl-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (4a): Benzylidenecyanoacetamide, (4 mmol) malononitril (4.1 mmol) and 1,3-diaminopropane (4.1 mmol) stirrered in 35 ml of methyl alcohol. Then the reaction mixture is maintained at room temperature for 2 days. The course of the reaction was monitored by
TLC (EtOAc/n-hexane, 3:2). Crystals were precipitated after evaporation of solvent, filtered by paper, recrystallized from ethanol-water mixture and obtained in pure form (yield 0.81 g, 72.97%). Tmp.=234°C.
1H NMR (300 MHz, DMSO-J6): 1.94 (t, 2H, CH2, 3Jh-h = 6,6); 3.38 (t, 2H, CH2, 3Jh-h = 6,3);3.86 (t, 2H, CH2, 3Jh-h = 5,7); 7.417.52 (m, 5H, 5Ar-H); 7.84 (s, 2H, NH2). 13C NMR spektr (DMSO-J6), 5, m.h.: 19.39 (CH2), 40.72 (2=Cquat), 42.99 (CH2), 43.04 (CH2), 117.25 (CN), 117.85 (CN),128.39 (2CHarom), 128.99 (2CHarom), 130.30 (CHarom), 135.67 (Car), 155.81 (=Cquat.), 156.27 (2=Cquat.).
Found, %: 69.76 C; 4.68 H, 25.50 N. C16H13N5. Calculated, %: 69.82 C; 4.73 H, 25.45 N.
6-Amino-8-(p-tolyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (4b): Synthesized by the same way(yield 0.88 g, 75.86%). Tmp. = 250°C.
1H NMR (300 MHz, DMSO-J6): 1.93 (t, 2H, CH2, 3Jh-h = 6,7); 2.37 (s, 3H, CHs-Ar); 3.37 (t, 2H, CH2, 3Jh-h = 6,3); 3.85 (t, 2H, CH2, 3Jh-h = 6,9); 7.31 (m, 4H, 4Ar-H); 7.82 (s, 2H, NH2). 13C NMR spektr (DMSO-J6), 5, m.h.: 19.37 (CH2), 21.37 (Ar-CH2), 40.54 (CH2), 40.66 (2=Cquat), 42.99 (CH2), 117.33 (CN), 117.96 (CN), 128.35 (2CHarom), 129.52 (2CHarom), 132.72 (Car), 140.08 (Car), 155.85 (=Cquat.), 156.31 (2=Cquat.).
Found, %: 70.64 C; 5.25 H, 24.16 N. C17H15N5. Calculated, %: 70.59 C; 5.19 H, 24.22 N.
6-Amino-8-(4-methoxyphenyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-di-carbonitrile (4c): Synthesized by the same way (yield 0.9 g, 73.17%). Tmp. = 231°C.
1H NMR (300 MHz, DMSO-J6): 1.93 (s, 2H, CH2); 3.37 (s, 2H, CH2); 3.81 (s, 3H, CHO-Ar); 3.85 (s, 2H, CH2); 7.05 (d, 2H, 2Ar-H, 3Jh-h = 8,1); 7.39 (d, 2H, 2Ar-H, 3Jh-h = 7,8); 7.80 (s, 2H, NH2). 13C NMR spektr (DMSO-J6), 5, m.h.: 19.40 (CH2), 38.91 (2=Cquat.), 40.52 (CH2), 42.99 (CH2), 55.73 (CH3O), 114.28 (2CHarom), 117.50 (CN), 118.13 (CN), 127.58 (Car), 127.59 (=Cquat.), 130.12 (2CHarom), 155.88 (=Cquat.), 155.94 (=Cquat), 160.85 (O-Car).
Found, %: 66.82 C; 4.87 H, 23.01 N. C17H15N5O. Calculated, %: 66.88 C; 4.92 H, 22.95 N.
