Научная статья на тему 'О приложении систем дифференциальных уравнений с отклоняющимся аргументом к моделированию процесса воспроизводства научных кадров'

О приложении систем дифференциальных уравнений с отклоняющимся аргументом к моделированию процесса воспроизводства научных кадров Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
252
62
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ / МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ / ВОСПРОИЗВОДСТВО НАУЧНЫХ КАДРОВ / ORDINARY DIFFERENTIAL EQUATIONS WITH RETARDED ARGUMENT / MATHEMATICAL MODELING / REPRODUCTION OF SCIENTIFIC STAFF

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Атряхин Владимир Андреевич, Шаманаев Павел Анатольевич

Предлагается математическая модель, описывающая процесс воспроизводства научных кадров на этапе поступления в аспирантуру с использованием системы обыкновенных дифференциальных уравнений с запаздывающим аргументом, излагается численный алгоритм ее решения. Неизвестные параметры математической модели находятся на основе известных статистических данных за промежуток времени, предшествующий прогнозируемому. Далее в статье приводятся результаты прогнозирования процесса воспроизводства научных кадров на основе построенной математической модели.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

APPLICATION OF A SYSTEM OF DIFFERENTIAL EQUATIONS WITH A DVERGENT ARGUMENT IN MODELING A PROCESS OF SCIENTIFIC STAFF REPRODUCTION

The article suggests a mathematical model describing the process of reproduction of the scientific staff at the stage of admission to graduate school, using a system of ordinary differential equations with retarded arguments, presents a numerical algorithm to solve it. The unknown parameters of the mathematical model are calculated on the basis of the known statistical data for the preceding predictable period of time. Further, the article presents the forecasting results of the scientific staff reproduction on the basis of the constructed mathematical model.

Текст научной работы на тему «О приложении систем дифференциальных уравнений с отклоняющимся аргументом к моделированию процесса воспроизводства научных кадров»

УДК 51-77, 519.62

В. А. Атряхин, П. А. Шаманаев

О ПРИЛОЖЕНИИ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ

УРАВНЕНИЙ С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ К МОДЕЛИРОВАНИЮ ПРОЦЕССА ВОСПРОИЗВОДСТВА НАУЧНЫХ КАДРОВ 1

Аннотация. Предлагается математическая модель, описывающая процесс воспроизводства научных кадров на этапе поступления в аспирантуру с использованием системы обыкновенных дифференциальных уравнений с запаздывающим аргументом, излагается численный алгоритм ее решения. Неизвестные параметры математической модели находятся на основе известных статистических данных за промежуток времени, предшествующий прогнозируемому. Далее в статье приводятся результаты прогнозирования процесса воспроизводства научных кадров на основе построенной математической модели.

Ключевые слова: обыкновенные дифференциальные уравнения с запаздывающим аргументом, математическое моделирование, воспроизводство научных кадров.

V. A. Atryakhin, P. A. Shamanaev

APPLICATION OF A SYSTEM OF DIFFERENTIAL EQUATIONS WITH A DVERGENT ARGUMENT IN MODELING A PROCESS OF SCIENTIFIC STAFF REPRODUCTION

Abstract. The article suggests a mathematical model describing the process of reproduction of the scientific staff at the stage of admission to graduate school, using a system of ordinary differential equations with retarded arguments, presents a numerical algorithm to solve it. The unknown parameters of the mathematical model are calculated on the basis of the known statistical data for the preceding predictable period of time. Further, the article presents the forecasting results of the scientific staff reproduction on the basis of the constructed mathematical model.

Key words: ordinary differential equations with retarded argument, mathematical modeling, reproduction of scientific staff.

Введение

Одной из проблем системы высшего профессионального образования на современном этапе является проблема обновления и воспроизводства научных кадров. В связи с этим появилась необходимость в разработке и апробации методики и моделей для прогнозирования динамики кадров высшей научной квалификации на этапе поступления в аспирантуру.

В настоящей статье в качестве математической модели для прогнозирования численности претендентов на поступление в аспирантуру среди учащихся заведений высшего профессионального образования берется система обыкновенных дифференциальных уравнений с отклоняющимся аргументом [1], широко использующихся для моделирования динамики социально-

1 Работа выполнена при поддержке федеральной целевой программы «Научные и научно-педагогические кадры инновационной России на 2010-2013 гг.» Государственный контракт № 14.740.11.0225.

