Научная статья на тему 'Novel dicationic chlorin e 6 derivatives'

Novel dicationic chlorin e 6 derivatives Текст научной статьи по специальности «Химические науки»

CC BY
70
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Макрогетероциклы
WOS
Scopus
ВАК
Область наук
Ключевые слова
METHYL PHEOPHORBIDE A / ХЛОРИН Е 6 / CHLORIN E 6 / DICATIONIC CHLORINS / МЕТИЛФЕОФОРБИД А / ДИКАТИОННЫЕ ХЛОРИНЫ

Аннотация научной статьи по химическим наукам, автор научной работы — Tarabukina I.S., Startseva O.M., Patov S.A., Belykh D.V.

Number of dicationic chlorins with additional hydrophobic (alkyl) and hydrophilic (polyеther) groups were synthesized on the basis of methyl pheophorbide a. Novel dicationic amphiphilic chlorins with different hydrophobic part size were obtained by alkylation of tertiary amino groups of twice aminomethylated chlorin e 6 derivatives by methyl iodide. It has been shown that several of the dicationic chlorins obtained can form true solutions in water and introduction of hydrophobic substituents to amide group (starting with two methyl groups or one ethyl) leads to a loss of solubility. Cationic derivatives with polyether moieties at the macrocycle periphery are unexpectedly insoluble in water, despite of hydrophilic moieties presence.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Novel dicationic chlorin e 6 derivatives»

Porphyrins

Порфирины

МаИрОГ8Т8рОЦ>1КЛЫ

http://macroheterocycles.isuct.ru

Paper

Статья

DOI: 10.6060/mhc150456b

Novel Dicationic Chlorin e Derivatives

b

I. S. Tarabukina,@1 O. M. Startseva, S. A. Patov, and D. V. Belykh@2

Institute of Chemistry, Komi Scientific Center, Ural Division, Russian Academy of Sciences, 167982 Syktyvkar, Russia @1Corresponding author E-mail: tarabukinais@mail.ru

@2Corresponding author E-mail: belykh-dv@chemi.komisc.ru, belykh-dv@mail.ru

Number of dicationic chlorins with additional hydrophobic (alkyl) and hydrophilic (polyether) groups were synthesized on the basis of methyl pheophorbide a. Novel dicationic amphiphilic chlorins with different hydrophobic part size were obtained by alkylation of tertiary amino groups of twice aminomethylated chlorin e6 derivatives by methyl iodide. It has been shown that several of the dicationic chlorins obtained can form true solutions in water and introduction of hydrophobic substituents to amide group (starting with two methyl groups or one ethyl) leads to a loss of solubility. Cationic derivatives with polyether moieties at the macrocycle periphery are unexpectedly insoluble in water, despite of hydrophilic moieties presence.

Keywords: Methyl pheophorbide a, chlorin e dicationic chlorins.

Новые дикатионные производные хлорина е6

И. С. Тарабукина,@1 О. М. Старцева, С. А. Патов, Д. В. Белых@2

Институт химии Коми научного центра Уральского отделения Российской академии наук, 167982 Сыктывкар, Россия

@1Е-таИ: tarabukinais@mail.ru

@2Е-шаИ: belykh-dv@chemi.komisc.ru, belykh-dv@mail.ru

На основе метилфеофорбида а синтезирован ряд дикатионных хлоринов с дополнительными гидрофобными (алкильными) и гидрофильными (полиэфирными) группами. Алкилированием третичных амино-групп дважды аминометилированных производных хлорина е6 йодистым метилом получены не описанные ранее амфифиль-ные дикатионные хлорины, различающиеся размером гидрофобной части. Показано, что некоторые из полученных дикатионных хлоринов могут образовывать истинные растворы в воде, причем внедрение в амидную группу гидрофобных заместителей (начиная с двух метильных или одной этильной группы) приводит к потере растворимости. Катионные производные с полиэфирными фрагментами на периферии макроцикла неожиданно оказались нерастворимыми в воде, несмотря на наличие гидрофильных фрагментов.

Ключевые слова: Метилфеофорбид а, хлорин ег, дикатионные хлорины.

Introduction

The porphyrin compounds photosensitizing properties are intensively studed and used in various fields of medicine, such as oncology,[1-6] otolaryngology,17-81 ophthalmology,19101 surgery,[11] the treatment of bacterial[6] and fungal[12] diseases. A number of preparations based on porphyrins are in clinical practice now.[1-611-17] Some chlorophyll a derivatives were found to be highly active photo sensitizers (PS) with low dark toxicity.[1-613-16] Thus, new medical PS searching among chlorophyll a derivatives is of a good chance. Modification of chlorins chemical structure features such as charge, hydrophobicity and steric properties leads to the significant changing of the pigments ability to insert into the cell which can define their photodynamic effectivity. [17,18] The cationic groups insertion results in hydrophilicity increasing as well as selective binding with mitochondria membrane.[2,6] Therefore such PS cause selective organelles damage which significantly increases their efficiency and leads to apoptosis of malignant neoplasms which is more advantageous from the viewpoint of therapeutic effect. Also the cationic PSs show photoinduced antibacterial activity against gram-negative bacteria.[6] The activity against these bacteria caused by the negatively charged external membrane is an effective barrier to permeation of hydrophobic and anionic molecules. The cationic groups presence in the PS molecule promotes the interaction with

negatively charged outer membrane of these bacteria, resulting in an effective photodamage and death of the bacteria. Gram negative bacteria are known to be most pathogens and resistant to various types of impacts, however, development of resistance in relation to the photodynamic action is impossible.[6] Thus, the development of methods for the cationic groups introduction to the such derivatives molecule is an urgent task. The tertiary amino groups quaternization were used for the formation of cationic substituent. This approach was used in the case of synthetic porphyrins[19-25] as well as in the case of natural porphyrins.[26-29] We have previously developed the method of aminomethylation of chlorin e6 derivatives vinyl group by action of 6/'s(^,^-dimethylamino)methane.[30] This

method allows to obtain chlorin e derivatives with two

6

dimethylamino substituents in vinyl group. Quaternization of the dimethylaminomethyl group allows to synthesize compounds with two cationic groups, which are localized in one part of the molecule. So, the dicationic amphiphilic derivatives with different size of hydrophobic part may be synthesized. The combination of cationic groups with electrically neutral hydrophilic polyether fragments in one molecule is of significant interest for new water-soluble cationic photosensitizers development. At present work a series of dicationic chlorins with additional hydrophobic (alkyl) and hydrophilic (polyether) groups were synthesized based on methylpheophorbide a (1) (Scheme 1).

CO2CH3 cf0 CH

CO2CH3

n = 1-5 (8-12)

N(CH3)2

© e

WCHsfel

c=0

Cb2CH3 CO2CH3 NHR (2-7)

c=0

C'02CH3 CO2CH3 NHR (18-23)

c=o

C02CH3 CO2CH3 NHR (29-34)

© © N(CH3)3 I

n = 1-5 (13-17)

n = 1-5 (24-28)

n = 1-5 (35-39)

R = CH3 (2, 18, 29); C2H5 (3, 19, 30); C4H9 (4, 20, 31); C6H13 (5, 21, 32); C8H17 (6, 22, 33); (CH2)2OH (7, 23, 34); n = 1 (8, 13, 24, 35); n = 2 (9, 14, 25, 36); n = 3 (10, 15, 26, 37); n = 4 (11, 16, 27, 38); n = 5 (12, 17, 28, 39).

i: the reactions were carried out according to[30-33]; ii: ((CH^N)^^, THF/AcOH, refluxing, 20-30 min, derivatives 18-23 were obtained according to[30], 23-28 were obtained similarly to [30], yielding 24 (50 %), 25 (47 %), 26 (45 %), 27 (43 %), 28 (51 %); iii: CH3I, THF or CH2Cl2, r. t., 60 min (yields are quantitative); iv: reactions were carried out according to[33].

Scheme 1.

Experimental

'H NMR spectra were recorded in CDCl3 on spectrometer Bruker Avance II (working frequency 300 MHz). IR spectra were recorded on spectrometer Shimadzu IR Prestige 21 in KBr (difFuse reflection). UV-Vis spectra were recorded on spectrometer Shimadzu UV-1700 (PharmaSpec) in CHCl3 in 200-1100 nm range in 10 mm quartz cuvettes, using CHCl3 as comparison sample. Mass spectra were obtained by Thermo finnigan LCQ Flut (ESI) instrument. Monitoring the reaction proceeding was performed by TLC on Silufol plates, eluent - CCl4-acetone (4:1 vol). Column chromatography was carried out using silica gel Alfa Aesar 70/230^.