6-Amino-8-(4-fluorophenyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (4d): Synthesized by the same way (yield 0.79 g, 67.52%). Tmp. = 238°C.
1H NMR (300 MHz, DMSO-J6): 1.93 (s, 2H, CH2); 3.38 (s, 2H, CH2); 3.85 (s, 2H, CH2); 7.12-7.52 (m, 4H, 4Ar-H); 7.96 (s, 2H, NH2). 13C NMR spektr (DMSO-J6), 5, m.h.: 19.37 (CH2), 39.02 (2=Cquat), 40.68 (CH2), 43.06 (CH2), 115.91-116.20 (2CHarom), 117.22 (CN), 117.78 (CN), 130.89-131.00 (2CHarom), 132.02 (Car), 155.33 (2=Cquat.), 155.75 (=Cquat), 161.66-164.92 (F-Car).
Found, %: 65.59 C; 4.14 H, 23.84 N. C16H12N5F. Calculated, %: 65.53 C; 4.09 H, 23.89 N.
6-Amino-8-(3-chlorophenyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (4e): Synthesized by the same way (yield 0.91 g, 73.39%). Tmp. = 254°C.
1H NMR (300 MHz, DMSO-J6): 1.93 (s, 2H, CH2); 3.38 (s, 2H, CH2); 3.84 (s, 2H, CH2); 7.38-7.60 (m, 4H, 4Ar-H); 7.90 (s, 2H, NH2). 13C NMR spektr (DMSO-J6), 5, m.h.: 19.39 (CH2), 40.72 (CH2), 40.79 (2=CqUat.), 43.14 (CH2), 117.05 (CN), 117.60 (CN), 127.25 (CHarom), 128.17 (CH^m), 130.23 (CHarom), 131.06 (CHarom), 133.56 (Car), 137.66 (Car), 154.68 (2=Cquat.), 155.68
(=Cquat.).
Found, %: 62.09 C; 3.93 H, 22.56 N. C16H12N5CL Calculated, %: 62.03 C; 3.88 H, 22.62 N.
6-Amino-8-(4-bromophenyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-di-carbonitrile (4f): Synthesized by the same way (yield 0.89 g, 62.68%). Tmp. = 278°C.
1H NMR (300 MHz, DMSO-J6): 1.93 (s, 2H, CH2); 3.37 (s, 2H, CH2); 3.83 (s, 2H, CH2); 7.38 (d, 2H, 2Ar-H, 3Jh-h = 8,1); 7.73 (d, 2H, 2Ar-H, 3Jh-h = 8,1); 7.93 (s, 2H, NH2). 13C NMR spektr (DMSO-J6), 5, m.h.: 19.37 (CH2), 40.69 (CH2), 40.72 (2=Cquat.), 43.15 (CH2), 117.15 (CN), 117.69 (CN), 123.85 (Br-Car), 130.60 (2CHarom), 132.09 (2CHarom), 134.87 (Car), 155.15 (2=Cquat.), 155.67
(=Cquat.).
Found, %: 54.19 C; 3.33 H, 19.82 N. Ci6Hi2N5Br. Calculated, %: 54.24 C; 3.39 H, 19.77 N.
6-Amino-8-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (4g): Synthesized by the same way (yield 0.9 g, 65.69%). Tmp. = 331°C.
1H NMR (300 MHz, DMSO-d6): 1.94 (s, 2H, CH2); 3.38 (s, 2H, CH2); 3.84 (s, 2H, CH2); 7.66 (d, 2H, 2Ar-H, Vh-h = 7,8); 7.90 (d, 2H, 2Ar-H, 3Jh-h = 7,8); 7.96 (s, 2H, NH2). 13C NMR spektr (DMSO-d6), 5, m.h.: 19.35 (CH2), 40.62 (CH2), 40.75 (2=CqUat), 43.19 (CH2), 117.02 (CN), 117.54 (CN), 126.03126.17 (2CHarom), 129.50 (2CHarom), 130.28 (CF3-Car), 130.70 (CF3), 139.80 (Car), 154.93 (2=Cquat.), 155.66 (=Cquat.).