экономических процессов [2]. Эта задача ставится в рамках решения более общей задачи прогнозирования потока научных и научно-педагогических кадров [3]. В основу построения модели положены механизмы, использующиеся для прогнозирования социодемографического поведения населения [4]. На основе статистических данных об успеваемости студентов очной формы обучения специальности «Прикладная математика и информатика» математического факультета МГУ им. Н. П. Огарева за промежуток времени, предшествующий прогнозируемому, находятся неизвестные параметры математической модели и строится прогноз количества претендентов на поступление в аспирантуру.

1. Постановка задачи

Рассмотрим процесс обучения студентов от момента поступления до окончания высшего учебного заведения. Будем предполагать, что студенты за весь срок обучения проходят девять промежуточных этапов учета знаний.

Группу студентов, участвующих в процессе обучения от момента поступления до окончания высшего учебного заведения, будем называть потоком. Очевидно, что каждый поток студентов из года в год оказывается в похожих обстоятельствах, так как набор преподавателей и сложность изучаемых предметов зачастую остаются неизменными. А значит, влияние данных факторов на численные значения потоков вливающихся в группу претендентов на поступление в аспирантуру (и выбывающих из нее) можно оценить по статистической информации о данных показателях за некоторый отрезок времени, предшествующий прогнозируемому и по количественному составу этой группы в данный момент времени. Все множество студентов разобьем на две группы: группу претендентов на поступление в аспирантуру и группу остальных студентов. Сделать это можно, например, взяв за критерий некую фиксированную величину среднего балла на последних экзаменах. Состав группы претендентов на поступление в аспирантуру будет меняться два раза в год по итогам очередной сессии. Часть студентов будет выбывать из данной группы, а часть - в нее вливаться.

Предположим, что изменение потока присоединяющихся к группе претендентов на поступление в аспирантуру в фиксированный момент времени зависит от численности претендентов на поступление в аспирантуру, от потока присоединяющихся к группе претендентов на поступление в аспирантуру и от потока выбывающих из группы претендентов на поступление в аспирантуру в некоторый момент времени, предшествующий фиксированному. С учетом вышеперечисленных предположений математическая модель, описывающая динамику потока присоединяющихся к претендентам на поступление в аспирантуру в момент времени t, описывается дифференциальным уравнением с отклоняющимся аргументом следующего вида:

у ^ ^) + Ьу -8) + cz -8),

где w ^) - численность претендентов на поступление в аспирантуру в момент времени t; у ^) - численность потока присоединяющихся к группе

претендентов на поступление в аспирантуру в момент времени t; г () - численность потока выбывающих из группы претендентов на поступление в аспирантуру в момент времени t; 8 - промежуток времени между сессиями.

Аналогичным образом предположим, что изменение потока выбывающих из группы претендентов на поступление в аспирантуру в фиксированный момент времени зависит от численности претендентов на поступление в аспирантуру, потока выбывающих из группы претендентов на поступление в аспирантуру и потока присоединяющихся к группе претендентов на поступление в аспирантуру в некоторый момент времени, предшествующий фиксированному. Таким образом, изменение потока выбывающих из группы претендентов на поступление в аспирантуру в момент времени t описывается дифференциальным уравнением с отклоняющимся аргументом следующего вида:

г = kw() + ту (-8) + 1г(-8).

Балансовое уравнение, связывающее прирост и отток численности претендентов на поступление в аспирантуру с количеством людей в данной группе, имеет вид

* ( ) = у ()-г (t).

Итоговая модель, описывающая динамику численности претендентов на поступление в аспирантуру, может быть записана в виде следующей системы дифференциальных уравнений с отклоняющимся аргументом:

у () = aw (t) + Ьу (t -8) + сг (t -8),

< г() = Ы(t) + ту(-8) + 1г(-8), (1)

* (t ) = у (t)-г (t).

Все коэффициенты системы дифференциальных уравнений для фиксированной сессии постоянны и не зависят от времени t.

2. Построение разностной вычислительной схемы

Для экспериментальной проверки построенной математической модели необходимо перейти от системы дифференциальных уравнений к разностной вычислительной схеме, позволяющей найти неизвестные параметры модели и оценить численность претендентов на поступление в аспирантуру. Заметим, что в системе (1) используются «мгновенные» значения численности претендентов на поступление в аспирантуру потоков, вливающихся в эту группу и выбывающих из нее. На практике статистические данные о численности претендентов на поступление в аспирантуру могут быть получены лишь за определенный промежуток времени. В силу этого применим к системе (1) интегро-интерполяционный метод построения разностных схем [5].

