2018 Математика и механика № 52
UDC 517.54 MSC: 30C70
DOI 10.17223/19988621/52/2
E.A. Pchelintsev, V.A. Pchelintsev
ON AN EXTREMAL PROBLEM FOR NONOVERLAPPING DOMAINS1
The paper considers the problem of finding the range of the functional
I = J(f (z0), f (z0), F (Z0), F (Z 0)) defined on the class M of functions pairs
(f(z),F(Z)) that are univalent in the system of the disk and the interior of the
disk, using the method of internal variations. We establish that the range of this functional is bounded by the curve whose equation is written in terms of elliptic integrals, depending on the parameters of the functional I.
Keywords: Method of internal variations, Univalent function, Nonoverlapping domains, Functional range, Elliptic integrals.
1. Introduction
In the geometric theory of univalent functions there are a number of papers and books devoted to the problem of nonoverlapping domains. These problems were developed by M.A. Lavrentiev [1], G.M. Goluzin [2], James A. Jenkins [3], Z. Nehari [4], N.A. Lebedev [5], M. Shiffer [6], R. Kuhnau [7] and others. A summary of results in this area is contained in [8].
Let D and D* be nonoverlapping simply connected domains in the w- plane such
that 0 e D and »eD*. Assume that f: E ^ D and F : E* ^ D* are holomorphic
and meromorphic (respectively) univalent functions normalized by the conditions
f (0) = 0 and F(») = » . Here E = {z e С: |z| < 1} and E* = { e С: |z| > 1}. The
family of all such pairs (f (z),F(Z)) is called the class M . Some extremal problems
for this class were studied in [5, 9, 10].
Let J : G ^ С and J = J (raj, ra2, ra3, ra4) is an analytic in some domain G с С4
nonhomogeneous and nonconstant function.
Now we fix an arbitrary points z0eE, Z0eE* and define on the class M a functional
I: M ^ C, I(f,F) = J(f (z0),7(00),F(Z0),F(Z0)). (1)
This paper considers the problem of finding the range Д of the functional I on the class M . Since together with pair (f (z), F (Z)) the class M contains the following
pairs of functions (f (ze'v), F (Zeiy)) for any parameters ф, ye К , then we reduce the initial problem to an equivalent one for the functional
I = J ( f (r), TXT), F (p), FtP), where r = |z0| e(0,1), p = |Z0| e (1, +»). Further on we will solve this problem. We note that the class of such problems has a long history. Its special cases have been studied in the works [11, 12].
1 The second author was supported by RFBR Grant no 18-31-00011.
Taking into account that the class M contains the pair of functions ( f (zt),F(çr1 )) for any t e [0,1] (see [9]), we have that the range A of the functional
(1) is a connected set. Note that if the class M complement the pair of functions ( f ( z ), œ), where f ( z), f (0) = 0, is a holomorphic univalent function in E, then A will be a closed set [13]. Hence, it suffices to find the boundary r of the set A.
A point I0 er is called a nonsingular boundary point if there exists an exterior point Ie for A such that the distance between Ie and I0 is equal to the distance between Ie and the set A, i.e.
10 -Ie\ = i"A I -1*\. ()
IeA
The set r0 of nonsingular boundary points is dense in r [14]. Thus, the initial problem of finding the range A of (1) is replaced by an equivalent extremal problem: find the minimum of the real-valued functional |I - Ie | on M for all possible Ie gA .
The functions giving nonsingular boundary points of a functional are called the boundary functions of this functional; i.e., these are the functions at which the values of the functional are nonsingular boundary points.
In this paper, to solve the problem we apply Schiffer's method of internal variations [15] using pairs of varied functions from [5]. In [10, 16] this method has been developed to studying the range of some functionals defined on the classes of pairs functions.
Main results are given in the following Section 2.
2. Differential equations for the boundary functions.
The equation of the boundary of A
Now write the variational formulas for boundary functions f (z) and F(Q on the class M in the form
f ( z ) = f ( z ) + eP( z) + o( z, e),
F (Q = F (Q +s0(Q + o(Ç, e)
for e positive and sufficiently small. Because the functional (1) is Gâteaux differentiable, we can rewrite it in the form
I* = I + e {J^. P(r ) + Pr) +JM Q(p) + QP)} + o(e),
[ OTOj ora2 ora3 ora4 J
where I* = I ( fe (z), Fe (Q ), ^0 =(f (r ), f (r ), F (p), F (p))e G.
