стинку подвергают деформации изгиба. Деформация должна быть упругой. Миллиметровой линейкой измеряют стрелу прогиба. Изготовив несколько образцов из материала тростника, подобный опыт повторяют не менее пяти раз. Затем приступают к расчету модуля Юнга, используя формулу:
Е 4 РЁ
ХаЬъ
где Е - модуль Юнга; Р - нагрузка; I - длина образца; X - стрела прогиба; а - ширина поперечного сечения образца; Ь - толщина образца. Определив среднее значение модуля Юнга, приступают к расчету стрелы прогиба модели стебля тростника. Для этого выбирают ровное междуузлие на стебле тростника и измеряют его диаметр (в различных местах) и длину. Зная средний радиус и длину части стебля тростника, рассчитывают стрелу прогиба модели этой части стебля при определенной нагрузке (она указывается преподавателем) в предположении, что стебель полностью заполнен материалом тростника. Расчет стрелы прогиба такой модели осуществляется по формуле:
1 рй
= 12
где Еср - среднее значение модуля Юнга; п -
3,14; Я - радиус стержня. При этом предполагается прогиб круглого стержня, лежащего концами на опорах, к которому груз подвешивается в середине.
После выполнения расчета стрелы прогиба модели стебля студенты в опыте измеряют стрелу прогиба настоящего стебля, имеющего трубчатое строение при указанной нагрузке. Сравнив стрелу прогиба, вычисленную в предположении, что стебель сплошной, со стрелой прогиба стебля тростника, имеющего трубчатое строение, студенты убеждаются, что эти величины одного порядка.
К этой работе в качестве дополнительного экспериментального задания может быть предложено следующее: определить, во сколько раз масса части стебля тростника меньше массы модели стебля таких же размеров, имеющей сплошное строение?
Выполнение этой работы помогает студентам связать изучаемый материал физики с вопросами, рассматриваемыми в ботанике при изучении морфологии растений. Выполнив эту работу, они лучше уясняют ответ на вопрос: почему стебли многих растений (тростник, бамбук, злаковые культуры) имеют трубчатое строение.
О ВАРИАТИВНОСТИ РАБОТ ФИЗИЧЕСКОГО ПРАКТИКУМА
© А.И. Стерелюхин, Н.И. Старцева
Среди качеств, которыми должны обладать работы физического практикума, таких как научность, доступность, безопасность и т. п., немаловажное значение в учебном процессе имеет, на наш взгляд, еще одно, которое мы называем вариативностью (от лат. уапаге -видоизменять, разнообразить, допускать отклонения в небольших пределах).
Под вариативностью лабораторной работы физического практикума мы будем понимать ее качество, заключающееся в том, что она позволяет вносить в содержание, в используемое оборудование и ход выполнения такие изменения, которые не нарушают ее соответствия основным дидактическим целям и не снижают методической ценности работы. Вносимые изменения не сказываются существенно на перечне знаний, умений и навыков, которые должны быть сформированы, усвоены, закреплены и отработаны у обучаемых в ходе выполнения работы практикума.
Вариативность работ может проявиться в следующем:
- в изменении объекта исследования;
- в изменении условий проведения эксперимента;
- в изменении заданий при выполнении работы;
- в подборе аналогичной работы.
Так, в работе «Определение коэффициента трения скольжения с использованием закона сохранения и превращения энергии» студенты изучают трение дере-
вянного бруска о деревянный трибометр. Однако если поверхность бруска оклеить резиной или каким-либо другим материалом, и вместо деревянной доски три-бометра взять металлическую или пластмассовую пластинку, то можно разнообразить (варьировать) задания. Теперь студенты могут определять коэффициент трения скольжения не только дерева по дереву, но и дерева по металлу, резины по металлу и т. д.
Используя различные жидкости и растворы поверхностно-активных веществ, можно варьировать задания в работе «Определение коэффициентов поверхностного натяжения жидкостей», подбор стержней из различных материалов (стержни не обязательно должны быть металлическими) даст возможность к изменению заданий в работе «Определение коэффициента линейного расширения твердых тел».
Ряд работ физического практикума допускает изменения условий проведения эксперимента. В работе практикума «Определение ускорения свободного падения» преподавателем может быть задана высота падения стального шарика, в работе «Изучение закона динамики вращательного движения» преподаватель может задавать (варьировать) высоту, с которой опускаются грузы, массу грузов, радиус шкива, на который наматывается нить, расстояние грузов от центра маятника Обербека, а также число вращающихся грузов и
их массу. Таким образом, здесь имеются широкие возможности изменения момента сил, действующих на маятник Обербека, и момента инерции этого прибора.