Для построения разностной схемы на отрезке |/о,Т ] введем равномерную сетку с шагом 8, т.е. множество точек t^ = to + /8, / = 0,1,2,..,N, Т - to = N8 . Проинтегрировав систему (1) по отрезку ^(/ -1)8,/8^, получим систему

iS J y(x)dx iS iS = а Г w(x)dx + b Г y(x-S)dx + c iS j =

(i-1)S (i-1)S (i-1)S г-1)S

iS iS iS iS

J z (x)dx = к Г w(x)dx + m Г y(x-S)dx + / J z

(M)S (i-1)S (i-1)S (i -1)S

iS iS iS

J w(x)dx = J y(x)dx- J z(x)dx.

jM)S (i-1) ( -1)S

Введем следующие обозначения:

г г г

У (г) = | х, 2 (г) = | г (х)^ х, Ж (г) = | *(х)ё х,

г-8 г-8

аппроксимируем конечными разностями

г-S

1 [7(/8) - У ((/ -1)8)], 1 [2(/8) - 2((/ -1)8)], 1 [Ж(/8) - Ж((/ -1)8)]

8 8 8

соответствующие интегралы от производных в левых частях системы (2). Ин-

iS

теграл | *(х)^х аппроксимируем выражением — *((/ -1)8) + *(/8) . С (/-1)8 2

учетом этих замечаний получим следующую систему конечно-разностных уравнений:

1 S

^Z (iS) - Y ((i - 1)S)] = а — [ w ((i - 1)S) + w (iS)] + bY ((i - 1)S) + cZ ((i - 1)S),

1 S

-[Z (iS) - Z ((i - 1)S)] = к - [ w ((i - 1)S) + w (iS)] + mY ((i - 1)S) + IZ ((i - 1)S), (3)

-[Ж(/8) - Ж((/ -1)8)] = У(/8) - 2(/8).

8

Вводя для краткости записи системы (3) следующие обозначения: у = У (/8), г = 2 (/8), * = Ж (/8), а = а82, Ь = Ь8 +1, С = с, к = к82, 1= 18 +1,

запишем систему конечно-разностных уравнений для фиксированной сессии:

—/ 1 „ (—/ —/ -1Л /'—1 -1 / -1

у = 2аI * + * I + Ьу + сг ,

—i 1 ~ (— i —i -1 ^ —i -1 i -1 z = —кI w + w I + my + /z ,

—i —i-1 —i —i

w = w + y - z .

(4)

3. Описание численного алгоритма решения разностной схемы

Рассмотрим алгоритм проведения вычислений по полученной разностной схеме с учетом известных статистических данных по N потокам. Введем

следующие обозначения : у у - количество студентов у -го потока, присоединяющихся к группе претендентов на поступление в аспирантуру после / -й сессии, 2 у - количество студентов у -го потока, выбывающих из группы претендентов на поступление в аспирантуру после / -й сессии, у - численность группы претендентов на поступление в аспирантуру у -го потока студентов после / -й сессии. Тогда изменения, которые происходят в процессе обучения у -го потока претендентов на поступление в аспирантуру, могут быть представлены, как на рис. 1.

Рис. 1. Динамика потоков, влияющих на группу претендентов, при поступлении в аспирантуру для ) -го потока студентов

Предполагается, что известна статистическая информация в разрезе девяти сессий по N потокам, предшествующим прогнозируемому (N +1) -му

потоку: у),, М), х), ] = 1, N, і = 2,9, и данные о результатах первой сессии

(N +1) -го потока - мN+1. Цель вычислений - найти количество студентов (N +1) -го потока, которые будут в группе претендентов на поступление в ас-

9

пирантуру после девятой сессии, - WN +1.

Численный алгоритм состоит из двух этапов. На первом этапе для каждой і-й сессии вычисляются неизвестные параметры системы (4). Обозначим

их сС,Ь,0і, $,Ж,р (і = 2,9).