Let ( f (z), F(Z)) be a boundary pair of functions of this functional giving the point I0. The equality (2) implies that
|I* - Ie\^ |I 0 - Ie\ .
From here each boundary pair of functions satisfies the necessary condition
Re [ pP(r ) + 9Q(p)]> 0 (3)
_iadJ (ra0) ia( 8J (ra0) ) -ia8J jaf 8J (ra0)
where p = e~ia^^ + eial ^^ I, q = + e'
Sroj ^ dra2 ) 5ra3 ^ 5ra4
and a= arg(I -Ie).
Lemma 1. Let f (z), F(Z) be boundary functions of functional (1). Then the union of domains D and D* has no exterior points in Cw.
Proof. Suppose that D u D* has at least one exterior point w0 in the w-plane. Then by definition of the exterior point there exists a neighborhood of the point w0 consisting of exterior points. Using the pair of varied functions
f ( z, e) = f ( z ) + sAo f(z) , F (Z, e) = F (Z) + sAo- F (Z)
f (z) - w0 F(Z) - w0
where w0 is an exterior point for D and D* simultaneously and A0 is an arbitrary complex constant, as the comparison pair in (3), rewrite it as
Re f A,.--)> 0, (4)
C0 ( f(r) - W0 )(F(p) - W0)) w
where R(w0) is a linear polynomial. The fraction in the condition (4) is equal to zero, otherwise in view of the arbitrariness of arg A, we can choose it so that the left side will be negative. Therefore R(w0) = 0 . It is possible only for a single point, while inequality (4) should be performed for any point from the neighborhood of the w0. This contradiction proves the lemma.
Further, to obtain differential equations for the boundary functions of the functional (1) we consider the following pairs of variational formulas from [5]:
1) f ( z, s) = f ( z) + sAo
f f ( z) f ( zo) zf '( z) ^
f (z)- f (zo) zof '2(zo) z-zoj
^ + o( z, s), (5)
zo f ( zo) 1 - zo z
F (Z, s) = F (Z) + sAo-f(z)-
f ( z) - F (Zo) where zo e E, Ao is an arbitrary complex constant;
2) f ( z, s) = f ( z ) + sAo-^-,
o f(z) - F (Zo)
F (Z, s) = F (Z) + sA,
^ F (Z) - F (Zo) Z2 F '(Z) F(Z)-F(Zo) Z2F'2(Zo) Z-Zo y
+sAQ0 2F(zQ) +0(z,B), (6)
0 z2 F'2(Zo)i-ZoZ ()
where Z 0 e E*, A0 is an arbitrary complex constant.
Theorem 2. Every boundary pair of functions (f (z), F (Z)) of the functional (1)
satisfies in E and E* the system of functional-differential equations
(C1f (z) - C2 )(f'(z) )2 = A
f (z) (f (z) - f (r))( f (z) - F(p)) z(r - z)(1 - rz)
(C, F (Z) - C2 )(F ' (Z) )2 _ B
F(Z) (F(Z) - f (r))(F(Z) - F(p)) Z(P-Z)(1 -PZ) ' where C, _ pf (r) + qF(q) , C2 _ (p + q) f (r)F(q) ,
A _ -(1 - r2)rp f'(r) > 0 , B _ (p2 - l)p qF'(p) > 0 . Proof. If we choose the variational formula (5), then (3) takes the form
Re
(8)
f(r) -p40fy f(z0) + r2f,(p f(z0) + qA F(p) f (r)- f(zo) 0 r-Zo Zof' 2(Zo) ^ 1-rzo Zof' 2(Zo) ^F(p)-f(zo)
>0.
Replacing the third summand under the real part by its conjugate, we have Re A
^0
pf (r) rf' (r) f (Z0) + -r2 f '(r) f (Z0) + qF (p)
+ p-—=■—rrr—+-
f (r ) - f (Z0) r - Z0 Z0 f'2(Z0) 1 - rZ0 Z0 f'2(Z0) F(p) - f (Z0)
>0.
