Научная статья на тему 'Новый способ установки крыла ставного невода'

Новый способ установки крыла ставного невода Текст научной статьи по специальности «Механика и машиностроение»

CC BY
1449
63
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СТАВНОЙ НЕВОД / КРЫЛО / МАТЕМАТИЧЕСКАЯ МОДЕЛЬ / ОПТИМИЗАЦИЯ

Аннотация научной статьи по механике и машиностроению, автор научной работы — Грачев Александр Александрович, Грачев Дмитрий Александрович

Предложен способ установки крыльев ставных неводов по ломаной линии, имеющий существенные преимущества по сравнению с традиционным способом установки крыла по прямой линии. Разработана математическая модель процесса направления рыбы секционным крылом больших ловушек, устанавливаемых по ломаной линии. Приведены результаты расчетов углов для различных вариантов установки крыльев, включая криволинейную форму.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Новый способ установки крыла ставного невода»

УДК 639.2.081.117

А.А. Грачев, Д.А. Грачев

Астраханский государственный технический университет, 414025, г. Астрахань, ул. Татищева, 16

НОВЫЙ СПОСОБ УСТАНОВКИ КРЫЛА СТАВНОГО НЕВОДА

Предложен способ установки крыльев ставных неводов по ломаной линии, имеющий существенные преимущества по сравнению с традиционным способом установки крыла по прямой линии. Разработана математическая модель процесса направления рыбы секционным крылом больших ловушек, устанавливаемых по ломаной линии. Приведены результаты расчетов углов для различных вариантов установки крыльев, включая криволинейную форму.

Ключевые слова: ставной невод, крыло, математическая модель, оптимизация.

A.A. Grachev, D.A. Grachev NEW WAY OF INSTALLATION OF MAIN LEADER NET

A method of the stationary net leaders' installation by a broken line has the significant advantages over the traditional way of installation by a straight line. A mathematical model of the areas of the large fish sectional leader traps set by a broken line shows the calculation results of optimization setting angles for different installation options of the leaders, significantly increases the efficiency by optimizing the gear setting angles sectional leaders set by a broken line.

Keywords: stationary uncovered pound net (set-net), main leader net, mathematical model, optimization

Введение

Ф.И. Баранов [1] заложил основы теории лова ловушками, рассмотрев принцип действия ловушек, теорию крыла, основы теории входных отверстий, дал качественное обоснование некоторых показателей элементов этих орудий лова и т.д.

В настоящее время для анализа и обоснования показателей лова ловушками часто используют математические модели для оценки производительности лова через обловленный объем и вероятности ухода рыбы из зоны облова различными путями [2-9].

Цель и задачи исследования

Наиболее важным с точки зрения эффективности лова является первый этап процесса задержания (захвата) рыб крылом и направления их к входу в ловушку.

В настоящее время в отечественной практике крылья больших ловушек устанавливают строго прямолинейно, преимущественно под прямым углом к направлению береговой линии, чтобы обеспечить наибольшую облавливаемую площадь.

Современные исследования поведения рыб с помощью сонаров и подводные наблюдения [10] показывают, что значительная доля рыб (до 50 %) перемещается в противоположную сторону от ловушки и уходит из зоны облова, снижая его эффективность.

Соотношение между количеством рыбы, которая направляется в сторону ловушки и в противоположном направлении, зависит в основном от направления установки крыла по отношению к направлению хода рыбы - «рыбному маршруту».

В этой связи целесообразно определять оптимальные углы установки крыльев в зависимости от различных показателей лова, включающих характеристики внешней среды, вид рыб и характер их поведения и распределения и др.

Математическое моделирование процесса направления рыб прямым крылом

М.И. Гуревич [11] предложил гипотезу об аналогии движения косяка рыбы с движением набегающей на косую стенку струи жидкости, в соответствии с которой вероятность направления рыбы крылом в сторону ловушки представляется зависимостью вида

1 + cosa

Р (a) =---> (1)

_ „. . 1 - cosa а в обратную сторону: p (a) =---, (2)

где a - угол установки крыла к «рыбному маршруту», град.