Работы физического практикума представляют собой экспериментальные задачи, в которых по результатам, полученным в эксперименте, требуется вычислить указанную физическую величину. Однако, дополнив данные эксперимента значением физических констант, в работе может быть получена возможность определения значений и других физических величин. Например, наблюдая за процессом электролиза раствора медного купороса, определив при этом массу отложившейся на катоде меди, измерив силу тока в цепи и время протекания тока, студенты могут вычислить электрохимический эквивалент меди. Однако если данные этого эксперимента дополнить, взяв из таблиц валентность и молярную массу меди, а также число Авогадро, то в этой работе может быть рассчитан заряд электрона.
Наконец, вариативность работы физического практикума может быть реализована подбором нескольких вариантов работы. Так, в нескольких вариантах может быть предложена работа по проверке закона сохранения и превращения полной механической энергии,
несколько вариантов имеет работа по определению электроемкости конденсатора, по определению индуктивности катушки и т. д.
На наш взгляд, вариативности работ физического практикума в практике преподавания пока еще не уделяется должного внимания. Совершенно недостаточны указания на этот счет и в методической литературе. Между тем использование вариативности работ в ходе проведения физического практикума может принести ощутимые положительные результаты.
Использование вариативности работ позволяет, на наш взгляд, осуществлять дифференцированный подход в обучении студентов, увеличить объем получаемых студентами знаний, повысить интерес студентов к выполнению работ (работы перестанут казаться такими однообразными), сформировать у студентов творческое отношение к выполнению лабораторных работ. Использование в преподавании вариативности работ физического практикума поможет преодолеть также такое негативное явление, как списывание. Преподавателю не придется видеть в тетрадях студентов таблицы, заполненные совершенно одинаковыми цифрами, рассматривать графики, построенные, словно под копирку.
ЗАЛЕЧИВАНИЕ ТРЕЩИН В ЩЕЛОЧНО-ГАЛОИДНЫХ КРИСТАЛЛАХ ПРИ ЛОКАЛЬНОМ ВОЗДЕЙСТВИИ НА ВЕРШИНУ ТРЕЩИНЫ © Ю.И. Тялин, В.А. Тялина, М.В. Чемёркина, А.А. Бутягин
В работе изучалась возможность залечивания трещин в щелочно-галоидных кристаллах 1лР при локальном механическом воздействии на ее вершину. Локальная нагрузка в вершине трещины создавалась в результате нагрева или рентгеновского облучения материала в малой окрестности вершины трещины. В этом случае в зоне воздействия образуются сжимающие напряжения, которые можно использовать для восстановления нарушенной сплошности. Отличие данных схем нагружения образцов состоит в том, что температурные напряжения после охлаждения образца исчезают, а напряжения, созданные при облучении, могут существовать в кристалле достаточно долго и удерживать трещину в закрытом состоянии даже в том случае, если сплошность материала не восстановится.
Основными задачами работы в связи с этим являлось: 1) выбор режимов и схем локального воздействия на вершину трещины, обеспечивающих восстановление сплошности материала в вершине трещины; 2) разработка методики и проведение прямых измерений прочности образцов с залеченной трещиной.
Исследования проводили на призматических образцах кристаллов ЫИ размером 4x8x40 мм. В образцах создавалась зародышевая трещина длиной Ь = (20-30) мм. Трещина располагалась симметрично относительно широкой грани образца. Часть экспериментов проводилась на микротрещинах, образующихся при индентировании кристаллов. Такие трещины появля-
ются при определенной ориентации пирамиды инден-тора относительно плоскостей спайности кристалла. Они имеют дискообразную форму и залегают в плоскостях (110). В этих экспериментах оптическим методом измерялась длина трещин до и после теплового воздействия на образцы.
Дислокационную структуру вершины остановившейся трещины выявляли химическим травлением образцов в растворе хлористого железа РеС13. Травлению подвергались только свежие поверхности образца. Для этого исходный образец раскалывали на две части по плоскости (100). На одной части фиксировалась исходная дислокационная структура в вершине трещины. Трещина в другой части кристалла залечивалась, и затем также изучалось изменение характера пластической зоны в вершине.
Использовалось несколько схем залечивания трещины - локальный нагрев, облучение, сжатие и комбинированное воздействие. Для оценки качества залечивания макротрещин проводились механические испытания образцов с исходной и залеченной трещиной. При этом фиксировались длина трещины I и критическое усилие разрыва образца Р.
В экспериментах на микротрещинах (до 150 мкм) отмечено частичное залечивание (до 10 %) только при облучении образцов. Связано это может быть с тем, что трещины в этом случае лежат в плоскости (ПО) и имеют довольно грубый поверхностный рельеф, препятствующий сближению поверхностей трещины при