Chlorin e6 13(1)-N-methylamide-15(2),17(3)-dimethyl ester (2), chlorin e6 13(1>N-ethylamide-15(2),17(3)-dimethyl ester (3), chlorin e6 13(1)-N-hydroxyethylamide-15(2),17(3)-dimethyl ester (7) were obtained according to [31,35].

Chlorin e6 13(1)-N-(n-butyl)-amide-15(2),17(3)-dimethyl ester (4), chlorin e6 13(1>N-(n-hexyl)-amide-15(2),17(3>dimethyl ester (5), chlorin e6 13(1)-N-(n-octyl)-amide-15(2),17(3>dimethyl ester (6) were obtained according to [32].

Methyl pheophorbide a 13(2)-diethylene glycol ester (8), methyl pheophorbide a 13(2)-triethylene glycol ester (9), methyl pheophorbide a 13(2)-tetraethylene glycol ester (10), methyl pheophorbide a 13(2)-pentaethylene glycol ester (11), methyl pheophorbide a 13(2)-hexaethylene glycol ester (12), chlorin e6 13(1)-N-methylamide 17-methyl-15-diethylene glycol ester (13), chlorin e6 13(1)-N-methylamide 17-methyl-15-triethylene glycol ester (14), chlorin e6 13(1)-N-methylamide 17-methyl-15-tetraethylene glycol ester (15), chlorin e6 13(1)-N-methylamide 17-methyl-15-pentaethylene glycol ester (16), chlorin e6 13(1)-N-methylamide 17-methyl-15-hexaethylene glycol ester (17) were obtained according to [33].

Chlorin e6 Amides Aminomethylation

Chlorin e6 amides interaction with bis(N,N-dimethylamino) methane (generalprocedure). To a solution of chlorin e6 13-amides (2-7, 13-17) (30-100 mg, 0.036-0.113 mmol) in a mixture of equal volumes of THF and acetic acid (3-7 ml) bis(N,N-dimethylamino) methane (0.1-0.5 ml, 0.73-3.7 mmol) was added. The resulted mixture was refluxed For 20-60 minutes, then diluted with chloroform, washed with water, dried by anhydrous sodium sulfate and evaporated to dryness under reduced pressure at 40-50 °C. The residue after evaporation was chromatographed on silica gel (elu-ent: CCl4-acetone, 60:1-1:1 then CHCl3-C2H5OH, 30:1-1:1). The eluate containing main substance, was evaporated under reduced pressure.

3(i;,3(2)-Bis(N,N-dimethylamino)chlorin e6 13(1)-N-meth-ylamide-15(2),17(3)-dimethyl ester (18), 3(1),3(2)-bis(N,N-di-methylamino)chlorin e6 13(1)-N-butylamide-15(2),17(3)-dimethyl ester (20), 3(i;,3(2)-bis(N,N-dimethylamino)chlorin e6 13(1)-N-hexylamide-15(2),17(3)-dimethyl ester (21), 3(1),3(2)-bis(N,N-di-methylamino)chlorin e6 13(1)-N-octylamide-15(2),17(3)-dimethyl ester (22) were obtained according to [30].

3(1),3(2)-Bis(N,N-dimethylamino)chlorin e6 13(1)-N-ethyl-amide-15(2),17(3)-dimethyl ester (19), 3(1),3(2)-bis(N,N-dime-thylamino)chlorin e6 13(1)-N-2-hydroxyethylamide-15(2),17(3)-dimethyl ester (23) were obtained analogously to 18. Compound 19 (50 mg, 54 % yield) was prepared from 79 mg of compound 3. UV-Vis (CH2Cl2) I nm: 398.0 (100%), 498.0 (7%), 554.0 (1%), 604.0 (3%), 659.0 (33%). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.86 s (1H, H10), 9.74 s (1H, H5), 8.82/8.83* s (1H, H20), 7.38-7.30 m [1H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 6.42 br.t (1H, 131-CONHC2H5), 5.58 d (1H, H15(1)A, J 19.2 Hz), 5.29 d (1H, H15(1)B, J 19.2 Hz), 4.49 q (1H, H18, J 6.9 Hz), 4.39 br.d (1H, H17, J 9.6 Hz), 3.96-3.85 m (2H, 131-CONHCH2CH3), 3.85-3.75 m [2H,

8-(CH2CH3)], 3.80-3.50 m [4H, 3-C(CH2N(CH3)2)=CH(CH2N(C H3)2)], 3.83 s (3H, 152-COOCH3), 3.63/3.(52* s (3H, 2-CH3), 3.60 s [3H, 17-(CH2CH2COOCH3)], 3.55 s (3H, 12-CH3), 3.37 s (3H,

7-CH3), 2.98-2.70 m [2H, 17-(CH2CH2COOCH3)], 2.60-2.00 m [2H, 17-(CH2CH2COOCH3)], 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2): 2.30 s (6H), 2.26 s (3H), 2.23 s (3H); 1.78-1.69 m (6H, 18-CH3,

8-CH2CH3), 1.48 t (3H, 131-CONHCH2CH3, J 7.5 Hz), -1.70 br.s (1H, III-NH), -1.91 br.s (1H, I-NH). Compound 23 (33 mg, 37 % yield) was prepared from 77 mg of compound 7. UV-Vis (CH2Cl2) I nm: 399.0, 499.0, 604.0, 660.0. NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.84 s (1H, H10), 9.73 s (1H, H5), 8.84 s (1H, H20), 7.36-7.30 m [1H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 6.92 t (1H, 13-CONHCH2CH2OH, J 4.2 Hz), 5.62 d (1H, H15(1)A, J 18.3 Hz), 5.34 d (1H, H25^ J 18.3 Hz), 4.47 q (1H, H18, J 7.2 Hz), 4.43 br.d (1H, H17, J 9.6 Hz), 4.07 t (2H, 131-CONHCH2CH2OH), 4.00-3.92 m (2H, 131-CONHCH2CH2OH), 3.85-3.79 m [2H, 8-(CH2CH3)], 3.803.40 m [4H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 3.17 s (3H, 152-COOCH3), 3.62 s (3H, 2-CH3), 3.61 s [3H, 17-(CH2CH2COOCH3)], 3.56 s (3H, 12-CH3), 3.37 s (3H, 7-CH3), 2.84-2.50 m [4H, 17-(CH2CH2COOCH3)], 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2): 2.33 s (6H), 2.226/2.23* s (3H), 2.20 s (3HX 1.78-1.68 m (6H, 18-CH3, 8-CH2CH3), -1.66 br.s (1H, III-NH), -1.88 br.s (1H, I-NH).

3(1),3(2)-Bis(N,N-dimethylamino)chlorin e6 13(1)-N-methylamide-15(2)-diethylene glycol 17(3)-methyl ester (24). Compound 24 (54.0 mg, 50 % yield) was prepared from 90.0 mg of compound 13. MS (ESI) m/z: 829.1 (M+4H)+. UV-Vis (CH2Cl2) I nm: 656 (33%), 602 (5%), 522 (4%), 498 (11%), 397 (100%). IR (cm-1, KBr): 2957 (vCHas CH3); 2933 (vCHas CH2); 2866 (vCHs CH3); 2769 (vCH CH2-O-, glycol); 1736 (v C=O, ester); 1651 («amide-I»); 1605 («chlorin band»); 1551 («amide-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.86 s (1H, H10), 9.77 s (1H, H5), 8.85 s (1H, H20), 7.37-7.31 m [1H, 3-C(CH2N(CH3)2)= CH(CH2N(CH3)2)], 7.12 br.m (1H, 131-CONHCH3), 5.58 d (1H, 15-CHAHBCOOCH2CH2OCH2CH2OH, J 18.3 Hz), 5.42 d (1H, 15-CHAHBCOOCH2CH2OCH2CH2OH, J 18.4 Hz), 4.56-4.41 m (2H, H18, H17), 4.37-4.20 m (2H, 15-CH2COOCH2CH2OCH2CH2OH), 3.94-3.67 m [6H, 8-(CH2CH3), 3-C(CH2N(CH3)2)=CH(CH2N(CH3 )2)], 3.64 s (3H, 17-(CH2CH2C OOCH3), 3.60 s (3H, 12-CH3), 3.57 s (3H, 2-CH3), 3.40 s (3H, 7-CH3), 3.31 d (3H, 131-CONHCHH3, J 4.7 Hz), 3.67-3.16 m (6H, 15-CH2COOCH2CH2OCH2CH2OH), 2.862.44 m [2H, 17-(CH2CH2COOCH3)], 2.43-1.99 [3-C(CH2N(CH3)2 )=CH(CH2N(CH3)2): 2.37 s (6H), 2.27/2.25* s (3H), 2.04 s (3H)]; 1.76 d (3H, 18-CH3, J 6.0 Hz),1.71 t (3H, 8-CH2CH3, J 7.9 Hz), -1.92 br.s (1H, I-NH), -2.19 br.s (1H, III-NH).