Found, %: 59.41 C; 3.45 H, 20.47 N. C17H12N5F3. Calculated, %: 59.47 C; 3.50 H,
20.41 N.
6-Amino-8-(4-hydroxy-3-methoxyphenyl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (4h): Synthesized by the same way (yield 0.93 g, 72.66%). Tmp. = 181°C.
1H NMR (300 MHz, DMSO-d6): 1.93 (s, 2H, CH2); 3.36 (s, 2H, CH2); 3.78 (s, 3H, CH3O); 3.85 (s, 2H, CH2); 6.86-7.61 (m, 6H, 3Ar-H+Ar-OH+NH2). 13C NMR spektr (DMSO-d6), 5, m.h.: 19.53 (CH2), 40.62 (CH2), 42.85 (CH2), 56.13 (CH3O), 76.70 (=Cquat.),
80.42 (=Cquat), 112.88 (CHarom), 115.80 (CHarom), 117.80 (CN), 118.52 (CN), 121.81 (CHarom), 125.67 (Car), 147.70 (=Cquat.), 149.42 (=Cquat.), 151.57 (=Cquat.), 156.14 (O-Car), 156.24 (O-Car).
Found, %: 63.60 C; 4.73 H, 21.76 N. C17H15N5O2. Calculated, %: 63.55 C; 4.67 H, 21.81 N.
6-Amino-8-(thiophen-2-yl)-3,4-dihydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (4j): Synthesized by the same way (yield 0.76 g, 67.86%). Tmp. = 227°C.
1H NMR (300 MHz, DMSO-d6): 1.93 (m, 2H, CH2); 3.37 (s, 2H, CH2); 3.84 (s, 2H, CH2); 7.21 (t, 1H, Thioph-H, 3Jh-h = 4,2); 7.41 (d, 1H, Thioph-H, 3Jh-h = 3); 7.76 (s, 2H, NH2); 7.83 (d, 1H, Thioph-H, 3Jh-h = 4.8). 13C NMR spektr (DMSO-d6), 5, m.h.: 19.34 (CH2), 40.68 (2=Cquat), 40.72 (CH2), 43.18
(CH2),117.27 (CN), 117.89 (CN),127.93 (CHthioph), 129.79 (CHthioph), 130.47 (CHthioph), 134.67 (Cthioph), 148.41 (=Cquat.), 155.70 (=Cquat.), 162.35 (=Cquat.).
Found, %: 59.74 C; 3.85 H, 24.96 N. C14H11N5S. Calculated, %: 59.79 C; 3.91 H, 24.91N.
6-Amino-8-(pyridin-4-yl)-1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (6): Synthesized by the same way (yield 0.85 g, 76.57%). Tmp. = 242°C.
1H NMR (300 MHz, DMSO-d6): 1.88 (m, 2H, CH2); 3.13 (m, 2H, CH2); 3.60 (m, 2H, CH2); 4.06 (s, 1H, CH-Ar); 6.27 (s, 2H, NH2); 6.90 (s, 1H, NH); 7.18 (m, 2H, 2Ar-H); 8.51 (m, 2H, 2Ar-H).13C NMR spektr (DMSO-d6), 5, m.h.: 22.01 (CH2), 38.61 (CH2), 38.94 (Ar-CH), 43.07 (CH2), 54.05 (=Cquat), 57.64 (=Cquat.), 121.90 (2CN), 122.28 (2CHarom), 150.31 (2CHarom), 151.26 (Car), 153.21 (=Cquat.), 155.15 (=Cquat.).
Found, %: 64.69 C; 4.98 H, 30.26 N. C15H14N6. Calculated, %: 64.75 C; 5.03 H, 30.21 N.