Учитывая работоспособность данной гипотезы в отношении некоторых видов рыб и условий лова, исследованных в работах [10-12], можно решать задачи оптимизации угла установки крыла ловушек с целью повышения эффективности лова.

Представляет интерес оптимизация выбора угла установки крыла с одной ловушкой на конце к «рыбному маршруту» на удалении от берегов в акватории с равными глубинами. Для простоты расчетов вероятностью ухода рыбы через сетное полотно и от крыла можно пренебречь. В этом случае, как нами показано в [9], относительная доля рыб Q(a, L), направляемых крылом к входу в ловушку от угла его установки к направлению «рыбного маршрута» и длины крыла L, равна

к[(1 + cosa) (-кгТ\ ■ Q(a, L) = -'- х (е ктТ )х sin a. (3)

На рис. 1 приведены результаты расчетов зависимости относительной доли рыб, задерживаемых и направляемых крылом к входу в ловушку, от угла его установки а к направлению «рыбного маршрута» и длины крыла по формуле (3) с использованием программы МаШсаё.

os

0.Í4

Ota, 50)

QCq „ 100)

Q(ti, 500)

Qta -1000)

- 0

Q(q ; 1500)

0.4S

0.32

0.16

/У' /■/ // v\

r tí ■/ / \ 4 \

ft É 1 í ! í / ? ч- Л \ X

/1 / 1' / ■■' }//. ■ ■" 4 > \

30

60

120

150

130

Рис. 1. Зависимость относительной доли рыб Q, задерживаемых и направляемых крылом к входу в ловушку от угла его установки а к направлению «рыбного маршрута» и от длины крыла L, при L = 5-1500 м; kL = 0,001; к' != 1 Fig. 1. Dependence of a relative share of fishes Q detained and directed by a wing to an

entrance to a playground from a corner of its installation а to the direction of "a fish route" and from wing length L: L = 5-1500 м; kL = 0,001; к 1= 1

Показано, что наибольшая доля рыб, направляемых крылом в ловушку, соответствует углу ~ 60° по отношению к «рыбному маршруту» и уменьшается при увеличении длины крыла.

В Волго-Каспийском бассейне малые ловушки (секрета, вентеря) традиционно устанавливают крылом «на ход» рыбы, т.е. под углом 50-70°. Большие ловушки для лова лососевых рыб в береговой зоне Дальнего Востока и Камчатки, у побережья Дагестана, Азербайджана и Ирана на Каспии преимущественно устанавливают под углом 900.

Математическое моделирование процесса направления рыб криволинейным крылом

Учитывая результаты ранее выполненных исследований [8,10] и опыт практического применения схем установки малых ловушек «на ход», представляется целесообразным для повышения эффективности лова осуществлять установку крыльев больших ловушек не по прямой, а в виде ломаной линии с уменьшением (либо увеличением) угла установки секции к «рыбному маршруту» от береговой к стрежневой. При этом количество секций крыла может быть более двух, а угол установки начальной (береговой) секции и угол между соседними секциями можно менять и оптимизировать в зависимости от условий лова.

В пользу данного предложения свидетельствуют экспериментальные данные [13], показавшие, что эффективность криволинейного крыла выше прямого, при этом доля рыб, попавших в ловушку, составила 46 %, а для прямолинейного крыла - намного ниже (23 %) [14].

Пусть Ь - длина крыла, к - коэффициент, учитывающий долю рыб, идущих вдоль крыла, которая дойдет до входа в ловушку, а - начальный угол установки крыла (береговой секции), п - количество секций крыла, г - номер секции, г - закон распределения плотности рыбы, Ь - угол между соседними секциями, Ь0 - оптимальный угол между смежными секциями.