3(1),3(2)-Bis(N,N-dimethylamino)chlorin e613(1)-N-methyl-amide 15(2)-triethylene glycol 17(3)-methyl ester (25). Compound 25 (28.4 mg, 38 % yield) was prepared from 61.4 mg of compound 14. MS (ESI) m/z: 873.5 (M+4H)+. UV-Vis (CH2Cl2) I nm: 655 (33%), 602 (4%), 549 (3%), 498 (10%), 397 (100%). IR (cm-1, KBr): 2955 (vCHas CH3); 2924 (vCHas CH2); 2868 (vCHs CH3); 2769 (vCH CH2-O-, glycol); 1732 (v C=O, ester); 1645 («amide-I»); 1609 («chlorin band»); 1551 («amide-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.87 s (1H, H10), 9.77 s (1H, H5), 8.86 s (1H, H20), 7.41-7.31 m [1H, 3-C(CH2N(CH3)2) =CH(CH2N(CH3)2)], 7.39-7.32 m (1H, 131-CONHCH3), 5.59 d (1H, 15-CHAHBCOOCH2CH2OCH2CH2OCH2CH2OH, J 18.7 Hz), 5.42 d (1H, 15-CHAHBCOOCH2CH2OCH2CH2OCH2CH2OH, J 17.6 Hz), 4.57-4.10 m (2H, H17, H18)], 4.34-4.16 m (2H 15-CH2COOCH2CH2OCH2CH2OCH2CH2OH), 3.94-3.67 m (6H, 8-CH2CH3), 3.70-3.60 m [4H, 3-C(CH2N(CH))2)=CH(CH2N(CH))2)], 3.62 s (3H, 17-(CH2CH2COOCH3), 3.61 s (3H, 12-CH3), 3.57 s (3H,

2-CH3), 3.39 s (3H 7-CH3), 3.30 d (3H, 131-CONHCH3, J4.4 Hz), 3.57-33.23 m (10H, 15-CH2COOCH2CH2OCH2CH2OCH2CH2OH), 2.78-2.46 m (4H, 17-CH2CH2C OOCH3), 1.41-1.01 m

3-C(CH2N(CH3)2)=CH(CH2N(CH/3)2): 2.36 s (6H), 2.27 s (3H),

2.24 s (3H); 1.76 t (3H, 8-CH2CH3, J 7.9 Hz),1.71 d (3H, 18-CH3, J 6.1 Hz), -1.86 br.s (1H, I-NH), -1.97 br.s (1H, III-NH).

3(1),3(2)-Bis(N,N-dimethylamino)chlorin e6 13(1)-N-methylamide 15(2)- tetraethylene glycol 17(3) methyl ester (26). Compound 26 (15.0 mg, 42 % yield) was prepared from 31.0 mg of compound 15. MS (ESI) m/z: 917.2 (M+4H)+. UV-Vis (CH2Cl2) I nm: 656 (31%), 601 (3%), 549 (2%), 498 (9%), 397 (100%). IR (cm-1, KBr): 2955 (vCHas CH3); 2926 (vCHas CH2); 2868 (vCHs CH3); 2764 (vCH CH2-O-, glycol); 1736 (v C=O, ester); 1647 («amide-I»); 1605 («chlorin band»); 1551 («amide-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.85 s (1H, H10), 9.77 s (1H, H5), 8.86 s (1H, H20), 7.44-7.37 m [1H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 7.36-7.32 m [1H, 131-(CONHCH3)], 5.61 d (1H, 15-CHaHbCOO CH2CH2OCH2 CH2OCH2CH2OCH2CH2OH, J 19.6 Hz), 5.42 d (1H, 15-CHAHBCO OCH2CH2OCH2CH2OCH2CH2OCH2CH2OH, J 18.0 Hz), 4.57-4.42 m [(2H, H17, H18)], 4.35-4.14 m (2H, 15-CH2COOCH2CH2OCH2CH2 OCH2CH2OCH2CH2OH), 3.95-3.60 m [6H, (8-CH2CH3), 3-C^CH^ N(CH3)2)=CH(CH2N(CH3)2)], 3.63 s (3H, 17-(CH2CH2COOCH3), 3.62 s (3H, 12-CH3), 3.57 s (3H, 2-CH3), 3.40 s (3H, 7-CH3), 3.30 d (3H, 131-CONHCH3, J 4.3 Hz), 3.13-2.75 m (14H, 15-C H2COOCH2CH2OCH2CH2OCH2CH2OCH2CH2OH), 2.45-2.00 m 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2): 2.42 s (6H), 2.28 s (3H), 2.26 s (3H); 2.16-1.89 m (4H, 17-CH2CH2COOCH3), 1.81-1.67

m (6H, 8-CH2CH3, 18-CH3), -1.88 br.s (1H, I-NH), -1.99 br.s (1H, III-NH). 2 3 3

3(1),3(2)-Bis(N,N-dimethylamino)chlorin e613(1)-N-methyl-amide 15(2)- pentaethylene glycol 17(3) methyl ester (27). Compound 27 (13.0 mg, 37 % yield) was prepared from 30.0 mg of compound 16. MS (ESI) m/z: 961.4 (M+4H)+. UV-Vis (CH2Cl2) I nm: 668 (44.4%), 610 (8.5%), 539 (9.9%), 509 (11.0%), 42 4 (100%). IR (cm-1, KBr): 2955 (vCHas CH3); 2927 (vCHas CH2); 2868 (vCHs CH3); 2785 (vCH CH2-0-, glycol); 1734 (v C=0, Hster); 1651 («amide-I»); 1603 («chlorin band»); 1551 («amid-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.86 s (1H, H10), 9.77 s (1H, H5), 8.86 s (1H, H20), 7.50-7.41 m [1H, C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 7.40-7.32 m [1H, 131-(CONHCH3)], 5.61 d (1H, 15-CHAHB<CO 0CH2CH20CH2CH20CH2CH20CH2CH20CH2CH20H, J 19.4 Hz), 5.41 d (1H, 15-CHAHBC00CH2CH20CH2CH20CH2CH20 CH2CH2OCH2CH2OH, J 19.4 Hz), 4.58-4.42 m (2H, H17, H18)], 4.33 -4.14 m (2H, 15-CH2COOCH2CH2OCH2CH2OCH2CH2OCH2 CH2OCH2CH2OH), 3.93-3.67 m ßH, (8-CH2CH3), i-C(CH2N) CH3)2)=CH(CH2N(CH3)2)], 3.63 c (3H, 17-(CH2CH2C00CH3), 3.62 s (3H, 12-CH3), 3.58 s (3H, 2-CH3), 3.41 s (3H, 7-CH3), 3.31 d (3H, 131-C0NHC3H3, J 4.0 Hz), 3.20-2.72 m (18H, 15-CH2CO 0CH2CH20CH2CH20CH2CH20CH2CH20CH2CH20H), 2.462.00 m 3-C(CH2N (CH3)2)=CH(CH2N(CH3)2). 2.39 s (6H), 2.28 s (3H), 2.25 s (3H); 2.45-1.83 m (4H, 17-CH2CH2C00CH3), 1.811.67 m (6H, 8-CH2CH3, 18-CH3), -1.87 br.s (1H, I-NH), -1.99 br.s (1H, III-NH).