6-Amino-8-(2-chloro-5-nitrophenyl)-1,3,4,8-tetrahydro-2H-pyrido[1,2-a] pyrimi-dine-7,9-dicarbonitrile (8): Synthesized by the same way (yield 1 g, 69.93%). Tmp. = 243°C.
1H NMR (300 MHz, DMSO-d6): 1.90 (m, 2H, CH2); 3.18 (m, 2H, CH2); 3.64 (s, 2H, CH2); 4.73 (s, 1H, CH-Ar); 6.36 (s, 2H, NH2); 7.00 (s, 1H, NH); 7.71 (d, 1H, Ar-H); 8.07 (d, 2H, 2Ar-H) 13C NMR spektr (DMSO-d6), 5, m.h.: 22.12 (CH2), 37.14 (Ar-CH), 38.64 (CH2), 43.20 (CH2), 53.64 (=Cquat), 57.02 (=Cquat.), 121.48 (CN), 121.89 (CN), 123.65 (CHarom), 124.58 (CHarom), 131.64 (CHarom), 138.68 (Car), 145.56 (Car), 147.37 (Car), 151.69 (=Cquat.), 153.70 (=Cquat.).
Found, %: 53.91 C; 3.71 H, 23.50 N. C^bNACI. Calculated, %: 53.86 C; 3.65 H, 23.56 N.
6-Amino-8-(2,6-dichlorophenyl)-1,3,4,8-tetrahydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbonitrile (10): Synthesized by the same way (yield 1.07 g, 77.54%). Tmp. = 268°C.
1H NMR (300 MHz, DMSO-d6): 1.89 (m, 2H, CH2);3.13 (m, 2H, CH2);3.67 (s, 2H,
CH2);5.31 (s, 1H, CH-Ar); 6.14 (s, 2H, NH2); 6.78 (s, 1H, NH);7.25 (t, 1H, Ar-H, Vh-h = 8,1);7.42 (d, 2H, 2Ar-H, Vh-h = 7,8). 13C NMR spektr (DMSO-J6), S, m.h.: 22.30 (CH2), 36.32 (Ar-CH), 38.62 (CH2), 42.92 (CH2), 51.70 (=Cquat.), 55.06 (=Cquat.), 121.61
(CN), 122.04 (CN), 129.56 (3CHarom), 138.25 (Car), 152.11 (Cl-Car), 152.12 (=CqUat.), 154.16 (=Cquat.), 154.17 (Cl-Cr).
Found, %: 55.43 C; 3.71 H, 20.28 N. C16H13N5CI2. Calculated, %: 55.49 C; 3.76 H, 20.23 N.
This study was performed under financial support by the Baku State University (grant 50+50).
References
1. Dilip D. Dhavale, Mohammed M. Matin, Tarun Sharma and Sushma G. Sabharwal. Synthesis and evaluation of glycosidase inhibitory activity of octahydro-2H-pyrido[1,2-a]pyrimidine and octahydro-imidazo[1,2-a]pyridine bicyclic diazasugars. Bioorganic & Medicinal Chemistry. 2004, vol.12, iss.15, pp. 4039-4044. DOI: 10.1016/j.bmc.2004.05.030.
2. Monica Donghi, Olaf D. Kinzel, Vincenzo Summa. 3 -Hydroxy-4-oxo-4H-pyrido[ 1,2-a]pyrimidine-2-carboxylates—A new class of HIV-1 integrase inhibitors. Bioorganic & Medicinal Chemistry Letters. 2009, vol.19, iss.7, pp. 1930-1934. DOI: 10.1016/j.bmcl.2009.02.055.
3. Olaf D.Kinzel, Richard G.Ball, Monica Donghi, Courtney K.Maguire, Ester Muraglia, Silvia Pesci, Michael Rowley, Vincenzo Summa. 3-Hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxylates-fast access to a heterocyclic scaffold for HIV-1 integrase inhibitors. Tetrahedron Letters. 2008, vol.49, iss.46, p.6556-6558. DOI:10.1016/j.tetlet.2008.09.010.