In this condition, the expression in parentheses is equal to zero; otherwise, under an appropriate choice of arg A we would get that the left-hand side of the last inequality is negative. This leads to the equality
pf (r) , qF (p) _ f (Z0) f rp/>) - fr) r2 ^
1 - rZ0 j
f(r) - f (Z0) F(p) - f (Z0) Z0 f' 2(Z0) I r Since, in this equation, Z0 is an arbitrary point of E, replacing Z0 by z , and in view of pf'(r) < 0, we obtain a differential equation for the boundary function f (z) . The calculations show that it has the form (7).
The deduction of (8) repeats (7); for this we must apply (3) together with the variational formulas (6) and use inequality qF' (p) > 0 . The theorem is proved.
From the analytic theory of differential equations [17], we conclude that the boundary functions f (z) and F(Z) satisfying their equations are holomorphic not only
in E and E*, but also on the unit circle |z| _ |Z| _ 1. From here and because the union
D u D* does not contain exterior points, we have that the domains D and D* are bounded by some closed analytic Jordan curve.
Further, to find the equation of the boundary of the range A of the functional (1) we integrate (7) and (8).
Extract the square root from both sides of (7) and integrate the result by z from 0 to r . Consider the left-hand side:
J _ f CJ (z ) - C2 f' ( dz
Jj f (Z) (f (Z) - f (r))(f (Z) - F(p)/ . Changing the integration variable t _ f (z) / f (r), we have
1
r t - b
J _ a I . dt,
U t (1 -1 )(1 - ct)(t - b)
where a _JC1f?) , b _-C^, c _
" 1 F (p) Cf(r) F (p)
Putting t = 1/ x in J, we infer
co 7 c 7
r dx , r dx
J = ° J 1V ^ - ab J"
1 x^/ (x -1)( x - c)(1 - bx) 1 -y/( x -1)( x - c)(1 - bx) Performing the change of variables y = b(x - 1)/(bx -1) in the integrals, after transformations we obtain
J = -ph n(n, k), n /2 dt
where n(n, k) = J
o
is the complete elliptic integral of the third kind.
(1 + n sin21)V1 - k2 sin21
h (f (r)-F(p))f 2(r) , n = -1, k =
V C2 b vp+q
Here V1 - k2 sin21 stands for the branch of the function assuming 1 at t ^ 0. Now integrate the right-hand side:
dz
j -=4a j-
0 Vz(r - z)(1 - rz) Changing the integration variable x = z / r , we have
j = i4a k(r),
where K (r) = J
n dt
0 V1 - r2 sin21
is the complete elliptic integral of the first kind. Thus, upon integration, we can rewrite (7) as
- ph n(n, k) = 4A K (r). (9)
Integrate (8) after extracting the square root with respect to Z from p to c. First
consider the left-hand side:
L = J C1F(Z) - C2 F,(Z)dZ
JV F (Z)( F (Z) - F (p)) (F (Z) - f (r)) S
Changing the integration variable t = F(Z)/F(p), we have
— *
t - b
* f t - b L = a ^ dt.
W t (1 -1)(1 - c*t)(t - b*)
, * . F (p) * C2 * F (p)
where a =, C, —— , b =-2—, c = ——
1 f (r) C[F (p) f(r)
Putting t = 1/ x in L , we infer
* f dx * * f dx
L = a I—, ab ^ .
J I * * J I **
0 xy (x -1)(x - c )(1 - b x) 0 v(x -1)(x - c )(1 - b x)
Performing the change of variables u _ b (1 - x) /(b -1) in the integrals, after calculation we come to equality
L _ 2 (/n((|>, m,k) - h0F((, k)),
t dt
where F((, k) _I
>71-
0x1 - k2 sin21 is the incomplete elliptic integral of the first kind;
n((, m, k) _f
1 dt
0 (1 + m sin21 )-\l\ - k2 sin21 is the incomplete elliptic integral of the third kind;
l _ C„
*
c
(p + q) (f (r) - F (p))
( _ arcsin 1 , m _ k (c* -1), h0 _ f (r) k (1 - c ^ h
On the right-hand side
~ dZ
J f
pVZ(p-Z)(1 -pZ)
changing the integration variable x_p/Z , we have
L _ 2^Kf 1 p lp
Hence, integrating (8), we obtain
(( n((,m,k)-h0F((,k))_— Kf. (10)
p Ipj
Now in the w-plane, take the point F(1) _ f (-eia). Integrate the equalities that are obtained from the system (7)-(8) by extracting the square root in first over z from 0 to -1, and then over the arc |z| _ 1 counterclockwise from -1 to -e'a, and in the second, over Z from 1 to p .