3(1),3(2)-Bis(N,N-dimethylamino)chlorin e6 13(1)-N-methylamide 15(2)-hexaethylene glycol 17(3)-methyl ester (28). Compound 28 (57.3 mg, 51 % yield) was prepared from 100.0 mg of compound 17. MS (ESI) m/z: 1005.3 (M+4H)+; 1026.4 (MNa+H2); 1043.0 (MK+H2). UV-Vis (CH2Cl2) I nm: 655 (31%), 600 (3%), 550 (2%), 498 (9%), 397 (100%). IR (cm-1, KBr): 2953

(v^ CH3); 2926 (v^ CH2); 2868 (VCHS CH3); 2781 (v^ CH2-O-,

glycol); 1736 (v C=0, ester); 1651 («amide-I»); 1603 («chlorin band»); 1551 («amide-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.89 s (1H, H10), 9.77 s (1H, H5), 8.86 s (1H, H20), 7.51-7.42 m [1H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 7.39-7.33 m [1H, 131-(CONHCH3)], 5.60 d (1H, 15-CHAHBC00CH2CH20CH2CH20C H2CH2OC^2CH2OCH2CH2OCH2CH2OH, J 17.2 Hz), 5.52-5.36 m (1H, 15-CHAHBC00CH2CH20CH2CH20CH2CH20CH2CH20CH2 CH2OCH2CH2OH), 4.60-4.40 m (2H, H17, H18)], 4.35-415 m (2H, 15-C H2C0 OC H2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OC

H2CH2OH), 3.94-3.79 m (2H, 8-CH2CH3), 3.76-3.60 m [4H, 3-C(C H2N(CH3)2)=CH(CH2N(CH3)2)], 3.63 s (3H, 17-(CH2CH2C00CH3), 3.62 s (3H, 12-CH3), 3.57 s (3H, 2-CH3), 3.40 s (3H, 7-CH3), 3.30 d (3H, 131-C0NHCH3, J 4.0 Hz), 3.20-2.72 m (22H, 15-CH2CO

och2ch2och2ch2och2ch2och2ch2och2ch2och2ch2o H),

2.41-2.16 m 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2): 2.32 s (6H), 2.27 s (3H), 2.25 s (3H); 2.15-1.96 m (4H, 17-CH2CH2C00CH3), 1.82-1.64 m (6H, 8-CH2CH3, 18-CH3), -1.72 br.s (1H, I-NH), -1.97 br.s (1H, III-NH).

General procedure for alkylation of chlorins dimethylamino groups by methyl iodide. 0.1 ml of iodomethane was added to a solution of 5-50 mg of starting chlorin (18-28) in 5 ml of THF or methylene chloride. The resulting mixture was allowed to stay for 15-45 minutes at room temperature, then the solvent and iodomethane were evaporated under reduced pressure, and the residue after evaporation was reprecipitated with pentane. Alkylation products 29-39 were obtained in quantitative yields in all cases. Spectral characteristics of the compounds obtained are shown below.

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)chlorin e6 13(1)-N-methylamide 15(2),17(3)-dimethyl ester (29). MS (ESI) m/z (Chl I2): 783.7 (Chl2++H 2+e)+, 769.32 (Chl2++H2-CH2+)+, 650.39 (Chl2++H2-2N(CH3)3-CH3+)+. UV-Vis (CHCl3) I nm: 660.0 (14%), 641.5 (15%), 599.0 (2%3, 524.5 (4%), 499.0 (4%), 405.0 (100%). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.66/9.67* s (1H, H10), 9.60/9.64* s (1H, H5), 8.85 s (1H, H20), 7.10 m [1H, 3-C(CH2N (CH3)2)=CH(CH2N(CH3)2)], 6.76 br.q [1H, 131-(CONHCH3), J 42.5 Hz], 5.56/5.57* d (1H, H15(1)A, J 18.1 Hz), 5.30/5.32* d (1H, H15(1) B, J 18.1 Hz), 4.48 q (1H, HA8, J 7.2 Hz), 4.36 br.d (1H, H17, J 9.3 Hz), 3.74-3.58 m [6H, 8-(CH2CH3), 3-C(CH2N(CH3)2)=CH(CH2N (CH3)2)], 3.83 s (3H, 132-C00CH3), 3.62/3.63* s (3H, 2-CH3), 3.53 s [3H, 17-(CH2CH2C00CH3)], 3.51/3.53* s (3H, 7-CH3), 3.27/3.29* s (3H, 12-CH3), 3.27 d (3H, 131-C0NHCH3, 5.4 Hz), 3.03-2.04 m [4H, 17-(CH2CH2C00CH3)], 3-C(CH2N+(CH3)3)=CH (CH2N+(CH3)3): 1.56 s (6H), 2.25/2.28* s (3H), 2.51/2.54* s (9H); 1.71-1.60 m (6H, 18-CH3, 8-CH2CH3), -1.86 br.s (1H, III-NH), -2.10 br.s (1H, I-NH).

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)chlorin e6 13(1)-N-ethylamide 15(2),17(3)-dimethyl ester (30). MS (ESI) m/z (Chl I2): 9H.8 (Chl2+I-)+, 795.0 (Chl2++e)+, 783.4 (Chl2++H2-CH2+)+, 664.4 (Chl2++2H2-2N(CH3)3-CH3+)+, 520.4 (Chl2+-2N(CH3)3-0CH3-H+-1C2H2-CONHC2H5)+. UV-Vis (CHCl3) I nm: 661.0 (15%), 642.0 (15%), 610.0 (3%), 524.5 (4%), 500.0 (4%), 405.5 (100%). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.70/9.69* s (1H, H10), 9.64/9.62* s (1H, H5), 8.85 s (1H, H20), 7.16-7.08 m [1H, 3-C(C H2N(CH3)2)=CH(CH2N(CH3)2)], 6.66 m (1H, 131 -CONHCH2CH3), 5.59/5.583* d (1H, H15(1)A, J 19.2 Hz), 5.31/5.30* d (1H, H15(1)B, J 19.2 Hz), 4.48 q (1H, H18, J 8.9 Hz), 4.38 br.d (1H, H17, J 9.0 Hz), 3.92-3.20 m [8H, 8-(CH2CH3), 3-C(CH2N+(CH3)3)=CH(CH2N+ (CH3)3), 131-(C0NHCH2CH3)], 3.82 s (3H, 132-C00CH3), 3.76/3.75* s (3H, 2-CH3), 3.61/3.60* s [3H, 17-(CH2CH2C00CH33], 3.55/3.53* s (3H, 7-CH3), 3.31/3.30* s (3H, 12-CH3), i.))-).77 m [4H, 17-(CH2CH2C00CH3)], 3-C(CH2N+(CH3)3)=CH(CH2N+ (CH3)3): 2.61/2.60* s (12H), 2.29/2.27 s (6H); 1.90-1.40 m [6H, 18-CH33 8-CH2CH3], 1.46 t [3H, 131-(C0NHCH2CH3), J 9.0 Hz], -1.76 br.s (1H, I-NH), -2.08 br.s (1H, III-NH).

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)chlorin e6 13(1)-N-butylamide 15(2),17(3)-dimethyl ester (31). MS (ESI) m/z (Chl I2): 950.9 (Chl2T)+, 815.14 (Chl2++H 2+e)+, 827.4 (Chl2++2H 2+e)+, 811.2 (Chl2++H2-CH2+)+, 692.3 (Chl2++2H2-2N(CH3)3-CH3+)+, 518.82 (Chl2+-2N1(CHi)i-0CHi+-H2-)C2H2-C01NHC4H9)+. UV-Vis (CHCl3) I nm: 660.5 (14%), 642.0 (15%), 612.5 (3%), 524.5 (4%), 500.0 (4%), 405.5 (100%). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.67 s (1H, H10), 9.61/9.64* s (1H, H5), 8.86 s (1H, H20), 7.10 m [1H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 6.67 m (1H, 131-CO NH(CH2)3CH3), 5.58 d (1H, H15(1)A, J 18.0 Hz), 5.30 d (1H, H15(1)B,

J 18.0 Hz), 4.49 q (1Н, Н18, J 9.0 Hz), 4.34 br.d (1Н, Н17, J 9.0 Hz), 3.90-3.80 m [2Н, 8-(CH2CH3)], 3.75-3.60 m [4H, 3-C(C#2N (CH3)2)=CH(C#2N(CH3)2)], 3.83 s (3Н, 152-СООСЯ3), 3.61/3.62* s (3Н, 2-СН3), 3.54 s [3Н, 17-(СН2СН2СООСЯ3)], 3.50/3.53* s (3Н, 7-СН3), 3.28/3.30* s (3Н, 12-CH3), 3.32 m [2Н, 131-(CONHC#2(CH2)2CH3)], 3.03-2.00 m [4Н, 17-(CH2CH2COOCH3)], 3-C(CH2N+(C#3)3)=CH(CH2N+(C#3)3): 2.24 s ((5Н), 2.53 s (12 H); 1.80-1.40 m [10Н, 131-(COINHCH2(CF2)2CH3), 18-СН3, 8-СН2СЯ3], 0.92 m [3Н, 131-(CONH(CH2)3CH3)], -2.15 br.s (1Н, I-NH), -1.88 br.s (1H, III-NH).