4. Ping Gao, Lingzi Zhang, Lin Sun, Tianguang Huang, Jing Tan, Jian Zhang, Zhongxia Zhou, Tong Zhao, Luis Menendez-Arias, Christophe Pannecouque, Erik De Clercq, Peng Zhan, Xinyong Liu. 1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries. Bioorganic & Medicinal Chemistry. 2017, vol. 25, iss.20, pp. 5779-5789. DOI: 10.1016/j.bmc.2017.09.006.
5. Emile J.Velthuisen, Brian A.Johns, Peter Gerondelis, Yan Chen, Ming Li, Ke Mou,
Wenwen Zhang, John W.Seal, Kendra E.Hightower, Sonia R.Miranda, Kevin Brown, Lisa Leesnitzer.
Pyridopyrimidinone inhibitors of HIV-1 RNase H. European Journal of Medicinal Chemistry. 2014, vol. 83, pp. 609-616. D01:10.1016/j.ejmech.2014.06.061.
6. Satyanarayana S., K. Praveen Kumar, P. Lakshmi Reddy, Narender R., Narasimhulu G., B.V. Subba Reddy. Microwave-assisted cyclocondensation: a rapid and solventfree synthesis of 3-benzyl-2H-pyrido[1,2-a]pyrimidin-2-one derivatives. Tetrahedron Letters. 2013, vol.54, iss.36, pp. 4892-4895. DOI: 10.1016/j tetlet.2013.06.138.
7. Hao Yan, Ying Ma, Yuanjun Sun, Chao Ma, Yuling Wang, Xiaoyu Ren, Guosheng Huang. Catalyst-free synthesis of alkyl 4-oxo-4H-pyrido[ 1,2-a]pyrimidine-2-carboxylate derivatives on water. Tetrahedron. 2014, vol.70, iss.17, pp. 27612765. D0I:10.1016/j.tet.2014.02.084.
8. Qun Cai, Mei-Cai Liu, Bi-Ming Mao, Xuan Xie, Feng-Cheng Jia, Yan-Ping Zhu, An-Xin Wu. Direct one-pot synthesis of zolimidine pharmaceutical drug and imidazo[1,2-a]pyridine derivatives via I2/Cu0-promoted tandem strategy. Chinese Chemical Letters. 2015, vol. 26, iss.7, pp. 881-884. DOI: 10.1016/j.cclet.2014.12.016.
9. Ullvi Bluhm, Jean-Luc Boucher, Uwe Buss, Bernd Clement, Friederike Friedrich, Ulrich Girreser, Dieter Heber, Thanh Lam, Michel Lepoivre, Mojgan Rostaie-Gerylowa, Ulrich Wolschendorf. Synthesis and evaluation of pyrido[1,2-a]pyrimidines as inhibitors of nitric oxide synthases.
European Journal of Medicinal Chemistry. 2009, vol. 44, iss.7, pp. 2877-2887. DOI: 10.1016/j.ejmech.2008.12.007.
10. Zhengwang Chen, Yuelu Wen, Hao Ding, Guotian Luo, Min Ye, Liangxian Liu, Jun Xue. Silver-catalyzed highly efficient synthesis of pyrido[1,2-a]pyrimidin-4-ones from 2-aminopyridines and alkynoates. Tetrahedron Letters. 2017, vol.58, iss.1, p.13-16.
doi.org/10.1016/j.tetlet.2016.11.079.
11. Subhajit Mishra, Alakananda Hajra. Copper-catalyzed oxidative annulation
between 2-aminopyridine and
arylidenemalononitrile leading to 4-oxo-pyrido[ 1,2-a]pyrimidine-3 -carbonitrile. Tetrahedron Letters. 2015, vol. 56, iss. 41, pp. 5651-5655.