Write the integrals on the left-hand side of (7):
f f I C* - C2
f V*(w -F(p))(w - f (r)) '
F (1)
f I-qw-c,-dw_
f (J-1^ w (w - F (p) )(w - f (r))
Proceed with the integral on the left-hand side of (8)
F fl qw - C2
w (w - F (p) )(w - f (r)) •
Summing up these integrals, we have
C. w - C2
F (p) r
T = M-CI^C2-dw.
o
0 \w (w - F (p) )(w - f (r)) Making the change of variables t = w / F(p), note that
1 t-b
T = a* J . dt.
o V1 (1 -1 )(1 - c*t)(t - b*)
Using t = 1/ x , we find
c 1 c 7
* f dx *, * f dx
T =a J J * * -a b J-
J I * * J I * *
1 xy (x -1)(x - c )(1 - b x) 1 x -1)(x - c )(1 - b x)
Changing the integration variable y = b*(1 - x) /(b* x -1) in the integrals and performing the corresponding transformations, we obtain
T = 2iqh*n(n*, k '),
where h* J(f (r) - F (p)) F 2(p) , k' = ^ , n* = -±.
V C2 , , b
Integrate the right-hand sides of (7). First, integrate over z from 0 to -1
T1 =Ja J
0 dz
-1 Vz(r - z)(1 - rz)
Performing the change of the integration variable x = (1 + z) /(1 - z) and applying a formula from [18], we obtain
T = VAi K(\A - r2).
Integrate the right-hand side over the arc p of the unit circle counterclockwise from
i ia .
-1 to -e :
T2 = VA .
¿Vz(r - z)(1 - rz)
Substituting z = -e'< in T2, where 0 <<<a, we infer
d (-ei<p)
T2 =^ J
V-e!< (r + e'< )(1 + re'<) ' = -e'<, we find
T2 = -—VI K(r).
o •
Performing the change of variable t = -e'<, we find
2a n
Finally, integrate the right-hand side of (8) over Z from 1 to p :
T3 = VB J dZ
1 V Z(p-Z)(1 -pZ)'
Changing the integration variable u _p/Z , we have
T3 _
4B
K
1 --
Summing T1, T2 and T3 yields
-JAi K (\/1 - r 2 ) + —
K
1—
2a
4A K(r) .
Thus, integrating the equalities (7) and (8), we come to
VA l—~ VB f "2
qh'n(n*, k') K(^1 - r2 ) + — K
2p
1 --
p2 j
-- ija k (r).
Excluding the constants VA and 4B from this equality by using (9) and (10), we obtain the following equation
K
qh* n(n*, k') _ 1 K(V1 - r2) 1 l n((, m, k) - h0F((,k) ^ ph n(n, k) 2
1
K (r)
phn(n, k)
K|1
+ - i. (11) n
Hence, we have proved:
Theorem 3. The range A of the functional (1) on the class M is bounded by the curve defined by equation (11) for 0 <a< 2n.
Note that Theorem 3 implies the following result, established in [10]. Corollary 4. Let (f (z),F(Z))e M and r, p are fixed points in E and E*
1 f (r)
respectively. Then the range of the functional § _ -^lnis bounded by the curve
1
f
_ ^ln
f 1+d2n ^
1 - d
2n-1
where
d _ e^,
-16d n
n_1
k(^), K)
(12)
K (r)
K (
+ Xi, 0 <X< 2 .
In Figures 1 and 2 below we can see the curve (12) for some fixed parameters r and p .
Corollary 4 allow us to obtain the new estimates for the moduli of the functionals on the class M .