Коэффициенты сС, Ь, 0і, і = 2,9, первого уравнения системы (4) находятся как решение системы линейных алгебраических уравнений следующего вида:

АіТ¥і = АіТ А Xі, і = 2,9,

где У1 =

У1

УN-1

A7 =

w2 + w2 1

wN+wNv1

—i-1 —7-1

Уі *1

—i-1 —i-1

y n-1 ZN-1

Xі =

c

v у

Коэффициенты к1, т1, V / = 2,9, второго уравнения системы (4) находятся как решение системы линейных алгебраических уравнений следующего вида:

BiTZi = Б11 Bl Fl, i = 2,9,

~>iT тЛ

где Zl =

( і ^ Z1

V zN-1j

Bi =

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

^ w2 + w^, 1

wN + wi-

-i-1

У1

—i -1 Z1

—i-1 — i-1

yN-1 ZN-1

' ki ^

, Fl = ml

V J

На втором этапе численного алгоритма с использованием найденных коэффициентов а1, Ъ, с1, к1,11, га1, I = 2,9, находятся прогнозируемые численности группы претендентов на поступление в аспирантуру wlN+1, 7 = 2,9. Вычисления осуществляются по итерационной формуле:

wN+1 =

^1 + а1 /2-kl /2jwN+1 + [bl -ml ^jyN +|ci -ll jz'n

1 + k /2-/2

i = 2,9.

4. Численный эксперимент и анализ результатов прогнозирования

Апробацию предложенной модели проведем на основе статистических данных об успеваемости одной группы студентов очной формы обучения специальности «Прикладная математика и информатика» математического факультета МГУ им. Н. П. Огарева, поступивших в университет с 2000 по 2006 г.

Примем за критерий включения в группу претендентов на поступление в аспирантуру величину среднего балла по итогам последней сессии большую или равную 4,2 балла (при 5-балльной системе оценки знаний). По статистическим данным составим таблицу численности претендентов на поступление в аспирантуру (табл. 1), таблицу вливающихся в группу претендентов на поступление в аспирантуру (табл. 2) и таблицу выбывающих из группы претендентов на поступление в аспирантуру (табл. 3) в разрезе семи потоков студентов и сессий за 2000-2006 гг.

Таблица 1

Численность претендентов на поступление в аспирантуру

Номер потока Номер сессии

1 2 3 4 5 6 7 8 9

2006 7 7 7 4 7 15 11 16 10

2005 8 13 8 4 14 19 16 19 11

2004 9 10 9 2 7 10 12 13 12

2003 12 9 10 4 11 11 13 15 11

2002 9 14 12 7 16 19 20 20 21

2001 6 6 8 6 8 18 21 21 19

2000 5 8 8 4 6 14 15 15 12

График, построенный на основании данных по численности группы претендентов на поступление в аспирантуру (рис. 2), подтверждает предположение о том, что изменение количественного состава групп претендентов по разным потокам в разрезе сессий сохраняет общие тенденции. Здесь по

оси абсцисс отложены номера сессий, а по оси ординат - число претендентов на поступление в аспирантуру.

Таблица 2

Численность вливающихся в группу претендентов на поступление в аспирантуру

Номер потока Номер сессии

1 2 3 4 5 6 7 8 9

2006 0 0 0 0 3 8 1 5 0

2005 0 5 0 0 10 5 0 4 0

2004 0 1 0 0 5 4 2 1 2

2003 0 1 2 0 7 3 4 3 3

2002 0 5 1 0 9 3 2 1 2

2001 0 1 3 2 4 11 4 2 4

2000 0 5 3 0 3 8 4 2 1

Таблица 3

Численность выбывающих из группы претендентов на поступление в аспирантуру

Номер потока Номер сессии

1 2 3 4 5 6 7 8 9

2006 0 0 0 3 0 0 5 0 10

2005 0 0 5 4 0 0 3 1 8

2004 0 0 1 7 0 1 0 0 3

2003 0 4 1 6 0 3 2 1 7

2002 0 0 3 5 0 0 1 1 1

2001 0 1 1 4 2 1 1 2 6

2000 0 2 3 4 1 0 3 2 4

Рис. 2. Изменение численности групп претендентов на поступление в аспирантуру для потоков 2000-2006 гг. в разрезе сессий

Итог построения прогноза с использованием математической модели (1) приведен в табл. 4 вместе с реальными статистическими данными за тот же промежуток времени.