DOI: 10.1016/j .tetlet.2015.08.065. 12. Mehdi Adib, Hossine Yavari and Mehdi Mollahosseini. Efficient one-pot synthesis of 2-oxo- 1,9a-dihydro-2H-pyrido-[ 1,2-a]pyrimidine derivatives. Tetrahedron Letters. 2004, vol. 45, iss.8, pp. 18031805. D0I:10.1016/j.tetlet.2003.12.082.
BdZi iLiDENSiANOASETAMiDLdRIN (VB YA HtDENMALONOMTRiLLBRiN) MALONONiTRiL VB 1,3-DiAMiNOPROPANiLB BiRMBRHBLBLi, üQKOMPONENTLI
REAKSiYASININ TBDQiQi
F.N. Nagiyev
Baki Dövldt Universiteti AZ1148 Baki, Z.Xdlilov кйд., 23; e-mail: farid.orgchemist@gmail.com
9vdzldnmi§ ilidensianoasetamidldr (vd ya ilidenmalononitrilldrin) malononitril vd 1,3-diaminopropan ild birmdrhdldli, ügkomponentli reaksiyasi metanol mühitindd, otaq temperaturunda aparilmi§ vd dvdzldnmi§ yeni dihydropyridopirimidin tördmdldrinin dmdld gdldiyi müdyydn edilmi§dir. Eyni reaksiya §draitindd pi-ridilidensianoasetamid (vd ya piridilidenmalononitril), 2-xlor-5-nitrobenzylidensianoasetamid (vd ya 2-xlor-5-nitrobenzylidenmalononitril), 2,6-dixlorbenzylidensianoasetamidin (vd ya 2,6-dixlorbenzyliden-malononitrilin)malononitril vd 1,3-diaminpropan ild bir-mdrhdldli, ügkomponentli reaksiyasindan uygun dvdzldnmi§ dihydropyridopirimidinldr deyil, tetrahydropyridopirimidin tördmdldrinin dmdld gdlmdsi müdyydnld§dirilmi§dir. Bütün sintez edilmi§ birld§mdldrin qurulu§u NMR spektroskopiyasi ild tdsdiq edilmi§dir.
Keywords: ilidensianoasetamidldr, piridilidensianoasetamid, malononitril, 1,3-diaminopropan, NMR
ИССЛЕДОВАНИЕ ОДНОСТАДИЙНОЙ ТРЕХКОМПОНЕНТНОЙ РЕАКЦИИ НЕКОТОРЫХ ИЛИДЕНЦИАНОАЦЕТОАМИДОВ (ИЛИ ИЛИДЕНМАЛОНОНИТРИЛОВ), МАЛОНОНИТРИЛА И 1,3-ДИАМИНОПРОПАНА
Ф.Н. Нагиев
Бакинский государственный университет AZ1148 Баку, ул. З.Халилова, 23; e-mail: farid.orgchemist@gmail.com
Осуществлено одностадийное взаимодействие замещенных илиденцианоацетамидов (или илиденмалононитрилов), малононитрила и 1.3-диаминопропана в среде метанола при комнатной температуре, и установлено образование новых замещенных производных дигидропиридопиримидина. Показано, что в тех же условиях путем одностадийной трехкомпо-нентной реакции пиридилиденцианоацетамида (или пиридилиденмалононитрила), 2-хлор-5-нитро-бензилиденцианоацетамида (или 2-хлор-5-нитробензилиден малоно- нитрила), 2,6-дихлор-бензилиденцианоацетамида (или 2,6-дихлорбензилиденмалоно- нитрила), малононитрила и 1,3-диаминопропана образуются замещенные производные не дигидропиридопиримидина, а тетрагидропиридопиримидина. Структуры синтезированных соединений подтверждены методом ЯМР-спектроскопии.
Ключевые слова: илиденцианоацетамиды, пиридилиденцианоацетамид, малононитрил, 1,3-ди-аминопропан, ЯМР