Proposition 5. On the class M for any r e(0,1) and pe(1, ro), the following inequality holds
f (r)
F (p)
< e
,2«0)
-1.6 -1.4! -1.2 -1.0 -0.8 -0.6
P = 16 p = 8 p = 4 P = 2 ]-
1.5 1
0.5 0
-0.5 -1
Fig. 1. Curve (12) for r = 0.5 and p = 2,4,8,16
-1.4 -1.2
r = 0.8 r = 0.4
-1.0 -0.
r = 0.2
-0.6
r = 0.1
-1.5 1
0.5 0
-0.5
-1
-1.5
Fig. 2. Curve (12) for r = 0.1, 0.2, 0.4, 0.8 and p = 2 Proof. Using the equality (12) and formulas from [18], it is easy to show that f (r)
F (P)
< 16e~
< 16e-™ H
n=1
-Ai | . n n=1 1 + ( ' |1 + (. e-n^i )) ^
11 e" -Ai )|2"-1 8 = e2«0),
1 -(.|)2"-1 y
where
1
v = —1 2
iK(V^) , K(^ I
K(r) k(()
Hence Proposition 5. Next we establish the auxiliary inequality.
Proposition 6. Let describes by the equality (12). Then
r
e2«0) <.
for any r e (0,1) and p e (1, to) .
Proof. Taking into account the formulas from [18] for the elliptic integrals, we have
2n \4 -nKO^V)
■=n|
4ï-r2
n=1
1 w
-r2r= = n
VP -1 n=1
r 1+tf"
V1+q2"- J
1 + q22" Y
1 + q22 "-1 J
q =e
<?2 = <
K (r )
K (^1-1/P2) K (1/P)
n/2
One can check that for any m e N
(1 + e«+b )m <(1 + e« )m/2 (1 + eb )/2, (l - e«+b ) > (l - e« )m '2 (l - eb)K From here we obtain
'/2
*2«0) = 16e-nv-n
n=1
1 + e
-2nnv V
1 + e
-(2n-1)nv
< 4e~nan
( 1 + e_2nna
1 - e
-(2n-1)na
4e~nbn
1 + e
-2nnb A4
V1 - e J
where
, 1 K(VT-
v = a + b , a = —
r 2)
2 K(r)
b =-
-(2-^ J -r2)(p2 -1)
1 K (^ )
2 K (
( )
Hence Proposition 6.
From Proposition 5 and Proposition 6 we come to the corollaries.
Corollary 7. On the class M for any r e(0,1) and pe(1, œ), the following
inequality holds
f (r )
F (P)
VRFT
Corollary 8. On the class M the following estimates hold: 1) the range of functional f (0) is a punctured disc
F (P)
f '(0)
F (P)
< 4exp
n K ra
K (
(( )
f (r )
2) the range of functional- is a punctured disc
F '(œ)
f (r )
F '(œ)
„ i n K hlb-< 4exp<!— v
r 2)
2 K (r )
REFERENCES
1. Lavrentiev M.A. (1934) K teorii konformnykh otobrazheniy [On the theory of conformai mappings]. Trudy Matematicheskogo Instituta imeni V.A. Steklova - Proceedings of the Steklov Institute of Mathematics. 5. pp. 159-245 (Translated in A.M.S. Translations, 122, pp. 1-63 (1984)).
2. Goluzin G.M. (1969) Geometric Theory of Functions of a Complex Variable. Amer. Math. Soc., Providence.
3. Jenkins J.A. (1958) Univalent Functions and Conformal Mapping. Berlin; Göttingen; Heidelberg: Springer Verlag.
4. Nehari Z. (1953) Some inequalities in the theory of functions. Trans. Amer. Math. Soc. 75(2). pp. 256-286.
5. Lebedev N.A. (1957) Ob oblasti znacheniy odnogo funktsionala v zadache o nenalegayushchikh oblastyakh [On the range of the restriction of a functional on nonoverlapping domains]. Dokl. Akad. NaukSSSR. 115(6). pp.1070-1073.
6. Duren P.L., Schiffer M.M. (1988) Conformal Mappings onto Nonoverlapping Regions. Hersch J., Huber A. (eds) Complex Analysis. Birkhäuser Basel. pp. 27-39. DOI: https://doi.org/10.1007/978-3-0348-9158-5_3.