Таблица 4

Результаты прогнозирования количества претендентов на поступление в аспирантуру для 2007 потока в разрезе сессий

Год Номер сессии

1 2 3 4 5 6 7 8 9

Прогноз 2007 8 12 8 5 20 29 24 33 20

Реальные данные 2007 8 6 14 4 8 20 20 22 18

Среднеквадратичное отклонение прогнозируемых данных от реальной статистики составляет 18,26 %, что говорит о том, что прогнозируемые значения достаточно близки к реальным данным с точки зрения математического моделирования в социологических исследованиях. Таким образом, построенная математическая модель позволяет прогнозировать динамику численности претендентов на поступление в аспирантуру на основе статистических данных за несколько лет, предшествующих прогнозируемому отрезку времени. Графически данные табл. 4 представлены на рис. 3.

Прогноз

------Реальные

данные

Рис. 3. Результаты прогнозирования количества претендентов на поступление в аспирантуру для 2007 потока в разрезе сессий

Список литературы

1. Эльсгольц, Л. Э. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом / Л. Э. Эльсгольц, С. Б. Норкин. - М. : Наука, 1971. - 296 с.

2. Шаманаев, П. А. Численное моделирование динамики потока научных и научно-педагогических кадров на основе статистических данных по МГУ им. Н. П. Огарева / П. А. Шаманаев, В. А. Атряхин // Журнал Средневолжского математического общества. - 2011. - Т. 13, № 1. - С. 84-90.

3. Бородкин, Ф. М. Прогнозирование численности населения и миграции системой дифференциальных уравнений / Ф. М. Бородкин, С. В. Соболева // Математические методы в социологии. - Новосибирск, 1974. - С. 99-145.

4. Прасолов, А. В. Динамические модели с запаздыванием и их приложения в экономике и инженерии / А. В. Прасолов. - СПб. : Лань, 2010. - 192 с.

5. Самарский, А. А. Численные методы / А. А. Самарский, А. В. Гулин. - М. : Наука, 1989. - 262 с.

References

1. El'sgol'ts, L. E. Vvedeniye v teoriyu differentsial'nykh uravneniy s otklonya-yushchimsya argumentom / L. E. El'sgol'ts, S. B. Norkin. - M. : Nauka, 1971. - 296 s.

2. Shamanayev, P. A. Chislennoye modelirovaniye dinamiki potoka nauchnykh i nauchno-pedagogicheskikh kadrov na osnove statisticheskikh dannykh po MGU im. N. P. Ogareva / P. A. Shamanayev, V. A. Atryakhin // Zhurnal Srednevolzhskogo ma-tematicheskogo obshchestva. - 2011. - T. 13, № 1. - S. 84-90.

3. Borodkin, F. M. Prognozirovaniye chislennosti naseleniya i migratsii si-stemoy differentsial'nykh uravneniy / F. M. Borodkin, S. V. Soboleva // Mate-maticheskiye metody v sotsiologii. - Novosibirsk, 1974. - S. 99-145.

4. Prasolov, A. V. Dinamicheskiye modeli s zapazdyvaniyem i ikh prilozheniya v ekonomike i inzhenerii / A. V. Prasolov. - SPb. : Lan', 2010. - 192 s.

5. Samarskiy, A. A. Chislennyye metody / A. A. Samarskiy, A. V. Gulin. - M. : Nauka, 1989. - 262 s.

Атряхин Владимир Андреевич аспирант, Мордовский государственный университет имени Н. П. Огарева (Республика Мордовия, г. Саранск, ул. Большевистская, 68)

E-mail: [email protected]

Шаманаев Павел Анатольевич

кандидат физико-математических наук, доцент, заведующий кафедрой прикладной математики, Мордовский государственный университет имени Н. П. Огарева (Республика Мордовия, г. Саранск, ул. Большевистская, 68)

E-mail: [email protected]

Atryakhin Vladimir Andreevich Postgraduate student, Mordovian State University named after N. P. Ogaryov (Republic of Mordovia, Saransk,

68 Bolshevistskaya str.)

Shamanaev Pavel Anatol'evich Candidate of physical and mathematical sciences, associate professor, head of the department of applied mathematics, Mordovian State University named after N. P. Ogaryov (Republic of Mordovia, Saransk, 68 Bolshevistskaya str.)

УДК 51-77, 519.62 Атряхин, В. А.

О приложении систем дифференциальных уравнений с отклоняющимся аргументом к моделированию процесса воспроизводства научных кадров / В. А. Атряхин, П. А. Шаманаев // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. - 2013. - № 1 (25). -

С.82-90.

i Надоели баннеры? Вы всегда можете отключить рекламу.