Определим относительную долю рыб Q(Ь), направляемых секционным крылом к входу в ловушку, учитывая, что каждая секция устанавливается под различным углом к «рыбному маршруту» и направляет рыб в ловушку с различной вероятностью как сумму вероятностей:

п-1

е(Ь)=I

г=0

1 + соб

а - ц Ь

ж 180

е ~кЬг (/>т

а - ц Ь

ж 180

2п

(4)

В качестве примера зададим начальные параметры в виде следующих значений: а = 90°, п = 3, при равномерном распределении плотности рыбы г(х) = 1. Для простоты расчета принимаем длину крыла Ь =1 и коэффициент к = 0,1. Решение уравнения (4) позволяет оптимизировать угол между секциями величиной Ь0 = 17,745°; при этом относительная доля рыб, направляемых тремя секциями крыла в ловушку, максимальна и равна Q(b) = 0,532, или 53,2 % . Аналогичное крыло, установленное по прямой линии под углом 90°, дает значение величины Q(b) = 45,2 %.

На рис. 2 показан пример оптимизации угла установки трехсекционного крыла по формуле (4) с использованием программы Mathcad.

Существенным образом до 0,581, или еще на 9 %, увеличивается доля рыб, направляемых трехсекционным крылом, при уменьшении начального угла установки береговой секции до 70° по сравнению с традиционной схемой. В этом случае необходимо устанавливать вторую и третью секции под углами соответственно 64 и 58°, при смежном угле между секциями 6°. При этом повышение эффективности лова составляет 28,5 % по сравнению с традиционной схемой. Расчеты по формуле (4) показывают, что для

двухсекционного крыла, если начальная секция устанавливается под традиционным углом 90°, то вторую секцию необходимо устанавливать под углом 60°. В этом случае доля направляемых рыб в ловушку увеличится на 15 %. Выбор варианта установки зависит от особенностей акватории и характера распределения и поведения рыб в зоне действия крыла. Предложенный метод расчета позволяет в значительной степени учитывать данные особенности и оптимизировать схему установки крыла для конкретных условий лова.

На рис. 3 приведены возможные схемы установки крыльев ставных неводов с расчетными показателями относительной доли рыб, направляемых крыльями к входу в ловушку. При увеличении количества секций установка крыла производится практически по кривой (штриховая линия). Криволинейная установка при начальном угле установки 90° увеличивает эффективность работы крыла на 20,6 % в сравнении с традиционной. При начальном угле установки а менее 60° (верхняя схема) последующие секции устанавливаются под большим углом к направлению «рыбного маршрута», так как Ь0 принимает отрицательные значения.

Рис. 2. Зависимость относительной доли рыб Q(b), направляемых трехсекционным крылом к входу в ловушку, от угла между секциями Ь0 Fig. 2. Dependence of a relative share of fishes of Q(b), a directed three section main leader net to an entrance to a playground, from a corner between the sections Ь0

Рис. 3. Значения относительных долей рыб, направляемых крыльями к входу в ловушку, для различных схем установки Fig. 3. Values of relative shares of the fishes directed by wings to an entrance to a trap for various schemes of installation

Предлагаемые схемы установки позволят повысить штормоустойчивость неводов, так как стрежневые секции крыла испытывают меньшее гидродинамическое сопротивление при штормовых течениях. С другой стороны, вихревые шлейфы (вихревой звук), создаваемые течением при обтекании элементов крыла ставного невода по мере уменьшения угла, будут изменяться в сторону снижения интенсивности звука и

повышения частот, способствуя уменьшению расстояния реагирования рыбы на крыло. При этом конструкцию двора необходимо будет изменить с учетом угла установки последней секции крыла. Кроме того, постепенное уменьшение угла установки крыла придаст перемещению рыб вдоль него более устойчивый характер и повлияет на снижение вероятности ухода рыбы от крыла в зависимости от длины крыла.

Предложенный способ расчета можно использовать как при подходе рыбы с одной стороны крыла, так и с другой, а общая доля рыб определяется суммированием с учетом соотношения долей рыб, подходящих с каждой из сторон.