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)chlorin e6 13(1)-N-hexylamide 15(2),17(3)-dimethylester (32). MS (ESI) m/z(Chl I2): 950.9 (Chl2+I-)+, 855.4 (Chl2++2H+e)+, 839.4 (Chl2++H2-CH2+)+,

810.4 (Chl2++2H2-CH3+-C2H5)+, 7Ж5 (Chl2++2H2-2N(СH3)3-СH[+)+. UV-Vis (CHCl3) X nm: 660.5 (17%), 642.5 (15%), 524.5 (4%), 499.0 (5%), 405.5 (100%). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.67 s (1H, H10), 9.61/9.64* s (1H, H5), 8.86 s (1H, H20), 7.11 m [1H, 3-C(CH2N(CH3)2)=C#(CH2N(CH3)2)], 6.69 m (1H, 131-CO N#(CH2)5CH3), 5.58 d (1H, H15(1)A, J 18.0 Hz), 5.30 d (1H, H15(1)B, J 18.0 Hz), 4.49 q (1H, H18, J 9.0 Hz), 4.34 br.d (1H, H17, J 9.0 Hz), 3.90-3.80 m [2H, 8-(C#2CH3)], 3.75-3.60 m [4H, 3-C(C#2N (CH3)2)=CH(C#2N(CH3)2)], 3^3 s (3H, 152-COOCH3), 3.61/3.62* s (3H, 2-CH3), 3.54 s [3H, 17-(CH2CH2COOC#3)], 3.51/3.53* s (3H, 7-CH3), 3.29/3.30* s (3H, 12-CH3), 3.32 m [2H, 131-(CONHC#2(CH2)4CH3)], 3.03-2.00 m [4H, 17-(C#2C#2COOCH3)], 3-C(CH2N+(CH3)3)=CH(CH2N+(CH3)3): 2.24/2.27* s (6H), 2.5^4 s (12 H); 1.80-1.40 m [14H, 131-(CONHCH2(CH2)4CH3), 18-CH3, 8-CH2CH3], 0.98 m [3H, 131-(CONH(CH2)5CH3)2, -1.85 br.s (1H, III-NH), -2.14 br.s (1H, I-NH).

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)cMorin e6 13(1)-N-octylamide 15(2),17(3)-dimethyl ester (33). MS (ESI) m/z (Chl I2): 950.9 (Chl2T)+, 883.5 (Chl2++2H 2+e)+, 867.5 (Chl2++H2-CH2+)+, 825.6 (Chl2++2H2-CH3+-C3H7)+. UV-Vis (CHCl3) X nm:

660.5 (16%), 642.0 (15%), 524.5 (3%), 499.0 (4%), 405.5 (100%). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.68 s (1H, H10), 9.61/9.65* s (1H, H5), 8.86 s (1H, H20), 7.10 m [1H, 3-C(CH2N (CH3)2)=CH(CH2N(CH3)2)], 6.67 m (1H, 131-CONH(CH2)7CH3), 5.58 d (1H, H15(12A, J 17.7 Hz), 5.31 d (1H, H15(1)B, J 17.7 Hz), 4.48 q (1H, H18, J 5.0 Hz), 4.37 br.d (1H, H17, J 7.5 Hz), 3.90-3.80 m [2H, 8-(CH2CH3)], 3.75-3.60 m [4H, 3-C(CH2N(CH3)2)=CH(CH2N (CH3)2)], 3.83 s (3H, 152-COOCH3), 3.61/3.62* s (3H, 2-CH3), 3.56 s [3H, 17-(CH2CH2COOCH3)], 3.51/3.53* s (3H, 7-CH3), 3.239/3.31* s (3H, 12-CH3), 3.34 m [2H, 131-(CONHCH2(CH2)6CH3)], 3.032.00 m [4H, 17-(CH2CH2COOCH3)], 3-C(CH2N+(CH3)3)=CH(CH2 N+(CH3)3): 2.26/2.30* s (6H), 2.51 s (12 H); 1.80-1.40 m [18H, 131-(CONHCH2(CH2)6CH3), 18-CH3, 8-CH2CH3], 0.93 m [3H,

131-(CONH(CH2)7CH3)], -1.84 br.s (1H, III-NH), -2.12 br.s (1H, I-NH). 2 7 3

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)chlorin e6

13(1)-N-(2-hydroxyethyl)amide 15(2),17(3)-dimethyl ester (34). MS (ESI) m/z (Chl I2): 950.9 (Chl2+I")+, 813.4, (Chl2++H+ë)+, 815.4 (Chl2++2H+ë)+, 799.4 (Chl2++H2-CH2+)+, 680.4 (Chl2++H2-2N(СH3)3-СH3+)+. UV-Vis (CHCl3) X nm: 660.0 (14%), 641.5 (15%), 599.0 (2%), 524.5 (4%), 499.0 (4%), 405.0 (100%). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.53/9.50* s (1H, H10), 9.38/9.26* s (1H, H5), 8.79 s (1H, H20), 7.39-7.30 m [1H, 3-C(C H2N(CH3)2)=CH(CH2N(CH3)2)], 7.03-6.90 m (1H, 131-CONHCH2 CH2OH)3 5.65-5.51 m (1H, H15(1)A), 5.36-5.20 m (1H, H15(1)B), 4.514.266 m (2H, H18, H17), 4.03-3.81 m (4H, 131-CONHCH2CH2OH, 131-CONHCH2CH2OH), 3.80-2.92 m [8H, 8-(CH2CH3), 3-C(CH2N+ (CH3)3)=CH(CH2N+(CH3)3), 3.75 s (3H, 152-COOCH3), 3.60/3.58* s (3H 2-CH3), 35.45/3.43* s [3H, 17-(CH2CH2COOCH3)], 3.41 s (3H, 7-CH3), 3.13/3.07* s (3H, 12-CH3), 2.70-2.38 m [4H, 17-(CH2CH2COOCH3)], 3-C(CH2N+(CH3)3)=CH(CH2N+(CH3)3): 2.22/2.18 * s (3H), 1.99/1.94 s (6H), 171-1.58 m (9H); 1.45-1.222

m [6H, 18-CH3, 8-CH2CH3], -1.964 br.s (I-NH), -2.20/-2.24* br.s (III-NH). 3 2 3

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)chlorine613(1)-N-2-methylamide 15(2)-diethylene glycol 17(3)-methyl ester (35). MS (ESI) m/z (Chl I2): 757.54 (Chl2++H+e)+, 843.4 (Chl2++H2-CH2+)+, 724.4 (Chl2++H2-2N(CH3)3-CH3+)+. UV-Vis (CHCl3) X nm: 659 (33%), 604 (3%), 524 (2%), 498 (9%), 398 (100%). IR (cm-1, KBr): 2957 (vCHas CH3); 2928 (vCHas CH2); 2868 (vCHs CH3); 2743 (vCH CH2-O-, glycol); 1736 (v C=0, ester); 1645 («amide-I»); 1605 («chlorin band»); 1549 («amide-II»). NMR 1H (CDCl3, Me4-Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.71 s (1H, H10), 9.67 s (1H, H5), 8.87 s (1H, H20), 7.26-7.18 m [1H, 3-C(CH2N(CH3)2)=CH(CH2N (CH3)2)], 7.16-7.07 m [1H, 131-(CONHCH3)], 5.58 d (1H, 15-CHAHBCOOCH2CH2OCH2CH2OH, J 20.3 Hz), 5.47-5.31 m (1H, 15-CHAHBCOOCH2CH2OCH2CH2OH), 4.55-4.38 q (2H, H18, H17), 4.30-4.13 m (2H, 15-CH2COOCH2CH2OCH2CH2OH), 3.83-3.68 m [6H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2), 8-CH2CH3], 3.63 s (3H,