7. Kühnau R. (1971) Über zwei Klassen schlichter konformer Abbildungen. Math. Nachr. 49(1-6). pp. 173-185.
8. Bakhtin A. K., Bakhtina G. P., Zelinskii Yu. B. (2008) Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize [Topological-algebraic structures and geometric methods in complex analysis]. Proceedings of the Institute of Mathematics of NAS of Ukraine. 73. p. 308 (in Russian).
9. Andreev V.A. (1976) Some problems on nonoverlapping domains. Siberian Math. J. 17(3). pp. 373-386.
10. Pchelintsev V.A. (2012) On a problem of nonoverlapping domains. Siberian Math. J. 53(6). pp. 1119-1127.
11. Alexandrov I.A. (1976) Parametricheskie prodolzheniya v teorii odnolistnykh funktsiy [Parametric continuations in the theory of univalent functions]. Moscow: Nauka.
12. Schaeffer A.C., Spencer D.C. (1950) Coefficient regions for schlicht functions. Amer. Math. Soc. Coll. Publ. 35. New York.
13. Ulina G.V. (1960) Ob oblastyakh znacheniy nekotorykh sistem funktsionalov v klassakh odnolistnykh funktsiy [On the range of some functional systems in classes of univalent functions]. Vestn. Leningr. un-ta. Matem., mekhan. i astr. - Vestnik Leningrad. Univ. Mathematics, Mechanics and Astronomy. 1(1). pp. 35-54.
14. Lebedev N.A. (1955) Mazhorantnaya oblast' dlya vyrazheniya I=ln{zÀ[f'(z)]1-À/[f(z)]} v
klasse S [The majorant domain for the expression I=ln{zÀ[f'(z)]1-À/[f(z)]} intheclass S].
Vestn. Leningr. un-ta. Matem., fiz. i khim. - Vestnik Leningrad. Univ.Mathematics, physycs and chemistry. 3(8). pp. 29-41.
15. Schiffer M. (1943) Variation of the Green function and theory of the p-valued functions. Amer. J. Math. 65. pp. 341-360
16. Pchelintsev V.A., Pchelintsev E.A. (2015) On the range of one complex- valued functional. Siberian Math. J. 56(5). pp. 922-928.
17. Golubev V.V. (1950) Lekcii po analiticheskoj teorii differencial'nyh uravnenij [Lectures on the Analytic Theory of Differential Equations]. Moscow; Leningrad: GITTL.
18. Gradshtein I.S. and Ryzhik I.M. (1994). Tables of Integrals, Sums, Series and Product. Boston: Academic Press.
Received: January 7, 2018
PCHELINTSEVEvgeny Anatolievich (Candidate of Physics and Mathematics, Tomsk State University, Tomsk, Russian Federation). E-mail: evgen-pch@yandex.ru
PCHELINTSEV Valerii Anatolievich (Candidate of Physics and Mathematics,
Tomsk Polytechnic University, Tomsk, Russian Federation). E-mail: vpchelintsev@vtomske.ru
Пчелинцев Е.А., Пчелинцев В .А. (2018) ОБ ЭКСТРЕМАЛЬНОЙ ЗАДАЧЕ ДЛЯ НЕНАЛЕГАЮЩИХ ОБЛАСТЕЙ. Вестник Томского государственного университета. Математика и механика. № 52. С. 13-24
DOI 10.17223/19988621/52/2
В статье методом внутренних вариаций решается задача о нахождении множества
значений функционала I = J(f (z0), f (z0),F(Z0),F(Z0)), определенного на классе M пар
функций (f (z),F(Z)) однолистных в системе круг - внешность круга. Устанавливается,
что множество значений функционала ограничено кривой, уравнение которой записано через эллиптические интегралы, зависящие от параметров функционала I.
Ключевые слова: метод внутренних вариаций, однолистные функции, неналегающие области, множество значений функционала, эллиптические интегралы.
Pchelintsev E.A., Pchelintsev V.A. (2018) ON AN EXTREMAL PROBLEM FOR NONOVERLAPPING DOMAINS. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Tomsk State University Journal of Mathematics and Mechanics]. 52. pp. 13-24
AMS Mathematical Subject Classification: 30C70