Криволинейная форма установки может применяться не только для крыльев, но и для дворовых открылок и других элементов ставных неводов, что будет способствовать увеличению вероятности входа рыбы в ловушки и затруднять ее выход.

Целесообразно провести комплекс экспериментальных исследований в промысловых условиях для уточнения настроечных коэффициентов, входящих в предложенную зависимость оценки относительной доли рыб, направляемых крылом в сторону ловушки, для различных способов установки крыльев ставных неводов, а также провести испытание ловушки с криволинейными элементами.

Выводы

Предложен способ установки крыльев ставных неводов по ломаной линии, имеющий существенные преимущества по сравнению с традиционным - прямолинейным.

Разработана математическая модель процесса направления рыбы секционным крылом, устанавливаемым по ломаной линии к входу в ловушку, приведены варианты расчетов оптимизации углов установки.

Показано существенное увеличение эффективности лова за счет оптимизации углов установки секционных крыльев по ломаной линии, в том числе по кривой.

Список литературы

1. Баранов Ф.И. Избранные труды. Т. 1. Техника промышленного рыболовства. - М.: Пищ. пром-сть, 1969. - 719 с.

2. Мельников В.Н. Биотехническое обоснование показателей орудий и способов промышленного рыболовства. - М.: Пищ. пром-сть, 1979. - 375 с.

3. Мельников В.Н., Ханипур А.А. Математическая модель лова ставными неводами // Тр. Междунар. конф., посвященной памяти проф. В.Н. Войниканис-Мирского. -Астрахань: АГТУ, 2000. - С. 63-64.

4. Грачев А.А., Мельников В.Н. Разработка и применение математических моделей для повышения эффективности лова рыбы: обзор. информ. ВНИЭРХа. Сер. Промышленное рыболовство. - 2002. - Вып. 1. - 50 с.

5. Грачев А.А., Мельников В.Н. Промыслово-экологические проблемы повышения эффективности использования запасов промысловых рыб. - Астрахань: Изд. дом «Астраханский университет», 2006. - 207 с.

6. Мельников В.Н. Общие математические модели производительности лова ставными неводами и мелкими ловушками // Вестн. АГТУ. Сер. Рыб. хоз-во. - 2010. - № 2. - С. 25-33.

7. Мельников А.В., Грачев А.А. Обоснование показателей сетного полотна ставных неводов // Вестн. АГТУ. Сер. Рыб. хоз-во. - 2010. - № 2. - С. 34-45.

8. Грачев А.А. Оценка уловистости ловушки с учетом времени застоя // Вестн. АГТУ. Сер. Рыб. хоз-во. - 2012. - № 1. - С. 36-43.

9. Грачев А.А. Оценка показателей вероятности задержания и направления рыб крылом ловушки // Вестн. АГТУ. Сер. Рыб. хоз-во. - 2012. - № 1. - С. 30-35.

10. Inoue Y and, Arimoto T. Scanning sonar surveyon the capturing process of trap nets. Proc. World Sump. Fish. Gear and Fish. Vessel Design. - 1989. - P. 417.421. St. John's, Newfoundland: Marine Institute

11. Гуревич М.И. О косом набегании рыбы на сетную перегородку // Рыб. хоз-во. -1963. - № 9. - С. 47.

12. Suzuki M. A fundamental study on fish movement in response to set nets and the function of the fishing gear. J/ Tokyo Univ. Fish. - 1971. - 57 (2-2). - P. 95-171.

13. Inoue Y. Effect of Blocking and Leading Fish School by Set-net Leader // Bull. Japan. Soc. Sci. Fish. - 1987. - 53(7). - Р. 1135-1140.

14. Inoue Y. Fish Behavior in the Capturing Process of the One-trapped and the Two trapped Set-net // Bull. Japan. Soc. Sci. Fish. - 1986. - 53(10). - Р. 1739-1744.

Сведения об авторах: Грачев Александр Александрович, кандидат технических наук, доцент, e-mail: agrach30@mail.ru;

Грачев Дмитрий Александрович, e-mail: dagrachev@list.ru.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.