17-(CH2CH2COOCH3), 3.56 s (3H, 12-CH3), 3.53 s (3H, 2-CH3), 3.35 s (3H, 7-CH3), 3.29 d (3H, 131-CONHCH3, J 4.0 Hz), 3.853.09 m (6H, 15-CH2COOCH2CH2OCH2CH2OH), [3-C(CH2N+ (CH3)3)=CH(CH2N+(CH3)3): 2.56/2.49* s (6H), 2.31 s (3H), 2.29 s (3H); 2.92-1.97 m [4H, 17-(CH2CH2COOCH3)], 1.79-1.60 m (6H,

18-CH3, 8-CH2CH3), -1.62 br.s (1 H, I-NH), -2.12 br.s (1H, III-NH). 3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)Morin e6 13(1)-

N-2-methylamide 15(2)-triethylene glycol 17(3)-methyl ester (36). MS (ESI) m/z (Chl I2): 843.4 (Chl2++H2-CH2+)+. UV-Vis (CHCl3) X nm: 660 (34%), 604 (3%), 554 (2%), 498 (9%), 398 (100%). IR (cm-1, KBr): 2955 (vCHas CH3); 2926 (vCHas CH2); 2868 (vCHs CH3); 2747 (vCH CH2-O-, glycol); 1734 (v C=O, ester); 1647 («amide-I»); 1605 («chlorin band»); 1549 («amide-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.72 s (1H, H10), 9.70 s (1H, H5), 8.88 s (1H, H20), 7.26-7.18 m [1H, 3-C(CH2N(CH3)2)=C H(CH2N(CH3)2)], 7.22-7.09 m [1H, 131-(CONHCH3)], 5.59 d (1H, 15-CHAHBCOOCH2CH2OCH2CH2OCH2CH2OH, J 16.9 Hz), 5.475.41 m (1H, 15-CHAHBCOOCH2CH2OCH2CH2OCH2CH2OH), 4.50 q (1H, H18, J 7.7 Hz), 4.44 br.d (1H, H17, J 8.8 Hz), 4.32-4.13 m (2H, 15-CH2COOCH2CH2OCH2CH2OCH2CH2OH), 3.90-3.66 m [6H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2), 8-CH2CH3], 3.63 s (3H, 17-(CH2CH2COOCH3), 3.56 s (6H, 12-CH3, 2-CH3), 3.35 s (3H, 7-CH3), 3.28 d (3H, 131-CONHCH3, J 4.4 Hz), 3.20-2.72 m (10H, 15-CH2COOCH2CH2OCH2CH2OCH2CH2OH), 2.70-2.27 [3-C(C H2N+(CH3)3)=CH(CH2N+(CH3)3): 2.70/2.66* s (6H), 2.33 s (3H), 2.30 s (3H)]; 2.27-1.94 m [4H 17-(CH2CH2COOCH3)], 1.78-1.56

m (6H, 18-CH3, 8-CH2CH3), -1.89 br.s (1H, I-NH), -2.12 br.s (1H, III-NH). 3 2 3

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)Morin e6 13(1)-N-2-methylamide 15(2)-tetraethylene glycol 17(3)-methyl ester (37). MS (ESI) m/z (Chl I2): 945.4, (Chl2++H 2+e)+, 947.4 (Chl2++2H 2+e)+, 931.8 (Chl2++H2-CH2+)+, 812.5 (Chl2++H2-2N(CH3)3-CH3+)+. UV-Vis (CHCl3) X nm: 660 (34%), 605 (3%), 498 (9%), 398 (100%). IR (cm-1, KBr): 2955 (vCHas CH3); 2926 (vCHas CH2); 2868 (vCHs CH3); 2747 (vCH CH2-O-, glycol); 1734 (v C=O, ester); 1645 («amide-I»); 1605 («chlorin band»); 1549 («amide-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.86/9.61* s (1H, H10, H5), 8.91 s (1H, H20), 7.517.40 m [1H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], ^-TU m [1H, 131-(CONHCH3)], 5.61 d (1H, 15-CHAHBCOOCH2CH2OCH2 CH2OCH2CH2OCH2CH2OH, J 19.4 Hz), 5.50-5.33 m (1H, 15-CHA HCOOCHCHOCHCHOCHCHOCHCHOH), 4.52 q (1H,

B 22 22 22 2 2 ' av.-

H18, J 7.0 Hz), 4.46 br.d (1H, H17, J 9.0 Hz), 4.33-4.11 m (2H, 15-CH2COOCH2CH2OCH2CH2OCH2CH2OCH2CH2OH), 3.98-3.67 m [6H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2), 8-CH2CH3], 3.63 s (3H, 17-(CH2CH2COOCH3), 3.59 s (6H, 12-CH3, 2-CH3), 3.37 s (3H, 7-CH3), 3.29 d (3H, 131-CONHCH3, J 4.9 Hz), 3.69-3.07 m (14H, 15-CH2COOCH2CH2OCH2CH2OCH2CH2OCH2CH2OH), [3-C(CH2N+(CЯ3)3)=CH(CH2N+(CЯ[)3): 2.80 s (6H), 2.34 s (3H),

2.30 s (3H); 2.64-1.79 m [4H, 17-(CH2CH2COOCH3)], 1.76-1.66 m (6H, 18-CH3, 8-CH2CH3), -1.81 br.s (1H, I-NH), -2.15 br.s (1H, III-NH).

3(1),3(2)-Bis(N,N,N-trmethylammoiodide)chlorine613(1)-N-2-methylamide 15(2)-pentaethylene glycol 17(3)-methyl ester (38). MS (ESI) m/z (Chl I2): 1117.4 (Chl2++HI+e)+, 989.4 (Chl2++H+e)+, 975.6 (Chl2++H2-CH2+)+, 933.7 (Chl2++3H2-N(CH3)3+)+, 856.6 (Chl2++H2-2N(CH3)3-CH3+)+. UV-Vis (СНС13) X nm: 659 (33%), 603 (5%), 523 (5%), 498 (11%), 398 (100%). IR (cm-1, KBr): 2955

(VcH5 ch3); 2926 (V5 CH2); 2868 (vCHs CH3); 2745 (vCH CH2-O-,

glycol); 1732 (v C=O, ester); 1647 («amide-I»); 1605 («chlorin band»); 1549 («amide-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.86 s (1H, H10), 9.77 s (1H, H5), 8.86 s (1H, H20), 7.50-7.41 m [1H, C(CH2N(CH3)2)=C#(CH2N(CH3)2)], 7.40-7.32 m [1H, 131-(CON#CH3)], 5.61 d (1H, 15-C,^AHBCOOCH2CH2OCH2CH2OCH2 CH2OCH2CH2OCH2CH2OH, J 19.4 Hz), 5.41 d (1H, 15-CHA#BCO OCH2CH2OCH2CHpCH2CH2OCH2CH2OCH2CH2OH, J 19.4 Hz), 4.58-4.42 m (2H, H17, H18)], 4.33-4.14 m (2H, 15-CH2COOC#2C H2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OH), 3.93-3.67 m [6H, (8-CH2CH3), 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 3.63 s (3H, 17-(CH2CH2COOCH3), 3.62 s (3H, 12-CH3), 3.58 s (3 H, 2-CH3), 3.41 s (3H, 7-CH3), 3.31 d (3H, 131-CONHCH3, J 4.0 Hz), 3.20-2.72 m (18H, 15-CH2CO OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2 OH), 3-C(CH2N+(CH3)3)=CH(CH2N+(CH3)3): 2.39 s (6H), 2.28 s (3H), 2.25 s (3 H); 2.45-1.83 m (4H, 17-CH2CH2COOCH3), 1.811.67 m (6H, 8-CH2CH3, 18-CH3), -1.87 br.s (1H, I-NH), -1.99 br.s (1H, III-NH).

3(1),3(2)-Bis(N,N,N-trimethylaminoiodide)chlorin e6 13(1)-N-2-methylamide 15(2)-hexaethylene glycol 17(3)-methyl ester (39). MS (ESI) m/z (Chl I2): 1019.6 (Chl2++H2-CH2+)+. UV-Vis (CHCl3) X nm: 659 (32%), 604 (3%), 522 (3%), 4298 (9%), 398 (100%). IR (cm-1, KBr): 2953 (vCHas CH3); 2926 (vCHas CH2); 2870 (vCHs CH3); 2749 (vCH CH2-O-, glycol); 1734 (v C=O, ester); 1649 («amide-I»); 1607 («Chlorin band»); 1551 («amide-II»). NMR 1H (CDCl3, Me4Si, *the signals of cis- and trans-isomers with different chemical shifts, 300 MHz) 5 ppm: 9.90 s (1H, H10), 9.68 s (1H, H5), 8.95 s (1H, H20), 7.51-7.40 m [1H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2)], 7.-5-7.1-m [1H, 131-(CONHCH3)], 5.63 d (1H, 15-CHAHB<COOCH2CH2O CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OH, J 19.3 Hz), 5.40-5.33 m (1H, 15-CHAHBCOOCH2CH2OCH2CH2OCH2CH2 OCH2CH2OCH2CH2OCH2CH2OH), 4.59-4.40 m (2H, H18, H17), 4.36-4.12 m (2H, 15-CH2COOCH2CH2OCH2CH2OCH2CH2OCH2 CH2OH), 3.92-3.67 m [6H, 3-C(CH2N(CH3)2)=CH(CH2N(CH3)2), 8-CH2CH3], 3.65 s (3H, 17-(CH2CH2COOCH3), 3.61 s (6H, 12-CH3, 2-CH3), 3.39 s (3H, 7-CH3-, 3.31 d (3H, 131-CONHCH3, J 4.4 Hz), 3.69-3.07 m (22H, 15-CH2COOCH2CH2OCH2CH2OCH2 CH2OCH2CH2OCH2CH2OCH2CH2OH), 2.88-2.72 and 2.38-2.22 both m [3-C(CH2N+(CH3)3)=CH(CH2N+(CH3)3): 2.36/2.34* s (6H), 2.29 s (3H), 2.26 s (3H); 2.64-1.79 m [4H, 17-(CH2CH2COOCH3)], 1.76-1.66 m (6H, 18-CH3, 8-CH2CH3), -1.99 br.s (1 H, I-NH), -2^2 br.s (1H, III-NH).

Results and Discussion

As it was mentioned above alkylation of tertiary amino groups can be used for the cationic substituent formation. The previously developed method of aminomethylation of vinyl group by èis(N,N-dimethylamino)methane at the presence of acetic acid which allows to realize two dimethylaminomethyl substituents insertion was used here. Aminomethylated chlorin e6 derivatives 18-23 described previously[30] were obtained for synthesis of dicationic derivatives with different size of hydrophobic part. The same method was convenient for aminomethylation of chlorin e6 derivatives with glycol substituents (13-17). The resulted

aminomethylated chlorin e6 derivatives 24-28 were used for hydrophylised dicationic derivatives. The aminomethylation of chlorins 13-17 occurs by the same way as for alkylamides 2-7, but the yields of reaction products 24-28 are lower. The spectral changers resulted from transition to aminomethylated derivatives 24-28 are similar to the observed by us before.[30] The disappearance of two from three vinyl proton signals in the NMR 1H spectra of compounds obtained is evident to double substitution in vinyl group. Cis- and trans-isomers mixture of 18-28 is formed in this reaction as well as in cases described previously.[30,34] In addition there are N,N-dimethylaminomethyl substituent's methyl group signals at 2.40-2.00 ppm in the NMR 1H spectra of compounds 24-28. Mass spectra of aminomethylated derivatives 24-28 can be obtained by electrospray ionization (ESI) (at EI-MS conditions there are some plasma formation difficulties for aminomethylated derivatives 24-28 as well as for initial glycol derivatives 8-17, 24-28). Electrospray ionization leads to particular reduction (hydrogenisation) of the molecules as a side process (addition of 2 and sometimes 4 hydrogen atoms occurs) and corresponding protonated molecular ions are observed. Sometimes the formation of adducts with sodium is observed. Quaternization of twice aminomethylated dimethylaminomethyl groups of chlorin e6 derivatives was carried out by methyl iodide action (Scheme 1). Series of novel dicationic chlorins 29-39 was obtained as a result. The structure of compounds obtained was proved by NMR 1H, IR and UV-Vis spectroscopies and mass spectrometry. The electronic absorption spectrum of the dication derivatives obtained retained chlorin chromophore bands. The main bands of chlorin e6 13-amide fragment are observed in the IR spectrum. The methyl groups signal in the NMR 1H spectrum of quaternized derivatives 29-39 have downfield shift and increased intensity in comparison with the spectra of the starting compounds 18-28 (the typical changes in this region are shown in Figure 1). In addition, there is a shift in a weak field of substituted vinyl group proton signals. Downfield shifts of the proton signals can be explained by the electron-accepting nature of the cationic groups.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

The resulting quaternized derivatives 29-39 are salt-like compounds which can be represented by the general formula ChlI2 (where Chl - dication chlorin moiety) and dissociate in the solution according to the equation:

ChI I2 ^ ChI2+ + 2I-

The best ionization method for investigation of such compounds by mass spectrometry is electrospray ionisation (ESI) using solutions of the testing compounds in polar solvents. The peak of greatest intensity in the mass spectra (ESI) of all dicationic derivatives obtained is a peak of ions formed as a result of hydrogenation and elimination of CH2+ cation from dicationic chlorin part (Chl2++H2-CH2+)+ (the spectrum of compound 37 is shown as an example in Figure 2). In addition, there are low-intensity peaks corresponding to electron capture by dication particle Chl2+ in the spectra of some dicationic derivatives (Chl2+ + e). Besides the peaks corresponding to dication particle electron capture the peaks of dication chlorin particles with an anion of iodine adducts (ChlI+) are observed and these peaks also have a low intensity. The intensity of these peaks is low, apparently because of

3.00

j I I I I j I I I I | I I 1 I j I I I I [ 1

2.80 2.60 2.40 2.20 2.00

Figure 1. 'H NMR spectra of aminomethylated derivative 24 and the product of its reaction with methyl iodide (35) (region 3.2-1.8 ppm, CDCl3, 300 MHz).

BDV-2566-1 T: ITMS + c

100~q

95| 90-E 85-E 80-E 75| m 70-E 6&| 60-E 55-E 50-= 45-E 40-E 35-E 30-E 25-E 20-E 15-E 10-E

#282-289 RT: 1.64-1.67 AV: 8 NL: 9.33E5 ESI Full ms [50.00-2000.00]

931.77

267.63 355.37 577.38

812.58

500

(CH3)2H

961.30 I 973.25

1000 m/z

1143.99

1474.15

1743.54 1863.67

1500

2000

Figure 2. Mass spectrum (ESI) of the compound 37.

CH3 I© сн3 НзС41_сНз НзС^-СНз Iе

ujb^ç^CH-éHz

9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4

Figure 3. 'H NMR spectrum of 29 in deuterochloroform and deuterated water (300 MHz, meso protons signals area).

little likelihood of formation of these particles. In addition, there are fragment ions peaks associated with the elimination of trimethylamine molecule, methyl and methoxy groups. Thus, the NMR spectroscopy and mass spectrometry data combined with IR and UV-Vis spectroscopic data allow to establish unambiguously the structure of dicationic derivatives obtained.

The solubility in water of chlorins obtained was studied here. It was found that compound 29 with a relatively small hydrophobic fragment is soluble in water and forms a true solution. The study of solution of this chlorin dication in deuterated water by 1H NMR reveals signals of chlorin macrocycle protons not participating in the exchange reactions (Figure 3). In the case of formation of colloidal solutions the macrocycle proton signals cannot be observed. The introduction of ethyl and large size groups leads to a loss of solubility in water. The presence of hydrophilic moiety in amide group also gives solubility in water. For example, the hydroxy derivative 34, as well as the compound 29, form a true solution in water. Cationic derivatives with polyether moieties at the macrocycle periphery are unexpectedly insoluble in water, despite the presence of hydrophilic moieties.

Conclusion

A series of novel dicationic chlorins with additional hydrophobic (alkyl) and hydrophilic (polyether) groups were synthesized on the basis of methylpheophorbide a. New amphiphilic dicationic chlorins varying in size of the hydrophobic part were obtained by alkylation of tertiary amino groups of twice aminomethylated chlorin e6 derivatives by methyl iodide. It was shown that several

of the dicationic chlorins obtained can form true solutions in water and the introduction of hydrophobic substituents to amide group (starting with two methyl groups or one ethyl) leads to a loss of solubility. The cationic derivatives with polyether fragments at the macrocycle periphery are unexpectedly insoluble in water despite the presence of hydrophilic moieties.

Acknowledgements. This work was supported by RFBR (grant № 14-03-01061 a)

References

1. Mironov A.F. The Current State of Chemistry of Porphy-rin-Based Photosensitizers and Related Compounds. In: Advances in Porphyrin Chemistry, Vol. 4. St.-Petersburg, 2004. pp. 271-292 (in Russ.) [Миронов А.Ф. Современное состояние химии фотосенсибилизаторов на основе пор-фиринов и родственных соединений. В кн.: Успехи химии порфиринов. Т. 4, СПб.: НИИ химии СПбГУ, 2004. с. 271-292].

2. Reshetnikov A.V., Shvets V.I., Ponomarev G.V. Water-Soluble Tetrapyrrole Photosensitizers for Photodynamic Therapy of Cancer. In: Advances in Porphyrin Chemistry, Vol. 2. St.-Petersburg, 1999. pp. 70-114 (in Russ.) [Решетников А.В., Швец В.И., Пономарев Г.В. Водорастворимые тетрапир-рольные фотосенсибилизаторы для фотодинамической терапии рака. В кн.: Успехи химии порфиринов. Т. 2, СПб.: НИИ химии СПбГУ, 1999. с. 70-114].

3. Feofanov A., Sharonov G., Grichine A., Refregier M., Maurizot J.-C., Vigny P., Karmakova T., Pljutinskaya A., Yakubovskaya R., Lebedeva V., Ruziyev R., Mironov A. Photochem. Photobiol. 2004, 79, 172-188.

4. Zamilatskov I.A., Savinkina E.V., Volov A.N., Grigoriev M.S., Lonin I.S., Obolenskaya L.N., Ponomarev G.V., Koifman .I.,

Kuzovlev A.S., Kuzmicheva G.M., Tsivadze A.Yu. Macroheterocycles 2012, 5, 308-314.

5. Nyman E.S., Hynninen P.H. J. Photochem. Photobiol., B: Biol.

2004, 73, 1-28.

6. Rubin A.B. Nanobiotechnologies, Moscow: Binom, 2011. 384 p. (in Russ.) [Рубин А.Б. Нанобиотехнологии: практикум, M.: БИHOM, Лаборатория знаний, 2011. 384 с.].

7. Likhacheva E.V., Alekseev Yu.V., Mazur E.M., Ponomarev G.V. LazernayaMeditsina 2011, 15(2), 66-67 (in Russ.).

8. Likhacheva P.D., Likhacheva E.V., Ponomarev G.V. Ross. Bioterapevt. Zh. 2013, 12(2), 54 (in Russ.).

9. Takhchidi Kh.P., Beliy Yu.A., Tereshchenko A.V., et al. Oftalmokhirurgiya 2005, N. 1, 45-51 (in Russ.).

10. Fedorov S.N., Kopaeva V.G., Andreev Yu.V., Ponomarev G.V., Ronkina T.I. Oftalmokhirurgiya 1996, N. 1, 17-23 (in Russ.).

11. Lyapina E.A., Larkina E.A., Tkachevskaya E.P., Mironov A.F., Machneva T.V., Osipov A.N. Biophysics 2010, 55, 296-300.

12. Strakhovskaya M.G., Zhukhovitskiy V.G., Mironov A.F. Dokl. Akad. Nauk 2002, 384, 155-158 (in Russ.).

13. Konan Y.N., Gurny R., Allemann E. J. Photochem. Photobiol., B: Biol. 2002, 66, 89-106.

14. Nazarova A.I., Feofanov A.V., Sharonov G.V., Karmakova T.A., Plyutinskaya A.D., Yakubovskaya R.I., Lebedeva V.S., Mironov A.F., Maurizot J.-C., Vigny P. Russ. J. Bioorg. Chem.

2005, 31, 482-494.

15. Nechaev A.V., Mironov A.F. Russ. J. Bioorg. Chem. 2008, 34, 245-251.

16. Zenkevich E., Sagun E., Knyukshto V., Shulga A., Mironov A., Efremova O., Bonnett R., Phinda Songca S., Kassem M. J. Photochem. Pholobiol. B: Biol. 1996, 33, 171-180.

17. Fomichev Yu.A., Zorin V.P., Zorina T.E., Cherenkevich S.N. Mikrobiologiya 1991, 60, 507-511 (in Russ.).

18. Pashkovskaya A.A., Sokolenko E.A., Sokolov V.S., Kotova E.A., Antonenko Y.N. Biochimica et Biophysica Acta 2007, 1768, 2459-2465.

19. Zhilina Z.I., Vozdinskiy S.V., Ishkov Yu.V. In: Advances in Porphyrin Chemistry, Vol. 3, St.-Petersburg, 2001. pp. 7-21 (in Russ.) [Жилина З.И., Воздинский C.B., Ишков Ю.В.

В кн..: Успехи химии порфиринов, Т. 3, СПб.: БИИ химии СПбГУ, 2001. с. 7-21].

20. Novikov N.V., Starkov V. V., Formirovskiy K.A., Bragina N.A., Ushakova I.P., Mironov A.F. Vestnik MITHT 2009, 4(4), 26-30 (in Russ.).

21. Batinic-Haberle I., Spasojevic I., Stevens R.D., Hambright P., Fridovich I. J. Chem. Soc. Dalton Trans 2002, 2689-2696.

22. Kos I., Benov L., Spasojevic I., Reboucas J.S., Batinic-Haberle I. J. Med. Chem. 2009, 52, 7868-7872.

23. Ko Y.-J., Yun K.-J., Kang M.-S., Park J., Lee K.-T., Park S.B., Shin J.-H. Bioorg. Med. Chem. Lett. 2007, 17, 2789-2794.

24. Evstigneeva R.P. In: Advances in Porphyrin Chemistry, Vol. 3, St.-Petersburg, 2001. pp. 150-159 (in Russ.) [Евстигнеева Р.П. В кн.: Успехи химии порфиринов, Т. 3, СПб.: БИИ химии СПбГУ, 2001. с. 150-159].

25. Olshevskaya V.A., Korotkova N.S., Makarenkov A.V., Luzgina V.N., Kalinin V.N. Vestnik Nizhegorodskogo Universiteta im. Lobachevskogo 2013, N.1, 118-123 (in Russ.).

26. Mironov A.F., Grin M.A., Tsiprovskiy A.G. J. Porphyrins Phthalocyanines 2003, 7, 725-730.

27. Mironov A.F., Grin M.A., Tsiprovskiy A.G., Titeev R., Nizhnik E., Lonin I. Mendeleev Commun. 2004, 5, 204-207.

28. Pandey R.K., Shiau F.U., Smith N.N., Dougherty D.J., Smith K.M. Tetrahedron 1992, 48, 7591-7600.

29. Gushchina O.I., Larkina E.A., Mironov A.F. Macroheterocycles 2014, 7, 414-416.

30. Belykh D.V., Tarabukina I.S., Gruzdev I.V., Kodess M.I., Kutchin A.V. J. Porphyrins Phthalocyanines 2009, 13, 949956.

31. Belykh D.V., Karmanova L.P., Spirikhin L.V., Kutchin A.V. Zh. Org. Khim. 2007, 43, 120-128 (in Russ.).

32. Belykh D.V., Kopylov E.A., Gruzdev I.V., Kutchin A.V. Zh. Org. Khim. 2010, 46, 584-592 (in Russ.).

33. Belykh D.V., Startseva O.M., Patov S.A. Macroheterocycles 2014, 7, 401-413.

34. Belykh D.V., Tarabukina I.S., Gruzdev I.V., Kuchin A.V. Macroheterocycles 2010, 3, 145-149.

35. Belykh D.V., Karmanova L.P., Spirikhin L.V., Kutchin A.V. Mendeleev Commun. 2002, 12, 77-78.

Received 16.04.2015 Accepted 05.06.2015

i Надоели баннеры? Вы всегда можете отключить рекламу.